The Phenology of Growth and Reproduction in Plants

Total Page:16

File Type:pdf, Size:1020Kb

The Phenology of Growth and Reproduction in Plants Vol. 1/1, pp. 78–91 Perspectives © Gustav Fischer Verlag, 1998 in Plant Ecology, Evolution and Systematics The phenology of growth and reproduction in plants Michael Fenner Biodiversity & Ecology Division, School of Biological Sciences, University of Southampton, Bassett Cres- cent East, Hampshire SO16 7PX, UK; email: [email protected] Abstract The study of phenological aspects of plants involves the observation, recording and interpretation of the timing of their life history events. This review considers the phe- nology of leafing, flowering and fruit production in a range of species and communi- ties. The selective forces (both abiotic and biotic) that influence the timing of these events are discussed. Within the limits imposed by phylogenetic constraints, the phe- nological patterns (timing, frequency, duration, degree of synchrony, etc.) of each phase are probably the result of a compromise between a variety of selective pres- sures, such as seasonal climatic changes, resource availability, and the presence of pollinators, predators and seed dispersers. Many studies on flowering times stress the role of interactions between plant species which share pollinators or predators. The timing of fruiting plays a key role in controlling the abundance and variety of obli- gate frugivores in many tropical communities. The importance of long-term recording is stressed, particularly in species which fruit irregularly. An understanding of the phe- nology of plants is crucial to the understanding of community function and diversity. Key words: Leafing, flowering, fruiting, pollination, seed predation, synchrony Lo! Sweeten’d with the summer light, tory events occurring in response to water The full-juiced apple, waxing over-mellow, availability. Drops in a silent autumn night. Phenology (from the Greek phainein, to All its allotted length of days, show or appear) is the study of the timing of The flower ripens in its place, these life-history events. In plants, bud-burst, Ripens and fades, and falls, and hath no toil, leaf-expansion, abscission, flowering, fertili- Fast-rooted in the fruitful soil. sation, seedset, fruiting, seed dispersal and – Tennyson, The Lotus Eaters germination all take place in due season. For the most part, these events are too familiar to attract any special attention. Only when the Introduction expected pattern is broken, for example by out-of-season flowering or the loss of fruit One of the most familiar of all natural phe- due to a late frost, is our attention drawn to nomena is the cycle of events associated the importance of timing of growth and repro- with the passage of the seasons. This is duction in the life of plants. especially so in temperate and polar regions Phenological studies are as important to where annual changes in temperature are our understanding of species interactions and great and are accompanied by corresponding community function as the spatial aspects are. cycles in the growth and reproduction of the In Europe there is a long tradition of phenolog- flora. In tropical regions, seasons are often ical recording, which goes back to the last marked by differences in rainfall, with life-his- century, with an international network of phe- Phenology of growth and reproduction in plants 79 nological gardens. The information gathered in nature, it may not be easy to identify the rel- has mainly been used as a kind of bioindicator evant ones. The long-term cause of the timing of climatic patterns (Schnelle 1965–1986, of a life-history event is the selection pressure 1977). However, data about recurring life-his- which has resulted in the evolution of the tory events are still relatively scarce for most plant’s idiosyncratic phenology. These pres- communities. Some of the reasons for this are sures may range from abiotic constraints (e.g., pointed out by Lechowicz & Koike (1995). seasonally unfavourable temperatures, erratic Firstly, the data are hard won. They can only rainfall), to biotic pressures such as seasonal be accumulated by many years of repetitive presence of predators, pollinators and dis- recording at the same site. Phenological stud- persers. Many phenological studies are basi- ies need long-term planning and funding, and cally concerned with answering the question so do not lend themselves to the short-term ‘Why now, rather than earlier or later?’ The requirements of thesis projects, grant cycles, timing of a particular life-history event may be and the priorities of awarding bodies. Never- the result of selection for exploiting a favo- theless some excellent long-term studies have urable slot sandwiched between two more been published (e.g. Norton & Kelly 1988; hazardous periods. Allen & Platt 1990) and are a tribute to the per- Most life-history events occur over a sistence of their authors. period of time, and their timing can be de- The phenology of plant communities can scribed and quantified in terms of a number be studied by dealing with particular life-his- of parameters (Newstrom et al. 1994). These tory stages separately, such as leafing, flow- are (1) the frequency of occurrence, which is ering, fruiting, seed dispersal and germina- often annual; (2) the time of occurrence, tion. Each of these events occurs in its own which includes the starting date of the earliest calendar slot, but there is clearly some inter- individuals and the date of peak activity; (3) dependence between them. Fruiting must the duration of the event; (4) the magnitude wait upon flowering; seed dispersal cannot (both the mean and variability); and (5) the preceed fruiting. Each phenomenon can be degree of synchrony both within and between studied at different levels of organisation. For species. In general, where the climate is example, we can study the phenology of flow- highly seasonal, as in temperate regions and ering in a whole plant community, or in a guild in the dry tropics, the phenology of whole of species sharing a pollinator, or in a popula- communities tends to follow a broadly similar tion of a particular species, or in the flowers pattern from year to year, though modifica- on a single plant. Even an individual flower tions occur due to climatic differences be- undergoes a sequence of events (bud burst, tween years. Leaf flushing tends to be rela- stigma ripening, pollen shedding, fertilization, tively constant from year to year, but repro- fruit swelling, etc.) whose phenology differs duction can be erratic, especially in harsh cli- between species and is presumed to be the mates (Allen & Platt 1990). In the wet tropics result of natural selection. At each level, the where annual seasons are less marked, a constraints and selective forces which influ- great variety of phenological patterns are ence timing are different. This approach to seen: in different species, flowering may be examining phenological information at suc- continual, sub-annual, annual or supra-an- cessively finer levels of organisation is well nual, and may occur regularly or irregularly exemplified in the review of flowering pat- (Newstrom et al. 1994). The great variety of terns by Primack (1985). patterns encountered in leafing, flowering For individual species it is important to dis- and fruiting in any given habitat may be a re- tinguish between the physiological and eco- flection of diverse biotic and abiotic selective logical/evolutionary answers to the question of pressures operating in all communities. why leafing, flowering or fruiting occurs at a This review examines some of the inter- particular time. The immediate cause of a phe- esting questions which arise in relation to the nological event is the organism’s detection of phenology of plants, and attempts to summa- the environmental cues which trigger the ap- rize some of the answers which have been propriate response, e.g. a flowering response put forward. The main questions dealt with to short or long days (Bernier et al. 1981). here are: Physiological responses are in principle easy 1. How and why do plants differ from each to explore experimentally, though with so other in the timing of their life history many potential cues operating simultaneously events? 80 M. Fenner 2. Why is the same stage apparently ‘stag- ranged from synchronous to continuous in gered’ between some sympatric species? different species and that there were large 3. Why do some stages occur on an annual differences in longevity. In seasonal climates, cycle while others do not? the production of new leaves tends to be con- 4. What are the constraints on the timing or centrated for most species into a short period frequency of a particular phase? of the year. This is the case both in evergreen 5. How does the phenology of the plants af- communities (such as the boreal conifer for- fect the primary consumers? est) and in deciduous forests (both temperate 6. How might global climatic change affect and tropical). Usually leafing is linked with the phenology of plants and hence the some climatic feature such as rainfall (Lieber- functioning of whole communities? man & Lieberman 1984; Bullock & Solís-Ma- gallanes 1990), irradiance (Wright & Van An excellent introduction to the broad topic Schaik 1994), temperature (Brooke et al. of phenological patterns in plants is provided 1996), or photoperiod (Loubry 1994). Where by Rathcke & Lacey (1985). For the flowering water is not a limiting factor, irradiance may phenology of tropical forests, Newstrom et al. play a predominant role. In a major study of (1994) have successfully reduced the great eight disparate tropical forests, Wright & Van variety of patterns found to a small number of Schaik (1994) show that leaf (and flower) pro- identifiable types. Also in tropical forests, Van duction coincides with seasonal peaks of irra- Schaik et al. (1993) have synthesized a diance. In three cases peak irradiance oc- range of data on phenological adaptation to curred in the drier season. Leaf production abiotic conditions, and discuss the commu- can be artificially induced in some cases by nity effects of phenological events.
Recommended publications
  • Limited Alpine Climatic Warming and Modeled Phenology Advancement for Three Alpine Species in the Northeast United States
    Utah State University DigitalCommons@USU Ecology Center Publications Ecology Center 9-14-2014 Limited Alpine Climatic Warming and Modeled Phenology Advancement for Three Alpine Species in the Northeast United States Michael L. Davis Utah State University Kenneth D. Kimball Appalachian Mountain Club Douglas M. Weihrauch Appalachian Mountain Club Georgia L. D. Murray Appalachian Mountain Club Kenneth Rancourt Mount Washington Observatory Follow this and additional works at: https://digitalcommons.usu.edu/eco_pubs Part of the Botany Commons Recommended Citation Davis, Michael L.; Kimball, Kenneth D.; Weihrauch, Douglas M.; Murray, Georgia L. D.; and Rancourt, Kenneth, "Limited Alpine Climatic Warming and Modeled Phenology Advancement for Three Alpine Species in the Northeast United States" (2014). Ecology Center Publications. Paper 31. https://digitalcommons.usu.edu/eco_pubs/31 This Article is brought to you for free and open access by the Ecology Center at DigitalCommons@USU. It has been accepted for inclusion in Ecology Center Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. American Journal of Botany 101 ( 9 ): 1437 – 1446 , 2014 . L IMITED ALPINE CLIMATIC WARMING AND MODELED PHENOLOGY ADVANCEMENT FOR THREE ALPINE SPECIES IN THE NORTHEAST UNITED STATES 1 K ENNETH D. KIMBALL 2,5 , M ICHAEL L. DAVIS 2,3 , D OUGLAS M . W EIHRAUCH 2 , G EORGIA L. D. MURRAY 2 , AND K ENNETH R ANCOURT 4 2 Research Department, Appalachian Mountain Club, 361 Route 16, Gorham, New Hampshire 03581 USA; 3 Ecology Center, Utah State University, 5205 Old Main Hill—NR 314, Logan, Utah 84322 USA; and 4 Mount Washington Observatory, 2779 White Mountain Highway, North Conway, New Hampshire 03860 USA • Premise of the study: Most alpine plants in the Northeast United States are perennial and fl ower early in the growing season, extending their limited growing season.
    [Show full text]
  • The Phenology Handbook a Guide to Phenological Monitoring for Students, Teachers, Families, and Nature Enthusiasts
    The Phenology Handbook A guide to phenological monitoring for students, teachers, families, and nature enthusiasts Brian P Haggerty and Susan J Mazer University of California, Santa Barbara © 2008 Brian P Haggerty and Susan J Mazer Acknowledgments Since the Spring of 2007 it has been our great pleasure to work with a wide variety of students, educators, scien- tists, and nature enthusiasts while developing the Phenology Stewardship Program at the University of California, Santa Barbara. We would like to express our gratitude to those who have contributed (and who are currently con- tributing) time and energy for field observations, classroom implementation, and community outreach. We thank the Phenology Stewards (UCSB undergraduates) who have helped to collect plant and avian phenological data at UCSB’s Coal Oil Point Natural Reserve and to develop the methodologies and protocols that are presented in this handbook. Special thanks to the Phenology Stewardship graphic design team who helped develop this handbook, including Christopher Cosner, Karoleen Decastro, Vanessa Zucker, and Megan van den Bergh (illustrator). We also thank Scott Bull, the UCSB Coastal Fund, and the students of UCSB for providing funding for the devel- opment and continued operation of the Phenology Stewardship Program at UCSB. We would like to thank those in the Santa Barbara region who are implementing phenology education and engag- ing students to participate in Project Budburst, including: • Dr. Jennifer Thorsch and UCSB’s Cheadle Center for Biodiversity and Ecological Restoration (CCBER), as well as the teachers associated with CCBER’s “Kids In Nature” environmental education program; • the “teachers in training” in the Teacher Education Program at UCSB’s Gevirtz School of Graduate Educa- tion who work in K-12 schools throughout Santa Barbara; and • docents at natural reserves and botanic gardens, including Coal Oil Point, Sedgwick, Arroyo Hondo, Ran- cho Santa Ana, Carpenteria Salt Marsh, Santa Barbara Botanic Garden, Lotusland Botanic Garden.
    [Show full text]
  • Analysis of the Variability of Floral and Pollen Traits in Apple Cultivars—Selecting Suitable Pollen Donors for Cider Apple Orchards
    agronomy Article Analysis of the Variability of Floral and Pollen Traits in Apple Cultivars—Selecting Suitable Pollen Donors for Cider Apple Orchards Alvaro Delgado 1,* , Muriel Quinet 2 and Enrique Dapena 1 1 Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Apdo.13, E-33300 Villaviciosa, Asturias, Spain; [email protected] 2 Earth and Life Institute-Agronomy, Université Catholique de Louvain, Croix du Sud 4-5, Box L7 07 13, 1348 Louvain-la-Neuve, Belgium; [email protected] * Correspondence: [email protected] Abstract: Most apple trees (Malus domestica Borkh.) are self-incompatible and fruit yield depends on cross-pollination between genetically compatible cultivars with synchronous flowering. Flowering intensity can vary strongly among years due to the biennial bearing habit of the cultivars. The knowledge of the phenological stages and floral and pollen characteristics is essential to select suitable pollen donors. We evaluated the phenotypic variability of flowering-related traits (i.e., flowering phenology, flowering intensity, pollen production and pollen quality) in 45 apple cultivars over two successive flowering seasons. Large phenotypic variability was found among the studied cultivars indicating that the local germplasm collection provides a good source of genetic and phenotypic diversity. However, low correlations were observed between floral biology traits and, consequently, the improvement in one trait seems not to affect other traits. Some of the cultivars such as ‘Perurico’ and ‘Raxila Dulce’ regularly produced copious amounts of high-quality pollen Citation: Delgado, A.; Quinet, M.; which can improve the pollen load dispersion leading to a most effective pollination process. We did Dapena, E. Analysis of the Variability not identify statistically significant correlations between pollen attributes and the biennial bearing of Floral and Pollen Traits in Apple phenomenon.
    [Show full text]
  • The Plant Phenology Monitoring Design for the National Ecological Observatory Network Sarah Elmendorf
    University of Montana ScholarWorks at University of Montana Numerical Terradynamic Simulation Group Numerical Terradynamic Simulation Group Publications 4-2016 The plant phenology monitoring design for The National Ecological Observatory Network Sarah Elmendorf Katherine D. Jones Benjamin I. Cook Jeffrey M. Diez Carolyn A. F. Enquist See next page for additional authors Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/ntsg_pubs Recommended Citation Elmendorf, S. C., K. D. Jones, B. I. Cook, J. M. Diez, C. A. F. Enquist, R. A. Hufft, M. O. Jones, S. J. Mazer, A. J. Miller-Rushing, D. J. P. Moore, M. D. Schwartz, and J. F. Weltzin. 2016. The lp ant phenology monitoring design for The aN tional Ecological Observatory Network. Ecosphere 7(4):e01303. 10.1002/ecs2.1303 This Article is brought to you for free and open access by the Numerical Terradynamic Simulation Group at ScholarWorks at University of Montana. It has been accepted for inclusion in Numerical Terradynamic Simulation Group Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Authors Sarah Elmendorf, Katherine D. Jones, Benjamin I. Cook, Jeffrey M. Diez, Carolyn A. F. Enquist, Rebecca A. Hufft, Matthew O. Jones, Susan J. Mazer, Abraham J. Miller-Rushing, David J. P. Moore, Mark D. Schwartz, and Jake F. Weltzin This article is available at ScholarWorks at University of Montana: https://scholarworks.umt.edu/ntsg_pubs/405 SPECIAL FEATURE: NEON DESIGN The plant phenology monitoring design for The National Ecological Observatory Network Sarah C.
    [Show full text]
  • Pollinators in Forests – an Annotated Bibliography
    Pollinators in Forests – An Annotated Bibliography This annotated bibliography was compiled while researching pollinators in the woods and other related topics. Some text was copied directly from the source when it was appropriately concise. The document is broken into 9 categories: Forest Pollinator Biology, Phenology, Habitat; Forest Pollinators and Woody Material; Forest Management and Pollinators; Forest Pollinators and Agriculture; Forest Pollinators and Habitat Fragments; Forest Pollinators and Adjacent Land Use; Forest Pollinators and Invasive Plants; Pollinator Research Methodology; and Miscellaneous, for papers that do not fit a specific category but that contain relevant information. Forest Pollinator Biology, Phenology, Habitat 1. Adamson, Nancy Lee, et al. “Pollinator Plants: Great Lakes Region,” Xerces Society for Invertebrate Conservation, 2017. Includes a list of plants beneficial to pollinators native to the Great Lakes region, which includes land in Ontario, Minnesota, Wisconsin, Ohio, Michigan, Pennsylvania, and New York. 2. Adamson, Nancy Lee, et al. “Pollinator Plants: Northeast Region,” Xerces Society for Invertebrate Conservation, 2015. Includes a list of plants beneficial to pollinators native to the Northeast Region, which encompasses southern Quebec, New Brunswick, Nova Scotia, the New England states, and eastern New York. 3. Black, Scott Hoffman, et al. “Pollinators in Natural Areas: A Primer on Habitat Management,” Xerces Society for Invertebrate Conservation. By aiding in wildland food production, helping with nutrient cycling, and as direct prey, pollinators are important in wildlife food webs. Summerville and Crist (2002) found that forest moths play important functional roles as selective herbivores, pollinators, detritivores, and prey for migratory songbirds. Belfrage et al. (2005) demonstrated that butterfly diversity was a good predictor of bird abundance and diversity, apparently due to a shared requirement for a complex plant community.
    [Show full text]
  • A Remotely Sensed Pigment Index Reveals Photosynthetic Phenology in Evergreen Conifers
    A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers John A. Gamona,b,c,1, K. Fred Huemmrichd, Christopher Y. S. Wonge,f, Ingo Ensmingere,f,g, Steven Garrityh, David Y. Hollingeri, Asko Noormetsj, and Josep Peñuelask,l aCenter for Advanced Land Management Information Technologies, School of Natural Resources, University of Nebraska–Lincoln, Lincoln, NE 68583; bDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3; cDepartment of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; dNASA Goddard Space Flight Center, University of Maryland, Baltimore County, Greenbelt, MD 20771; eDepartment of Biology, University of Toronto, Mississauga, ON, Canada L5L1C6; fGraduate Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 1A1; gGraduate Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5; hDecagon Devices, Inc., Pullman, WA 99163; iUS Forest Service, Northern Research Station, Durham, NH 03824; jDepartment of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695; kConsejo Superior de Investigaciones Cientificas (CSIC), Global Ecology Unit, Center for Ecological Research and Forestry Applications (CREAF)-CSIC-Campus de Bellaterra, Bellaterra 08193, Catalonia, Spain; and lCREAF, Cerdanyola del Vallès 08193, Catalonia, Spain Edited by Christopher B. Field, Carnegie Institution of Washington, Stanford, CA, and approved September 29, 2016 (received for review April 17, 2016) In evergreen conifers, where the foliage amount changes little with photosynthetic activity has been temperature-limited (3, 7). By season, accurate detection of the underlying “photosynthetic phe- contrast, warmer growing seasons are also more likely to cause nology” from satellite remote sensing has been difficult, presenting drought, restricting ecosystem carbon uptake and enhancing eco- challenges for global models of ecosystem carbon uptake.
    [Show full text]
  • Does Flowering Synchrony Contribute to the Sustainment of Dry Grassland
    Flora 222 (2016) 96–103 Contents lists available at ScienceDirect Flora j ournal homepage: www.elsevier.com/locate/flora Does flowering synchrony contribute to the sustainment of dry grassland biodiversity? a,∗ a a b Edy Fantinato , Silvia Del Vecchio , Antonio Slaviero , Luisa Conti , b a Alicia Teresa Rosario Acosta , Gabriella Buffa a Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy b Department of Sciences, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy a r t i c l e i n f o a b s t r a c t Article history: Phenological relationships among entomophilous species for pollination may play an important role in Received 20 January 2016 structuring natural plant communities. Received in revised form 1 April 2016 The main aim of this work was to test whether in dry grassland communities there is a non-random Accepted 7 April 2016 flowering pattern and if the pattern influences the species richness, and the richness of subordinate and Edited by Fei-Hai Yu common species. Available online 11 April 2016 Field sampling was carried out in temperate dry grasslands in NE Italy. Species composition and the flowering phenology were monitored in 45 2 m × 2 m plots randomly placed over dry grasslands. Keywords: To quantify the degree to which insect-pollinated species overlap in their flowering time we developed Co-flowering index a “co-flowering index” (CF-index). The significance of the observed flowering pattern was tested using a Generalists and specialists species Pollinator sharing null model.
    [Show full text]
  • Contrasting Responses of Autumn-Leaf Senescence to Daytime and Night-Time Warming
    LETTERS https://doi.org/10.1038/s41558-018-0346-z Contrasting responses of autumn-leaf senescence to daytime and night-time warming Chaoyang Wu 1,2*, Xiaoyue Wang1,2, Huanjiong Wang 1,2*, Philippe Ciais 3, Josep Peñuelas 4,5, Ranga B. Myneni6, Ankur R. Desai 7, Christopher M. Gough8, Alemu Gonsamo 9, Andrew T. Black1, Rachhpal S. Jassal10, Weimin Ju11, Wenping Yuan12, Yongshuo Fu13, Miaogen Shen14, Shihua Li15, Ronggao Liu16, Jing M. Chen9 and Quansheng Ge 1,2* Plant phenology is a sensitive indicator of climate change1–4 be as important as spring in regulating the interannual variability and plays an important role in regulating carbon uptake by of carbon balance7. plants5–7. Previous studies have focused on spring leaf-out by LSD has been occurring later in most regions over the past few daytime temperature and the onset of snow-melt time8,9, but decades18, but providing an explanation for this change is difficult9. the drivers controlling leaf senescence date (LSD) in autumn An increase in global temperature is assumed to be a driver of LSD remain largely unknown10–12. Using long-term ground pheno- trends19, but studies have indicated that the contribution of tem- logical records (14,536 time series since the 1900s) and satel- perature to LSD variability is low, especially compared with spring lite greenness observations dating back to the 1980s, we show phenology20,21. We argue that ignoring the asymmetric effects22 of that rising pre-season maximum daytime (Tday) and minimum Tday versus Tnight and their differing impacts on LSD contributes to night-time (Tnight) temperatures had contrasting effects on the the reported overall low contribution of temperature to LSD vari- timing of autumn LSD in the Northern Hemisphere (> 20° N).
    [Show full text]
  • Pollen Limitation and Flower Abortion in a Wind-Pollinated, Masting Tree
    Notes Ecology, 96(2), 2015, pp. 587–593 Ó 2015 by the Ecological Society of America Pollen limitation and flower abortion in a wind-pollinated, masting tree 1,2,5 1,3 4 1 IAN S. PEARSE, WALTER D. KOENIG, KYLE A. FUNK, AND MARIO B. PESENDORFER 1Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, New York 14850 USA 2Illinois Natural History Survey, 1816 S. Oaks Street, Champaign, Illinois 61820 USA 3Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853 USA 4School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588 USA Abstract. Pollen limitation is a key assumption of theories that explain mast seeding, which is common among wind-pollinated and woody plants. In particular, the pollen coupling hypothesis and pollination Moran effect hypothesis assume pollen limitation as a factor that synchronizes seed crops across individuals. The existence of pollen limitation has not, however, been unambiguously demonstrated in wind-pollinated, masting trees. We conducted a two-year pollen supplementation experiment on a masting oak species, Quercus lobata. Supplemental pollen increased acorn set in one year but not in the other, supporting the importance of pollen coupling and pollination Moran effect models of mast seeding. We also tracked the fate of female flowers over five years and found that the vast majority of flowers were aborted for reasons unrelated to pollination, even in the presence of excess pollen. Pollen limitation can reduce annual seed set in a wind-pollinated tree, but factors other than pollen limitation cause the majority of flower abortion. Key words: anemophily; flower abortion; perennial plants; pollen; seed set; wind pollination.
    [Show full text]
  • Global Biogeographical Pattern of Ecosystem Functional Types Derived from Earth Observation Data
    Remote Sens. 2013, 5, 3305-3330; doi:10.3390/rs5073305 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Global Biogeographical Pattern of Ecosystem Functional Types Derived From Earth Observation Data Eva Ivits 1,*, Michael Cherlet 1, Stephanie Horion 2 and Rasmus Fensholt 2 1 Land Resource Management Unit, European Commission Joint Research Centre, I-21027 Ispra, Italy; E-Mail: [email protected] 2 Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Oster Voldgade 10, DK-1350 Copenhagen, Denmark; E-Mails: [email protected] (S.H.); [email protected] (R.F.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-332-78-5315. Received: 22 May 2013; in revised form: 27 June 2013 / Accepted: 1 July 2013 / Published: 10 July 2013 Abstract: The present study classified global Ecosystem Functional Types (EFTs) derived from seasonal vegetation dynamics of the GIMMS3g NDVI time-series. Rotated Principal Component Analysis (PCA) was run on the derived phenological and productivity variables, which selected the Standing Biomass (approximation of Net Primary Productivity), the Cyclic Fraction (seasonal vegetation productivity), the Permanent Fraction (permanent surface vegetation), the Maximum Day (day of maximum vegetation development) and the Season Length (length of vegetation growing season) variables, describing 98% of the variation in global ecosystems. EFTs were created based on Isodata classification of the spatial patterns of the Principal Components and were interpreted via gradient analysis using the selected remote sensing variables and climatic constraints (radiation, temperature, and water) of vegetation growth.
    [Show full text]
  • Behavior of Pollinators That Share Two Co-Flowering Wetland Plant Species" (2015)
    The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Spring 2015 Behavior of Pollinators That Share Two Co- Flowering Wetland Plant Species Joshua R. Morris University of Akron Main Campus, [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Animal Studies Commons, Biology Commons, and the Population Biology Commons Recommended Citation Morris, Joshua R., "Behavior of Pollinators That Share Two Co-Flowering Wetland Plant Species" (2015). Honors Research Projects. 56. http://ideaexchange.uakron.edu/honors_research_projects/56 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. Morris 1 Behavior of Pollinators That Share Two Co-Flowering Wetland Plant Species Joshua Morris Department of Biology Honors Research Project Morris 2 Behavior of Pollinators that share Two Co-Flowering Wetland Plant Species Abstract: Intermixed, co-flowering plant species often attract the same pollinators and may therefore compete for pollinator visits. Mimulus ringens and Verbena hastata are sympatric wetland plants that flower in synchrony and share many pollinators, the most common being bumblebees.
    [Show full text]
  • Analysis of the Flowering Phenology in Juncus (Juncaceae)
    Annals of Botany 100: 1271–1285, 2007 doi:10.1093/aob/mcm206, available online at www.aob.oxfordjournals.org Synchronous Pulsed Flowering: Analysis of the Flowering Phenology in Juncus (Juncaceae) STEFAN G. MICHALSKI* and WALTER DURKA Helmholtz Centre for Environmental Research – UFZ, Department of Community Ecology (BZF), Theodor-Lieser-Strasse 4, D-06120 Halle, Germany Received: 16 May 2007 Returned for revision: 29 June 2007 Accepted: 16 July 2007 Published electronically: 19 September 2007 † Background and Aims The timing of flowering within and among individuals is of fundamental biological importance because of its influence on total seed production and, ultimately, fitness. Traditional descriptive parameters of flowering phenology focus on onset and duration of flowering and on synchrony among individuals. These para- meters do not adequately account for variability in flowering across the flowering duration at individual and population level. This study aims to analyse the flowering phenology of wind-pollinated Juncus species that has been described as temporally highly variable (‘pulsed flowering’). Additionally, an attempt is made to identify proximate environmental factors that may cue the flowering, and ultimate causes for the flowering patterns are discussed. † Methods Flowering phenology was examined in populations of nine Juncus species by estimating flowering syn- chrony and by using the coefficient of variation (CV) to describe the temporal variation in flowering on individual and population levels. Phenologies were compared with null models to test which patterns deviate from random flowering. All parameters assessed were compared with each other and the performance of the parameters in response to randomization and varying synchrony was evaluated using a model population.
    [Show full text]