Tropospheric Ozone and Its Precursors from Earth System Sounding (TROPESS)
Total Page:16
File Type:pdf, Size:1020Kb
TRopospheric Ozone and its Precursors from Earth System Sounding (TROPESS) Kevin W. Bowman and the TROPESS team Tropospheric ozone and its precursors are an important objective of Earth System Sounding Chemistry Water Cycle Atmospheric composition plays a critical mediating role in Earth System Cycles. Atmosphere, Climate Water Vapor and Isotopes Ozone (O ), Carbon Monoxide 3 (H O and HDO) (CO), Methanol (CH OH), 2 3 Carbon Cycle Formic Acid (HCOOH) Carbon Cycle Nitrogen Cycle Radiative Kernels, Surface Temperature, Atmospheric Temperature, Cloud Optical, Ammonia (NH3), PAN Carbon Dioxide (CO2), Methane (CH4), Depth and Pressure, Surface 2 (CH3COOONO2) Carbonyl Sulfide (OCS) Emissivity TROPESS: Objectives Ø TES has borne witness to a changing trajectory of atmospheric composition in the troposphere and revealed its complex interactions within the broader Earth System Ø Characterizing and predicting this trajectory requires a broad suite of well- characterized measurements linking emissions to concentrations in the context of natural and anthropogenic variability. Ø TROPESS will produce long term, Earth Science Data Records (ESDRs) with uncertainties and observation operators pioneered by TES and enabled by the MUlti-SpEctra, MUlti- SpEcies, Multi-SEnsors (MUSES) retrieval algorithm and ground data processing system. Ø Promote the dissemination, utilization, and assimiliation of these ESDRs to support scientific and application communities, e.g., IGAC, IPCC. Ø Support the science of Decadal Survey and CEOS Atmospheric Composition Virtual Constellation (AC-VC) missions through a dependable forward stream of composition ESDR from existing and planned LEO instruments. Ø Support NASA activities including fields campaigns, mission formulation, e.g., Observing System Simulation Experiments (OSSES) ©2020 Jet Propulsion Laboratory/California Institute of Technology jpl.nasa.gov Contribution to CEOS AC-VC . 2013 Env Atm. Atm. Bowman, Bowman, TROPESS will support the exploitation of a Earth System Convoy initiated by Suomi-NPP and Sentinel 5p that will be the pillar of a composition constellation and the backbone of Decadal Survey composition missions. o Sustained observations for the next decade. o Continuity with the EOS program o LEO observations to integrate GEO platforms ©2020 Jet Propulsion Laboratory/California Institute of Technology jpl.nasa.gov More eyes are better than one: The panspectral approach IR-NIR UV-Vis TES SCIAMACHY AIRS OMI IASI GOME CrIS GOME-2 OCO-2 OMPS TROPOMI TROPOMI • Panspectral techniques provide better accuracies and vertical sensitivities than individual bands à critical for relating concentrations to emissions • Systematic errors between instruments and spectroscopy must be assessed. TROPESS has considerable heritage in multi-spectral, multi-instrument retrieval algorithms for UV, IR,NIR, microwave (Worden et al, GRL, 2007, Luo et al, 2013, Fu et al, ACP, 2013, Kuai et al, 2013, Worden et al, 2015, Fu et al, 2016) for ozone, CO, CO2, and CH4. Initial Processing Objectives Forward Stream Latency expected < 5 days Instruments Rate Dates AIRS+OMI 10x(GS)/day 2021 onward CrIS+S5P 10x(GS)/day 2021-onward Reanalysis Record is filled in successively Instruments Rate Dates AIRS+OMI 10x(TES GS)/day 10/04-10/20 CrIS+S5P 10x(TES GS)/day 10/13-10/20 AIRS+OMI: [T,q,Tsur,Emiss, H2O Clouds], O3, CO, CH4, HDO, O3 IRKs CrIS+S5p+OMPS: O3, CO, CH4, O3 IRKs, HDO, H2O, methanol, ammonia, PAN *Global Survey~3000 obs/day Special collections for field campaigns and user requests AIRS single pixel~3 million obs/day Decadal trends in tropospheric chemical reanalysis Chemical reanalysis from JPL MOMO- Chem is in closer agreement with AIRS/OMI ozone. Chemical reanalysis indicates ppb/year substantial changes in decadal tropospheric ozone. Assimilation of TROPESS ESDRs will Critical to assess and attribute these changes Miyazaki, Bowman, et al, ESSD in review Reanalysis available at https://tes.jpl.nasa.gov/chemical-reanalysis/jpl.nasa.gov Towards synergy of TROPOMI and CrIS During FIREX-AQ, CrIS total ozone column is correlated at r = 0.948 with TROPOMI. Kurosu et al Tropospheric column reveals complex, dynamically-driven structure 7/9/20 8 jpl.nasa.gov ContriBution to long-term CO trends Buchholz, Worden et al, submitted TROPESS CrIS CO show good consistency with other instruments in the NH. The SH CO is closer to MOPITT than to IASI CO. 7/9/20 9 jpl.nasa.gov MUSES-CrIS observations of wildfire plumes Example day: 6th August 2018. Images show smoke from wildfire over the Western US. VIIRS image (NASA Worldview) CrIS PAN, 800-200 hPa V. Payne (JPL) E. Fischer (CSU) Peroxyacetyl nitrate (PAN): An important nitrogen reservoir that can impact ozone and air quality far downwind of fires. CrIS is most sensitive to PAN at ~500 mbar. TROPOMI aerosol index (Sentinel Hub website) CrIS NH3, sfc-825 hPa K. Cady-Pereira (AER) Ammonia (NH3): Plays a major role in creation of particulate matter. CrIS is most sensitive to NH3 close to the surface Conclusions • TROPESS will contribute to CEOS AC-VC based upon a measurement rather than mission-focused approach to atmospheric composition retrievals. • Characterization of trends will be critical for assessments like the TOAR and for ingestion into chemical reanalysis. • Preliminary data is available at https://tes.Jpl.nasa.gov/multi- instrument-products/airs-omi. • Chemical reanalysis, which ingests these data, are available at https://tes.Jpl.nasa.gov/chemical-reanalysis. 7/9/20 11 jpl.nasa.gov jpl.nasa.gov <latexit sha1_base64="RWOtjWXYmpwNEXrRWXsPLW8GySQ=">AAACJ3icbVDLSgMxFM3UV62vUZdugkVoEcuMFNSFUnXTZQX7gE4pmTTThmYeJBmxDPM3bvwVN4KK6NI/MdNOUVsPBE7OuZd777EDRoU0jE8ts7C4tLySXc2trW9sbunbOw3hhxyTOvaZz1s2EoRRj9QllYy0Ak6QazPStIfXid+8I1xQ37uVo4B0XNT3qEMxkkrq6heWi+TAdqJqXLBwz5fFcziV7uNuhOLD6fcyrTj68YtdPW+UjDHgPDFTkgcpal39xer5OHSJJzFDQrRNI5CdCHFJMSNxzgoFCRAeoj5pK+ohl4hONL4zhgdK6UHH5+p5Eo7V3x0RcoUYubaqTFYUs14i/ue1Q+mcdiLqBaEkHp4MckIGpQ+T0GCPcoIlGymCMKdqV4gHiCMsVbQ5FYI5e/I8aRyXzHLp7Kacr1ylcWTBHtgHBWCCE1ABVVADdYDBA3gCr+BNe9SetXftY1Ka0dKeXfAH2tc3O1Kmzw==</latexit> <latexit sha1_base64="g/gKXHXavymBgJWY+PRjcdWDprU=">AAACQ3icbVDNS8MwHE3n15xfVY9eikOYiKOVgXoQph70OMF94DZGmqVbWJqWJBVH6f/mxX/Am/+AFw+KeBVMt865zQeBl/fej/zybJ8SIU3zRUvNzS8sLqWXMyura+sb+uZWRXgBR7iMPOrxmg0FpoThsiSS4prPMXRtiqt27zL2q/eYC+KxW9n3cdOFHUYcgqBUUku/a3ShDBsulF3bCR+i6GzMWyGMDkbX8yg3dg4nQ/u/qatoxFjU0rNm3hzAmCVWQrIgQamlPzfaHgpczCSiUIi6ZfqyGUIuCaI4yjQCgX2IerCD64oy6GLRDAcdRMaeUtqG43F1mDQG6t+JELpC9F1bJeMNxbQXi/959UA6J82QMD+QmKHhQ05ADekZcaFGm3CMJO0rAhEnalcDdSGHSKraM6oEa/rLs6RylLcK+dObQrZ4kdSRBjtgF+SABY5BEVyDEigDBB7BK3gHH9qT9qZ9al/DaEpLZrbBBLTvHw1LtI0=</latexit> <latexit sha1_base64="s3N0ByewWw68f+wYGIQeLDELVq4=">AAACZnicdZHLSgMxFIYz47VV62gRF26CRaiIZaYU1J0oiEtFe4HeyKSZGsxkhiQjlmle0p1rNz6G6Q211QOBj/9ccvLHjxmVynXfLXtpeWV1bT2T3djcym07O7s1GSUCkyqOWCQaPpKEUU6qiipGGrEgKPQZqfvP16N8/YUISSP+qAYxaYeoz2lAMVJG6jp6OGyFSD35QTrQpzO80cUZvupuivTxcNhJywZn8oPupKeeEbjW8AR+T3n9njJp/bcTad11Cm7JHQdcBG8KBTCNu67z1upFOAkJV5ghKZueG6t2ioSimBGdbSWSxAg/oz5pGuQoJLKdjm3S8MgoPRhEwhyu4Fj92ZGiUMpB6JvK0a5yPjcS/8o1ExWct1PK40QRjicXBQmDKoIjz2GPCoIVGxhAWFCzK8RPSCCszM9kjQne/JMXoVYueZXSxX2lcHk1tWMdHIBDUAQeOAOX4BbcgSrA4MPKWLtW3vq0c/aevT8pta1pTx78Cht+AUBbvOA=</latexit> <latexit sha1_base64="KTpOLTgbNlpgzdrDqo/xR7GOvGI=">AAACoHicbVFbT9swFHayC6y70MEjmmRRTQJNVAlCYryh8kAfNg20FdCaNnJch1o4TmSfTFSufxf/g7f9mzlpS7nsSJa+yzk+x8dJIbiGIPjr+S9evnq9svqm8fbd+w9rzY/r5zovFWU9motcXSZEM8El6wEHwS4LxUiWCHaRXB9X/sUfpjTP5S+YFGyQkSvJU04JOClu3ka6zGLDLZ5OozEBE2UExklqbqyt5N0F79Z0e2nvTKdDs+fUe+2kTlmwn3boWGykXfpDE0Fe1Gk7Q7MbWvvFtb2/MjbBsmFFO3bRZKF27KwubraCdlAHfg7COWiheZzGzbtolNMyYxKoIFr3w6CAgSEKOBXMNqJSs4LQa3LF+g5KkjE9MPWCLf7slBFOc+WOBFyrDysMybSeZInLrObUT71K/J/XLyH9OjBcFiUwSWeN0lJgyHH1W3jEFaMgJg4QqribFdMxUYSC+9OGW0L49MnPwfleO9xvH57tt44683Wsok20hbZRiA7QEeqiU9RD1PvkHXvfvO/+lt/1f/hns1Tfm9dsoEfh//4HR4HVHw==</latexit> Remote Sensing Science: retrievals and uncertainty 2 2 y F(xa) 1 + x xa 1 || − ||Sn− || − ||Sa− xˆ = x + A(x x )+Gn a − a H( )=x + A( x) · a · − 2 2 xˆi Hi(x) (G Si G ) 1 + x0 xB B 1 || − || i n i> − || − || − i X Observation operators enabled by optimal estimation (OE) (e.g., Bowman et al, 2002, 2006; Worden et al, 2004; Kulawik et al, 2006, 2008) are critical for model evaluation and assimilation (Jones et al, 2003, Miyazaki et al, 2015). .