CS308 Compiler Principles

Syntax-Directed Translation

Li Jiang Department of Computer Science and Engineering Shanghai Jiao Tong University Phases of Compilation

Intermediate Language Lexical Analyzer Syntax Analyzer Code Optimizer Source Semantic Analyzer Target Code Generator Language Intermediate Code Language Generator Analysis Symbol Synthesis Table

Compiler Principles A Model of A Compiler Font End

• Lexical analyzer reads the source program character by character and returns the tokens of the source program. • Parser creates the tree-like syntactic structure of the given program. • Intermediate-code generator translates the syntax tree into three- address codes.

Compiler Principles Syntax-Directed Translation • Associate semantic meanings with the grammar. – generate intermediate codes – put information into the symbol table – perform type checking – issue error messages – perform some other activities – in fact, they may perform almost any activities.

Compiler Principles Syntax-Directed Translation Cont’d • Syntax-Directed Definitions: – associate a production rule with a set of attributes and semantic rules – give high-level specifications for translations – hide many implementation details such as order of evaluation of semantic rules • Translation Schemes: – embed program fragments within production bodies – indicate the order of evaluation of semantic actions associated with a production

Compiler Principles Syntax-Directed Definition (SDD) * • A syntax-directed definition is an extension of a context-free grammar: – Each grammar symbol is associated with a set of attributes. – Each production is associated with a set of semantic rules.

• Attributes are divided into two kinds: – Synthesized attribute is defined only in terms of attribute values at the node’s children and itself. – Inherited attribute is defined in terms of attribute values the node’s parent, itself, and siblings. Imagine a !

Compiler Principles SDD Cont’d • In a syntax-directed definition, each production A→α is associated with a set of semantic rules of the form:

b=f(c1,c2,…,cn) where f is a function,  b is a synthesized attribute of A and c1,c2,…,cn are attributes of the grammar symbols in the production ( A→α ).  b is an inherited attribute of one of the grammar symbols in α, and c1,c2,…,cn are attributes of the grammar symbols in the production ( A→α ).

Compiler Principles Attribute Grammar

• A semantic rule b=f(c1,c2,…,cn) indicates that the attribute b depends on attributes

c1,c2,…,cn. • In a syntax-directed definition, a semantic rule may not only evaluate the value of an attribute, but also have some side effects such as printing values.

• An attribute grammar is a syntax-directed definition without side effects.

Compiler Principles SDD Example1 Production Semantic Rules L → E return print(E.val) E → E1 + T E.val = E1.val + T.val E → T E.val = T.val T → T1 * F T.val = T1.val * F.val T → F T.val = F.val F → ( E ) F.val = E.val F → digit F.val = digit.lexval

• Symbols E, T, and F are associated with a synthesized attribute val. • The token digit has a synthesized attribute lexval (an integer value returned by the lexical analyzer).

Compiler Principles SDD Example2

Production Semantic Rules

E → E1 + T E.loc=newtemp(), E.code = E1.code || T.code || add E1.loc,T.loc,E.loc E → T E.loc = T.loc, E.code=T.code

T → T1 * F T.loc=newtemp(), T.code = T1.code || F.code || mult T1.loc,F.loc,T.loc T → F T.loc = F.loc, T.code=F.code Guess what happens F → ( E ) F.loc = E.loc, F.code=E.code F → id F.loc = id.name, F.code=“”

• Symbols E, T, and F are associated with synthesized attributes loc and code. • The token id has a synthesized attribute name. • || is the string concatenation operator.

Compiler Principles Annotated Parse Tree

A parse tree can be used to visualize the translation specified by an SDD.

• A parse tree showing the values of attributes at each node is called an annotated parse tree.

• The process of computing the attributes values at the nodes is called annotating (or decorating) of the parse tree.

Compiler Principles Annotated Parse Tree Example

Input: 5+3*4 L

E

E + T

T T * F

F F digit

digit digit

Compiler Principles Annotated Parse Tree Example

Input: 5+3*4 L

E.val=17

E.val=5 + T.val=12

T.val=5 T.val=3 * F.val=4

F.val=5 F.val=3 digit.lexval=4

digit.lexval=5 digit.lexval=3

What about these rules: E.code = E1.code || T.code || add E1.loc,T.loc,E.loc

Compiler Principles Dependency Graph

• While an annotated parse tree shows the values of attributes • Semantic rules set up dependencies among attributes.

• Dependency graph determines the evaluation order of the semantic rules. – An edge from one attribute to another indicates that the value of the former one is needed to compute the later one.

Compiler Principles Dependency Graph Example

Input: 5+3*4 L

E.val=17

E.val=5 T.val=12

T.val=5 T.val=3 F.val=4

F.val=5 F.val=3 digit.lexval=4

digit.lexval=5 digit.lexval=3

Compiler Principles Inherited Attributes Example Input: real p q Production Semantic Rules D → T L L.in = T.type T → int T.type = integer T → real T.type = real

L → L1 id L1.in = L.in, addtype(id.entry,L.in) L → id addtype(id.entry,L.in)

• Symbol T is associated with a synthesized attribute type. • Symbol L is associated with an inherited attribute in.

Compiler Principles A Dependency Graph with Inherited Attributes

Input: real p q

D T.type=real L.in=real

T L L1.in=real, addtype(q,real) real L id addtype(p,real) id.entry=q

id id.entry=p parse tree dependency graph

Compiler Principles S & L-Attributed Definitions • We will look at two sub-classes of the syntax-directed definitions: – S-Attributed Definitions: only synthesized attributes are used in the syntax-directed definitions. – L-Attributed Definitions: both synthesized and inherited attributes are used in a restricted fashion. • dependency-graph edges can go from left to right, but not from right to left Why?

Compiler Principles S-Attributed Definitions • S-Attributed Definitions: only synthesized attributes are used in the syntax-directed definitions – each rule computes an attribute for the non- terminal at the head of a production from attributes taken from the body of the production – the attributes can be evaluated by performing a post-order traversal of the parse tree How? – can be implemented naturally with an LR parser – can also be implemented with an LL parser

Compiler Principles Bottom-Up Evaluation of S-Attributed Definitions • Put the values of the synthesized attributes of the grammar symbols into a parallel stack • Evaluate the values of the attributes during reductions

Example: A  XYZ A.a=f(X.x,Y.y,Z.z) (all attributes are synthesized)

stack parallel-stack top  Z Z.z Y Y.y f() X X.x  top  A A.a . . . .

Compiler Principles SDD Example Recall Production Semantic Rules L → E return print(E.val)

E → E1 + T E.val = E1.val + T.val E → T E.val = T.val

T → T1 * F T.val = T1.val * F.val T → F T.val = F.val F → ( E ) F.val = E.val F → digit F.val = digit.lexval

• Symbols E, T, and F are associated with a synthesized attribute val. • The token digit has a synthesized attribute lexval (an integer value returned by the lexical analyzer).

Compiler Principles Canonical LR(0) Collection for The Grammar

L I : L’→ L I1: L’→L I : L →Er * 0 . . r 7 . I : E →E+T. 9 L →.Er T 11 T →T *F E + . E →.E+T I2: L →E.r I8: E →E+.T F 4 E → T E →E +T T → T*F ( . . . 5 T → T*F T → F d . T . 6 T →.F I3: E →T. F →.(E) F →.(E) T →T.*F F →.d F → d * . F I4: T →F. I9: T →T* F F ( . I : T →T*F. 12 I5: F → (.E) F →.(E) E → E+T F → d ( . E . 5 E → T d . 6 T →.T*F T →.F T I10:F →(E.) ) F →(E) 3 I13: . F → (E) E →E +T + . F . F →.d 4 8 ( d 5 I6: F →d d . 6

Compiler Principles Bottom-Up Evaluation Example

• At each shift of digit, we also push digit.lexval into val-stack. stack val-stack input action semantic rule 0 5+3*4r s6 d.lexval(5) into val-stack 0d6 5 +3*4r F→digit F.val=d.lexval 0F4 5 +3*4r T→F T.val=F.val 0T3 5 +3*4r E→T E.val=T.val 0E2 5 +3*4r s8 push empty slot into val-stack 0E2+8 5- 3*4r s6 d.lexval(3) into val-stack 0E2+8d6 5-3 *4r F→digit F.val=d.lexval 0E2+8F4 5-3 *4r T→F T.val=F.val 0E2+8T11 5-3 *4r s9 push empty slot into val-stack 0E2+8T11*9 5-3- 4r s6 d.lexval(4) into val-stack 0E2+8T11*9d6 5-3-4 r F→digit F.val=d.lexval

0E2+8T11*9F12 5-3-4 r T→T*F T.val=T1.val*F.val

0E2+8T11 5-12 r E→E+T E.val=E1.val+T.val 0E2 17 r s7 push empty slot into val-stack 0E2r7 17- $ L→Er print(17), pop empty slot from val-stack 0L1 17 $ acc

Compiler Principles Bottom-Up Eval. of S-Attributed Definitions

Production Semantic Rules L → E return print(val[top-1]) E → E1 + T val[ntop] = val[top-2] + val[top] E → T T → T1 * F val[ntop] = val[top-2] * val[top] T → F F → ( E ) val[ntop] = val[top-1] F → digit push digit.lexval

• At each shift of digit, we also push digit.lexval into val-stack. • At all other shifts, we do not put anything into val- stack because other terminals do not have attribute (but we increment the stack pointer for val-stack).

Compiler Principles Top-Down Eval. of S-Attributed Definitions

Productions Semantic Rules A → B print(B.n0), print(B.n1)

B → 0 B1 B.n0=B1.n0+1, B.n1=B1.n1

B → 1 B1 B.n0=B1.n0, B.n1=B1.n1+1 B →  B.n0=0, B.n1=0 Guess what is the semantic meaning? B has two synthesized attributes (n0 and n1).

Compiler Principles Top-Down Eval. of S-Attributed Definitions • In a recursive predictive parser, each non- terminal corresponds to a procedure. procedure A() { call B(); A → B

} procedure B() { if (currtoken=0) { consume 0; call B(); } B → 0 B else if (currtoken=1) { consume 1; call B(); } B → 1 B else if (currtoken=$) {} // $ is end-marker B →  else error(“unexpected token”); }

Compiler Principles Top-Down Eval. of S-Attributed Definitions procedure A() { int n0,n1; Synthesized attributes of non-terminal B call B(&n0,&n1); are the output parameters of procedure B. print(n0); print(n1); } All the semantic rules can be evaluated procedure B(int *n0, int *n1) { at the end of of production rules if (currtoken=0) { int a,b; consume 0; call B(&a,&b); *n0=a+1; *n1=b; } else if (currtoken=1) { int a,b; consume 1; call B(&a,&b); *n0=a; *n1=b+1; } else if (currtoken=$) {*n0=0; *n1=0; } // $ is end-marker else error(“unexpected token”); }

Compiler Principles L-Attributed Definitions • L-Attributed Definitions: both synthesized and inherited attributes are used in a restricted fashion. – can always be evaluated by a depth first traversal of the parse tree – can also be evaluated during the parsing

Compiler Principles L-Attributed Definitions • A syntax-directed definition is L-attributed if each inherited attribute of Xj, where 1jn, on the right side of A → X1X2...Xn depends only on: 1. the inherited attribute of A

2. the attributes of the symbols X1,...,Xj-1 to the left of Xj in the production

3. attributes associated with Xj itself, under the condition that there is no cycle in the dependency graph involving the attributes of Xj

• Every S-attributed definition is L-attributed, the restrictions only apply to the inherited attributes (not to synthesized attributes).

Compiler Principles A L-Attributed SDD

Productions Semantic Rules T → F T’ T’.inh = F.val

T’ → * F T’1 T’1.inh=T’.inh * F.val

Compiler Principles A Definition that is NOT L-Attributed Productions Semantic Rules A → L M L.in=l(A.i), M.in=m(L.s), A.s=f(M.s) A → Q R R.in=r(A.in), Q.in=q(R.s), A.s=f(Q.s)

• This syntax-directed definition is not L- attributed because the semantic rule Q.in=q(R.s) violates the restrictions of L- attributed definitions.

Think: How can we evaluate Q.in ? See next Page.

Compiler Principles Syntax-Directed Translation Schemes (SDT)

• A syntax-directed translation scheme is a context-free grammar in which: – attributes are associated with the grammar symbols – semantic actions enclosed between braces {} are inserted within the body of productions.

• Example: A → { ... } X { ... } Y { ... }

Semantic Actions

Compiler Principles SDT Cont’d • In translation schemes, we use semantic action instead of semantic rule used in syntax-directed definitions. • Restrictions in designing a translation scheme: – The position of the semantic action on the right side indicates when that semantic action will be evaluated. A new term: not exists in SDD – These restrictions (motivated by L-attributed definitions) ensure that a semantic action does not refer to an attribute that has not yet computed.

Compiler Principles A SDT Example • A simple translation scheme that converts infix expressions to the corresponding postfix expressions. When to evaluate X{}Y: - Bottom-up:? - Top-down:? E → T R Explain later R → + T { print(“+”) } R1 R →  T → id { print(id.name) }

a+b+c  ab+c+ infix expression postfix expression

Compiler Principles A SDT Example Cont’d E

T R id {print(“a”)} + T {print(“+”)} R

id {print(“b”)} + T {print(“+”)} R

id {print(“c”)} 

A depth first traversal of the parse tree will produce the postfix representation of the infix expression.

Compiler Principles SDT for S-Attributed Definition • For each associated semantic rule in a S- attributed SDD, append a semantic action to the end of the production body. Production Semantic Rule

E → E1 + T E.val = E1.val + T.val 

E → E1 + T { E.val = E1.val + T.val }

Compiler Principles SDT for L-Attributed Definition

• Conversion rules: 1. An inherited attribute of a symbol on the right side of a production must be computed in a semantic action before that symbol. 2. A semantic action must not refer to a synthesized attribute of a symbol to the right of that semantic action. 3. A synthesized attribute for the non-terminal on the left can only be computed after all attributes it references have been computed (this semantic action is placed at the end of the production body). • Any L-attributed definition can always be converted to a corresponding translation scheme satisfying these three rules.

Compiler Principles A SDT with Inherited Attributes

D → T id { addtype(id.entry,T.type), L.in = T.type } L T → int { T.type = integer } T → real { T.type = real }

L → id { addtype(id.entry,L.in), L1.in = L.in } L1 L → 

• This is a translation scheme for an L-attributed definitions.

Compiler Principles When to evaluate the sematic action?

• For production B → X {a} Y – If the parsing is bottom-up, then we perform action a as soon as this occurrence of X appears on the top of the parsing stack. – If the parsing is top-down, we perform a just before we attempt to expand this occurrence of Y (if Y is a nonterminal) or check for Y on the input (if Y is a terminal).

Compiler Principles Implementing SDT • Using Recursive-Descent Parsing – Decide the production used to expand A – Match each terminal appears on the input – Preserve, in local variables, the values of all attributes needed to compute inherited and synthesized attributes – Call functions corresponding to nonterminals in the body, and provide them with the proper arguments

Compiler Principles Recursive-Descent Parsing of SDT procedure D() { int T.type,L.in,id.entry; call T(&T.type); consume(id,&id.entry); addtype(id.entry,T.type); Lin=T.type; call L(L.in); a synthesized attribute (an output parameter) } procedure T(int *T.type) { if (currtoken is int) { consume(int); *T.type=TYPEINT; } else if (currtoken is real) { consume(real); *T.type=TYPEREAL; } else { error(“unexpected type”); } } an inherited attribute (an input parameter) procedure L(int L.in) { if (currtoken is id) { int L1.in,id.entry; consume(id,&id.entry); addtype(id.entry,L.in); L1.in=L.in; call L(L1.in); } else if (currtoken is endmarker) { } else { error(“unexpected token”); } }

Compiler Principles Eliminating Left Recursion from SDT • A translation scheme with a left .

E → E1 + T { E.val = E1.val + T.val } E → E1 - T { E.val = E1.val - T.val } E → T { E.val = T.val } T → T1 * F { T.val = T1.val * F.val } T → F { T.val = F.val } F → ( E ) { F.val = E.val } F → digit { F.val = digit.lexval }

• When we eliminate the left recursion from the grammar (to get a suitable grammar for the top- down parsing) we also have to change semantic actions

Compiler Principles Eliminating Left Recursion

A → A1 Y { A.a = g(A1.a,Y.y) } a left recursive grammar with A → X { A.a=f(X.x) } synthesized attributes (a,y,x).

 eliminate left recursion inherited attribute of the new non-terminal synthesized attribute of the new non-terminal

A → X { R.in=f(X.x) } R { A.a=R.syn }

R → Y { R1.in=g(R.in,Y.y) } R1 { R.syn = R1.syn } R →  { R.syn = R.in }

Compiler Principles Eliminating Left Recursion Cont’d

A parse tree of left recursive grammar

A Y A.a=g(f(X.x),Y.y) parse tree of non-left-recursive grammar X X.x=f(X.x) A

X R.in=f(X.x) R A.a=g(f(X.x,Y.y)

Y R1.in=g(f(X.x),Y.y) R1 R.syn=g(f(X.x),Y.y)

 R1.syn=R1.in

Compiler Principles Eliminating Left Recursion from SDT • A translation scheme with a left recursive grammar.

E → E1 + T { E.val = E1.val + T.val } E → E1 - T { E.val = E1.val - T.val } E → T { E.val = T.val } T → T1 * F { T.val = T1.val * F.val } T → F { T.val = F.val } F → ( E ) { F.val = E.val } F → digit { F.val = digit.lexval }

• When we eliminate the left recursion from the grammar (to get a suitable grammar for the top- down parsing) we also have to change semantic actions

Compiler Principles Eliminating Left Recursion Example

inherited attribute synthesized attribute

E → T { A.in=T.val } A { E.val=A.syn }

A → + T { A1.in=A.in+T.val } A1 { A.syn = A1.syn } A → - T { A1.in=A.in-T.val } A1 { A.syn = A1.syn } A →  { A.syn = A.in } T → F { B.in=F.val } B { T.val=B.syn }

B → * F { B1.in=B.in*F.val } B1 { B.syn = B1.syn} B →  { B.syn = B.in } F → ( E ) { F.val = E.val } F → digit { F.val = digit.lexval }

Compiler Principles Intermediate Code Generation with SDT

E → T { A.in=T.loc } A { E.loc=A.loc }

A → + T { A1.in=newtemp(); emit(add,A.in,T.loc,A1.in) }

A1 { A.loc = A1.loc} A →  { A.loc = A.in } T → F { B.in=F.loc } B { T.loc=B.loc }

B → * F { B1.in=newtemp(); emit(mult,B.in,F.loc,B1.in) }

B1 { B.loc = B1.loc} B →  { B.loc = B.in } F → ( E ) { F.loc = E.loc } F → id { F.loc = id.name }

Compiler Principles Intermediate Code Generation with Predictive Parsing procedure E(char **E.loc) { E → T { A.in=T.loc } A { E.loc=A.loc } char *A.in, *T.loc, *A.loc; call T(&T.loc); A.in=T.loc; call A(A.in,&A.loc); *E.loc=A.loc; } procedure A(char *A.in, char **A.loc) { if (currtok is +) { char *A1.in, *T.loc, *A1.loc; consume(+); call T(&T.loc); A1.in=newtemp(); emit(“add”,A.in,T.loc,A1.in); call A(A1.in,&A1.loc); *A.loc=A1.loc; } else { *A.loc = A.in } A → + T { A1.in=newtemp(); emit(add,A.in,T.loc,A1.in) } } A1 { A.loc = A1.loc} A →  { A.loc = A.in }

Compiler Principles Intermediate Code Generation with Predictive Parsing procedure T(char **T.loc) { char *B.in, *F.loc, *B.loc; call F(&F.loc); B.in=F.loc; call B(B.in,&B.loc); *T.loc=B.loc; } procedure B(char *B.in, char **B.loc) { if (currtok is *) { char *B1.in, *F.loc, *B1.loc; consume(+); call F(&F.loc); B1.in=newtemp(); emit(“mult”,B.in,F.loc,B1.in); call B(B1.in,&B1.loc); B.loc=B1.loc; } else { *B.loc = B.in } } procedure F(char **F.loc) { if (currtok is “(“) { char *E.loc; consume(“(“); call E(&E.loc); consume(“)”); *F.loc=E.loc } else { char *id.name; consume(id,&id.name); *F.loc=id.name } }

Compiler Principles Bottom-Up Evaluation of L-Attributed SDD

• In bottom-up evaluation, the semantic actions are evaluated during the reductions. • During the bottom-up evaluation of S-attributed definitions, we have a parallel stack to hold synthesized attributes. • Problem: Where do we hold inherited attributes? • Solution: – Convert the grammar to guarantee the followings: • All embedding semantic actions in the translation scheme is moved to the end of the production rules. • All inherited attributes is copied into the synthesized attributes.

Compiler Principles Moving Embedding Semantic Actions • Translation rules:

1. Remove an embedding semantic action Si, and put a new non-terminal Mi in the place of the semantic action.

2. Put that semantic action Si to the end of a new production rule Mi for the new non- terminal Mi.

• The semantic action Si will be evaluated when this new production rule is reduced. • The evaluation order of the semantic rules are not changed by this transformation.

Compiler Principles Removing Embedding Semantic Actions Example1

A {S1} X1 {S2} X2 ... {Sn} Xn

 remove embedding semantic actions

A M1 X1 M2 X2 ... Mn Xn

M1 {S1}

M2 {S2} …

Mn {Sn}

Compiler Principles Removing Embedding Semantic Actions Example2 E → T R R → + T { print(“+”) } R1 R →  T → id { print(id.name) }  remove embedding semantic actions

E → T R R → + T M R1 R →  T → id { print(id.name) } M →  { print(“+”) }

Compiler Principles Copying Inherited Attributes

• For every production rule A  X1 X2 ... Xn ,

– Introduce new marker non-terminals M1,M2,...,Mn

– Replace the production rule with A  M1 X1 M2 X2 ... Mn Xn

– Synthesized attributes of Xi will not be changed.

– Inherited attributes of Xi will be copied into the synthesized attribute of Mi by the new semantic action added to the end of the new production

rule Mi.

– The inherited attribute of Xi can be found in the synthesized attribute of Mi (which is immediately available in the stack).

Compiler Principles Copying Inherited Attributes Cont’d

A  {B.i=f1(...)} B {C.i=f2(...)} C {A.s= f3(...)} 

A  {M1.i=f1(...)} M1 {B.i=M1.s} B {M2.i=f2(...)} M2 {C.i=M2.s} C {A.s= f3(...)} M1 {M1.s=M1.i} M2 {M2.s=M2.i}

Compiler Principles Translation with Inherited Attributes

S  {A.i=1} A {S.s=k(A.i,A.s)} A  {B.i=f(A.i)} B {C.i=g(A.i,B.i,B.s)} C {A.s= h(A.i,B.i,B.s,C.i,C.s)} B  b {B.s=m(B.i,b.s)} C  c {C.s=n(C.i,c.s)}

S  {M1.i=1} M1 {A.i=M1.s} A {S.s=k(M1.s,A.s)}

A  {M2.i=f(A.i)} M2 {B.i=M2.s} B

{M3.i=g(A.i,M2.s,B.s)} M3 {C.i=M3.s} C {A.s= h(A.i, M2.s,B.s, M3.s,C.s)} B  b {B.s=m(B.i,b.s)} C  c {C.s=n(C.i,c.s)} Solution?

M1 {M1.s=M1.i}

M2 {M2.s=M2.i}

M3 {M3.s=M3.i}

Compiler Principles Actual Translation Scheme

S  {M1.i=1} M1 {A.i=M1.s} A {S.s=k(M1.s,A.s)}

A  {M2.i=f(A.i)} M2 {B.i=M2.s} B {M3.i=g(A.i,M2.s,B.s)} M3 {C.i=M3.s} C {A.s= h(A.i, M2.s,B.s, M3.s,C.s)} B  b {B.s=m(B.i,b.s)} C  c {C.s=n(C.i,c.s)}

M1 {M1.s= M1.i}

M2 {M2.s=M2.i}

M3 {M3.s=M3.i}

S  M1 A { s[ntop]=k(s[top-1],s[top]) }

M1  { s[ntop]=1 }

A  M2 B M3 C { s[ntop]=h(s[top-4],s[top-3],s[top-2],s[top-1],s[top]) }

M2  { s[ntop]=f(s[top]) }

M3  { s[ntop]=g(s[top-2],s[top-1],s[top])} B  b { s[ntop]=m(s[top-1],s[top]) } C  c { s[ntop]=n(s[top-1],s[top]) }

Compiler Principles Evaluation of Attributes

S S.s=k(1,h(..)) A.i=1 A A.s=h(1,f(1),m(..),g(..),n(..))

B.i=f(1) C.i=g(1,f(1),m(..)) B C B.s=m(f(1),b.s) C.s=n(g(..),c.s)

b c

Compiler Principles Evaluation of Attributes Cont’d stack input l-attribute stack bc$

M1 bc$ 1 M1 M2 bc$ 1 f(1) M1 M2 b c$ 1 f(1) b.s M1 M2 B c$ 1 f(1) m(f(1),b.s) M1 M2 B M3 c$ 1 f(1) m(f(1),b.s) g(1,f(1),m(f(1),b.s)) M1 M2 B M3 c $ 1 f(1) m(f(1),b.s) g(1,f(1),m(f(1),b.s)) c.s

M1 M2 B M3 C $ 1 f(1) m(f(1),b.s) g(1,f(1),m(f(1),b.s)) n(g(..),c.s)

M1 A $ 1 h(f(1),m(..),g(..),n(..)) S $ k(1,h(..))

Compiler Principles Test Yourself • Textbook page 337, Exercise 5.4.3

Solution: B  1 { R.in = 1 } R { B.val = R.syn}

R  0 { R1.in = 2 * R.in } R1 { R.syn = R1.syn } R  1 { R1.in = 2 * R.in + 1 } R1 { R.syn = R1.syn } R   { R.syn = R.in }

Compiler Principles