https://doi.org/10.5194/acp-2019-1065 Preprint. Discussion started: 10 January 2020 c Author(s) 2020. CC BY 4.0 License. Tropospheric ozone radiative forcing uncertainty due to pre- industrial fire and biogenic emissions Matthew J. Rowlinson1, Alexandru Rap1, Douglas S. Hamilton2, Richard J. Pope1,3, Stijn Hantson4,5, 1 6,7,8 4 1,3 9 5 Stephen R. Arnold , Jed O. Kaplan , Almut Arneth , Martyn P. Chipperfield , Piers M. Forster , Lars 10 Nieradzik 1Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. 2Department of Earth and Atmospheric Science, Cornell University, Ithaca 14853 NY, USA. 3National Centre for Earth Observation, University of Leeds, Leeds, LS2 9JT, UK. 10 4Atmospheric Environmental Research, Institute of Meteorology and Climate research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany. 5Geospatial Data Solutions Center, University of California Irvine, California 92697, USA. 6ARVE Research SARL, Pully 1009, Switzerland. 7Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK. 15 8Max Planck Institute for the Science of Human History, Jena 07745, Germany. 9Priestley International Centre for Climate, University of Leeds, LS2 9JT, Leeds, UK. 10Institute for Physical Geography and Ecosystem Sciences, Lund University, Lund S-223 62, Sweden. Corresponding authors: Matthew J. Rowlinson (
[email protected]); Alex Rap (
[email protected]) 20 1 https://doi.org/10.5194/acp-2019-1065 Preprint. Discussion started: 10 January 2020 c Author(s) 2020. CC BY 4.0 License. Abstract Tropospheric ozone concentrations are sensitive to natural emissions of precursor compounds.