Diagnostic Tools for Preventing and Managing Maternal and Congenital Syphilis: an Overview Rosanna W

Total Page:16

File Type:pdf, Size:1020Kb

Diagnostic Tools for Preventing and Managing Maternal and Congenital Syphilis: an Overview Rosanna W Diagnostic tools for preventing and managing maternal and congenital syphilis: an overview Rosanna W. Peeling1 & Htun Ye2 Abstract Syphilis is a major cause of adverse outcomes in pregnancy in developing countries. Fetal death and morbidity due to congenital syphilis are preventable if infected mothers are identified and treated appropriately by the middle of the second trimester. Most pregnant women with syphilis are asymptomatic and can only be identified through serological screening. Non-treponemal tests, such as the rapid plasma reagin (RPR) test, are sensitive, simple to perform, and inexpensive. However, they have often not been available at primary health-care settings because they required cold storage for reagents and electricity to operate a rotator. Additionally, as many as 28% of positive RPR results in pregnant women are biological false positives. Confirmatory assays are usually available only in reference laboratories. Technological advances have resulted in improved serodiagnostic tools for syphilis. New enzyme immunoassays are available for surveillance and for large-scale screening programmes. Decentralized antenatal screening with on-site confirmation is now possible since new RPR reagents that are stable at room temperature have become commercially available, as have solar-powered rotators and simple, rapid point-of-care treponemal tests that use whole blood and do not require electricity or equipment. These will be valuable tools for preventing or eliminating congenital syphilis. The development of a non-invasive rapid treponemal test that distinguishes between active and past infections remains a high priority in areas where syphilis is endemic. Keywords Syphilis, Congenital. Syphilis/diagnosis/therapy; Syphilis serodiagnosis/utilization; Immunoenzyme techniques/utilization; Treponema pallidum/isolation and purification; Prenatal diagnosis; Evaluation studies (source: MeSH, NLM). Mots clés Syphilis congénitale/diagnostic/thérapeutique; Séro-diagnostic syphilis/utilisation; Méthode immunoenzymatique/utilisation; Treponema pallidum/isolement et purification; Diagnostic prénatal; Etude évaluation (source: MeSH, INSERM). Palabras clave Sífilis congénita/diagnóstico/terapia; Serodiagnóstico de la sífilis/utilización; Técnicas para inmunoenzima/utilización; Treponema pallidum/aislamiento y purificación; Diagnóstico prenatal; Estudios de evaluación (fuente: DeCS, BIREME). Bulletin of the World Health Organization 2004;82:439-446. Voir page 444 le résumé en français. En la página 445 figura un resumen en español. Introduction Infants born to infected mothers are at risk of acquiring the infection in utero, resulting in serious perinatal morbidity Important advances in the diagnosis and treatment of syphilis and mortality (4–6). Congenital syphilis can be prevented if have been made since the causative organism, Treponema pal- infection in the mother is detected and treated by the time lidum, was discovered in 1905 by Schaudinn and Hoffmann. of the second trimester. Antenatal screening to prevent con- Despite these achievements, syphilis remains a major public genital syphilis has become the main focus of syphilis control health problem in many developing countries, and there has programmes. had a resurgence in developed countries (1, 2). In settings where there is limited or no access to diagnostic tools, WHO has recommended using a syndromic management Diagnostic tools approach whereby patients presenting with genital ulcer disease A wide range of diagnostic tools is available (Table 1). The under- (GUD) are treated for syphilis and chancroid (3). A significant lying principles and characteristics of these tests are well described relative decline in the prevalence of primary syphilis among pa- in laboratory manuals and guidelines and will not be discussed tients with GUD was documented in countries where syndromic here (7–11). This paper focuses on whether the diagnostic tools management was successfully implemented. However, because are adequate to control maternal syphilis and prevent congenital most individuals infected with syphilis do not have clinical symp- syphilis as well as on the problems associated with their use for toms, syphilis continues to be a serious public health problem surveillance (Table 2). We also briefly discuss what the future in areas where screening programmes are not in place. may hold in terms of new tests. 1 Manager, Sexually Transmitted Diseases Diagnostics Initiative (SDI), UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Avenue Appia, 1211 Geneva 27, Switzerland. Correspondence should be sent to this author (email: [email protected]). 2 Medical officer, STI Surveillance, Department of HIV/AIDS, World Health Organization, Geneva, Switzerland. Ref No. 03-008086 (Submitted: 22 September 2003 – Final revised version received: 1 April 2004 – Accepted: 1 April 2004) Bulletin of the World Health Organization | June 2004, 82 (6) 439 Maternal and congenital syphilis Tools to prevent and manage maternal and congenital syphilis Rosanna W. Peeling et al. Identification of T. pallidum specific than darkfield microscopy, but it is technically demand- The direct identification of T. pallidum is not routinely used ing and more expensive. The sensitivity of both microscopy because most people who have syphilis are asymptomatic. Identi- techniques can be affected by the age or condition of the lesion fication of the treponeme is only possible in people presenting and whether the patient has been treated. with lesions of primary and secondary syphilis (Fig. 1). Since T. Nucleic acid-based amplification assays, such as the poly- pallidum cannot be cultured in the laboratory, darkfield micros- merase chain reaction (PCR), which can detect as few as 10 copy is used to identify the treponemes in a wet mount of lesion treponemes in lesions, placental tissue and other body tissues, material. The treponemes have a characteristic morphology and have greatly improved the sensitivity and specificity of direct motility. Darkfield microscopy has a sensitivity of 74–86% and detection methods (12, 13). A multiplex PCR assay which simul- a specificity approaching 97% depending on the expertise of the taneously detects T. pallidum, herpes simplex virus type 2 and reader (8, 9). Its sensitivity may be lowered if the lesion has been Haemophilus ducreyi has been used to provide an etiological wiped with an antiseptic. Direct fluorescent antibody–T. palli- diagnosis for patients with GUD as well as for validating syn- dum testing (DFA–TP) uses fluorescein-conjugated antibodies dromic management algorithms (14). Since PCR assays for to stain the organism in a smear or tissue section (7). DFA–TP syphilis are not commercially available, these assays have re- does not require motile organisms and is more sensitive and mained research tools. Table 1. Comparison of syphilis tests (7–9) For patients presenting For screening with an ulcer or lesion Criteria Darkfield Antigen DNA Non-treponemal tests Treponemal tests microscopy detection detection (DFA–TP) (PCR) RPR VDRL Rapid test EIA TPHA–TPPA FTA-ABS Sensitivity 74–86% 73–100% 91% 86–100% 78–100% 84–98% 82–100% 85–100% 70–100% Specificity 85–97% 89–100% 99% 93–98% 98% 94–98% 97–100% 98–100% 94–100% Ease of use Easy Moderate Complex Easy Easy Easy Moderate Complex Complex Where used Exam room, Intermediate Referral Exam room, Exam room, Exam room, Intermediate Referral lab Referral lab on-site lab lab, referral lab on-site lab on-site lab on-site lab lab, referral lab lab Equipment Light Fluorescence Microfuge Rotator Light None Incubator, Incubator, Fluores- needed microscope microscope centrifuge, microscope microwell microwell cence with thermal plate plate microscope darkfield cycler, washer and washer and condenser incubator, reader reader microwell plate reader Training Extensive Moderate Extensive Minimal Minimal Minimal Moderate Extensive Extensive needed Average US$ 0.40 US$ 3.00 US$ 14.00 US$ 0.50 US$ 0.50 US$ 0.55–3.00 US$ 3.00 US$ 3.00 US$ 3.00 cost (includes detection of Haemophilus. ducreyi and herpes simplex virus) Comments Requires live Does not Does not Most RPR Reagents Most tests Allows high Confirma- Confirma- organisms. require distinguish reagents require are stable throughput tory test. tory test. Specificity live between the require refrigeration at room screening Does not Does not may be organisms subspecies refrigeration temperature but does not distinguish distinguish compromised pallidum and for >6 distinguish between between by presence pertenue months. between active infec- active infec- of debris or Test does no active infec- tions and tions and endogenous distinguish tions and infections infections treponemes between infections treated in treated in active infec- treated in the past the past tions and the past infections treated in the past DFA–TP = direct fluorescent antibody–Treponema pallidum testing; PCR = polymerase chain reaction; RPR = rapid plasma reagin test; VDRL = Venereal Diseases Research Laboratory test; EIA = enzyme immunoassay; TPHA–TPPA = T. pallidum haemagglutination assay–T. pallidum particle agglutination test; FTA-ABS = fluorescent treponemal antibody absorption test. 440 Bulletin of the World Health Organization | June 2004, 82 (6) Maternal and congenital syphilis Rosanna W. Peeling et al. Tools to prevent and manage maternal and congenital syphilis Table 2. Tools for preventing and controlling maternal and congenital syphilis in different settings Tests for diagnosis
Recommended publications
  • Module 6: Principles of Asepsis
    Module 6: Medical and Surgical Asepsis Module 6: Medical and Surgical Asepsis Minimum Number of Theory Hours: 2 Suggested Theory Hours: 5 Recommended Clinical Hours: 8 Statement of Purpose: The purpose of this unit is to present information about asepsis and the control of infection. Procedures and precautions to protect patient/patients/residents, health care workers and others from infection are presented, including standard precautions, transmission- based precautions and biohazardous waste management. Terminology 1. Acquired Immunodeficiency 21. Escherichia coli (E. coli) 40. Non-intact Syndrome (AIDS) 22. Excretions 41. Nosocomial 2. Airborne precautions 23. Exposure incident 42. Occupational Safety and Health 3. Asepsis 24. Flora Administration (OSHA) 4. Athlete’s foot 25. Fungus 43. Pathogens 5. Bacteria 26. Health Care-Associated Infection 44. Personal Protective Equipment 6. Barriers (HAI) (PPE) 7. Biohazard symbol 27. Hepatitis A, B, C, D, E 45. Pneumonia 8. Bloodborne 28. Herpes zoster 46. Precautions 9. Carrier spore 29. Host 47. Protozoa 10. Centers for Disease Control (CDC) 30. Immunity 48. Reservoir 11. Chain of infection 31. Infection 49. Reverse isolation 12. Communicable 32. Infectious agent 50. Rickettsia 13. Contact precautions 33. Influenza 51. Scabies 14. Contagious microbes 34. Isolation 52. Sepsis 15. Contamination 35. Lice 53. Standard precautions 16. Disinfection 36. Material Safety Data Sheet (MSDS) 54. Sterilization 17. Disorientation 37. Methicillin-Resistant 55. Streptococcus 18. Disposable Staphylococcus
    [Show full text]
  • Isolation, Identification and Investigation Of
    foods Article Isolation, Identification and Investigation of Fermentative Bacteria from Sea Bass (Dicentrarchus labrax): Evaluation of Antifungal Activity of Fermented Fish Meat and By-Products Broths Francisco J. Martí-Quijal 1 , Andrea Príncep 1, Adrián Tornos 1 , Carlos Luz 1, Giuseppe Meca 1, Paola Tedeschi 2, María-José Ruiz 1, Francisco J. Barba 1,* and Jordi Mañes 1 1 Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; [email protected] (F.J.M.-Q.); [email protected] (A.P.); [email protected] (A.T.); [email protected] (C.L.); [email protected] (G.M.); [email protected] (M.-J.R.); [email protected] (J.M.) 2 Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy; [email protected] * Correspondence: [email protected] Received: 2 April 2020; Accepted: 17 April 2020; Published: 4 May 2020 Abstract: During fish production processes, great amounts of by-products are generated, representing 30–70% of the initial weight. Thus, this research study is investigating 30 lactic acid bacteria ≈ (LAB) derived from the sea bass gastrointestinal tract, for anti-fungal activity. It has been previously suggested that LAB showing high proteolitic activity are the most suitable candidates for such an investigation. The isolation was made using a MRS (Man Rogosa Sharpe) broth cultivation medium at 37 ºC under anaerobiosis conditions, while the evaluation of the enzymatic activity was made using the API® ZYM kit.
    [Show full text]
  • Methods for Improving Diagnostic Techniques Used for the Identification and Isolation of Brachyspira Species from Swine Hallie Warneke Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 Methods for improving diagnostic techniques used for the identification and isolation of Brachyspira species from swine Hallie Warneke Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Animal Diseases Commons Recommended Citation Warneke, Hallie, "Methods for improving diagnostic techniques used for the identification and isolation of Brachyspira species from swine" (2017). Graduate Theses and Dissertations. 15453. https://lib.dr.iastate.edu/etd/15453 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Methods for improving diagnostic techniques used for the identification and isolation of Brachyspira species from swine by Hallie L Warneke A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Veterinary Preventive Medicine Program of Study Committee: Eric R Burrough, Major Professor Timothy S Frana Annette M O’Connor The student author and the program of study committee are solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 Copyright © Hallie L Warneke, 2017. All rights reserved. ii TABLE OF CONTENTS Page LIST OF FIGURES ................................................................................................... iii LIST OF TABLES ....................................................................................................
    [Show full text]
  • Chapter 3 Methods of Culturing Microorganisms Five Basic
    Methods of Culturing Chapter 3 Microorganisms Topics • Five basic techniques – Methods of Culturing Microorganisms • Media – Microscope • Microbial growth 1 2 Overview of the five major techniques used by microbiologist. Five basic techniques 1. Inoculate 2. Incubate 1. Inoculate 2. Incubate 3. Isolation 3. Isolation 4. Inspection 4. Inspection 5. Identification 5. Identification 3 4 Fig. 3.1 A summary of the general laboratory techniques . A single visible colony represents a pure culture or single type of Three basic methods of isolating bacteria. bacterium isolated from a mixed culture. 5 6 Fig. 3.2 Isolation technique Fig. 3.3 Methods for isolating bacteria. 1 Media Physical State • Classified according to three properties • Liquid media – Physical state • Semi-solid media – Chemical composition • Solid media – Functional types 7 8 Liquid media are water-based solutions that are generally termed Semi-solid media contain a low percentage (<1%) of agar, which broths, milks and infusions. can be used for motility testing. 9 10 Fig. 3.4 Sample liquid media Fig. 3.5 Sample semisolid media Solid media contain a high percent (1-5%) of agar, which enables the formation of discrete colonies. Chemical content • Synthetic media • Nonsynthetic or complex media 11 12 Fig. 3.6 Solid media that are reversible to liquids 2 Synthetic media contain pure organic and inorganic compounds Complex or enriched media contain ingredients that are not that are chemically defined (i.e. known molecular formula). chemically defined or pure (i.e. animal extracts). Blood agar Chocolate Table 3.2 Medium agar for the growth and maintenance of the Green Alga Fig.
    [Show full text]
  • Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings Last Update: July 2019
    Accessable version: https://www.cdc.gov/infectioncontrol/guidelines/isolation/index.html 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings Last update: July 2019 Jane D. Siegel, MD; Emily Rhinehart, RN MPH CIC; Marguerite Jackson, PhD; Linda Chiarello, RN MS; the Healthcare Infection Control Practices Advisory Committee Acknowledgement: The authors and HICPAC gratefully acknowledge Dr. Larry Strausbaugh for his many contributions and valued guidance in the preparation of this guideline. Suggested citation: Siegel JD, Rhinehart E, Jackson M, Chiarello L, and the Healthcare Infection Control Practices Advisory Committee, 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings https://www.cdc.gov/infectioncontrol/guidelines/isolation/index.html Page 1 of 206 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings (2007) Healthcare Infection Control Practices Advisory Committee (HICPAC): Chair PERROTTA, Dennis M. PhD., CIC Patrick J. Brennan, MD Adjunct Associate Professor of Epidemiology Professor of Medicine University of Texas School of Public Health Division of Infectious Diseases Texas A&M University School of Rural Public University of Pennsylvania Medical School Health Executive Secretary PITT, Harriett M., MS, CIC, RN Michael Bell, MD Director, Epidemiology Division of Healthcare Quality Promotion Long Beach Memorial Medical Center National Center for Infectious Diseases
    [Show full text]
  • Novobiocin-Tetrathionate Broth
    J Clin Pathol: first published as 10.1136/jcp.12.6.568 on 1 November 1959. Downloaded from J. clin. Path. (1959), 12, 568. NOVOBIOCIN-TETRATHIONATE BROTH: A MEDIUM OF IMPROVED SELECTIVITY FOR THE ISOLATION OF SALMONELLAE FROM FAECES BY LEONARD JEFFRIES From the Department of Clinical Pathology, Uriversity College Hospital, London (RECEIVED FOR PUBLICATION APRIL 23, 1959) The selective cultivation of bacteria by the strengths of all solutions were expressed as incorporating chemicals in the media depends on concentrations of pure novobiocin. As the supplying a substance which either stimulates the novobiocin content varied with different batches of growth of the species to be isolated or inhibits the salt a simple calculation was necessary each time a new sample was used. A stock solution containing unwanted species. Tetrathionate is a good novobiocin, 16,000 ug./ml. of water, was stored in selector of Salmonellae in faeces culture, and is the refrigerator. believed to act in both ways. Tetrathionate MacConkey Agar.-Oxoid. reducers, such as Salmonellae, flourish in broth Desoxycholate-citrate Agar. - Southern a of Group containing it, whereas high concentration Laboratory (Lewisham). tetrathionate inhibits many other faecal organisms Indicator Serum Broth.-This was prepared by the copyright. (Knox, Gell, and Pollock, 1943). Unfortunately, method of Stokes however, members of the Proteus group are (1955). powerful tetrathionate reducers, and when they Investigadon are present selection of Salmonellae is much For efficient selection a concentration of novobiocin impaired, consequently the addition of a further is required which will inhibit most, if not all, strains selective inhibitor effective against Proteus of Proteus without jeopardizing the survival of small organisms is desirable.
    [Show full text]
  • Antibiotic Streamlining
    P Chapter 32 Antibiotic Streamlining Oscar E. Guzman, PharmD, BCPS Introduction Antibiotic streamlining is one of the most important methods pharmacists can use to encourage appro- priate antibiotic use, limit the development of bacterial resistance, and improve patient care. Importance of Antibiotic LEARNING OBJECTIVES Streamlining Many antibiotics are used before an infection is • Discuss the importance of antibiotic confirmed. The use of antibiotics in this manner is streamlining. referred to as empiric therapy. Empiric therapy is a “best guess” approach that takes into account the type • Recognize the presence of an of infection suspected and the patient’s clinical status infection. and medication allergies. Once diagnostic test results are received, empiric therapy may not be the best • Describe the basics of interpreting choice for treating the identified infecting organism(s). microbiological testing. In this case, antibiotics may need to be changed to • Recognize common bacteria, better target the infecting organism. infection sites, and treatments. Antibiotic streamlining or de-escalation refers to the process of converting patients from a broad spec- trum antibiotic, which covers several different types of disease-causing bacteria to a narrow spectrum antibiotic that targets a specific infecting organism.1 The streamlining process involves monitoring the patient’s clinical response and microbiology culture and sensitivity (C&S) data. The results of this data are then used to evaluate the patient’s existing antibiotic therapy. If appropriate, a recommendation to stream- line therapy may be made. Usually, it involves changing or reducing the number of antibiotics, but occasionally it may require discontinuing therapy completely if no infection is established.
    [Show full text]
  • Laboratory Manual of Standardized Methods for Antimicrobial Sensitivity Tests for Bacteria Isolated from Aquatic Animals and Environment
    Southeast Asian Fisheries Development Center Aquaculture Department SEAFDEC/AQD Institutional Repository http://repository.seafdec.org.ph SEAFDEC/AQD-Government of Japan-Trust Fund (GOJ-TF) Laboratory Manuals 2004 Laboratory manual of standardized methods for antimicrobial sensitivity tests for bacteria isolated from aquatic animals and environment Ruangpan, Lila Aquaculture Department, Southeast Asian Fisheries Development Center. Ruangpan, L., & Tendencia, E. A. (2004). Laboratory manual of standardized methods for antimicrobial sensitivity tests for bacteria isolated from aquatic animals and environment. Tigbauan, Iloilo, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center. http://hdl.handle.net/10862/1615 Downloaded from http://repository.seafdec.org.ph, SEAFDEC/AQD's Institutional Repository Aquaculture Extension Manual No. 37 Laboratory Manual of Standardized Methods for Antimicrobial Sensitivity Tests for Bacteria Isolated from Aquatic Animals and Environment Lila Ruangpan and Eleonor A. Tendencia Southeast Asian Fisheries Development Center Aquaculture Department Government of Japan Trust Fund December 2004 Aquaculture Extension Manual No. 37 Laboratory Manual of Standardized Methods for Antimicrobial Sensitivity Tests for Bacteria Isolated from Aquaculture Animals and Environment December 2004 ISBN 971-8511-74-1 Coryright © 2004 Southeast Asian Fisheries Development Center, Aquaculture Department Tigbauan 5021, Iloilo, Philippines All Rights Reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without the permission in writing from the publisher. Citation is as follows: Ruangpan, L. and E.A. Tendencia. 2004. Laboratory manual of standardized methods for antimicrobial sensitivity tests for bacteria isolated from aquaculture. Southeast Asian Fisheries Development Center, Aquaculture Department, Iloilo, Philippines.
    [Show full text]
  • Isolation, Growth Characteristics, and Long-Term Storage of Fungi Cultivated by Attine Ants
    University of New Orleans ScholarWorks@UNO Biological Sciences Faculty Publications Department of Biological Sciences 6-1989 Isolation, Growth Characteristics, and Long-Term Storage of Fungi Cultivated by Attine Ants Jerome J. Howard University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/biosciences_facpubs Part of the Biology Commons Recommended Citation Cazin, J. Jr., D.F. Wiemer and J.J. Howard (1989). Isolation, growth characteristics, and long-term storage of fungi cultivated by attine ants. Applied and Environmental Microbiology 55 (6): 1346-50. This Article is brought to you for free and open access by the Department of Biological Sciences at ScholarWorks@UNO. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 1989, p. 1346-1350 Vol. 55, No. 6 0099-2240/89/061346-05$02.00/0 Copyright © 1989, American Society for Microbiology Isolation, Growth Characteristics, and Long-Term Storage of Fungi Cultivated by Attine Ants JOHN CAZIN, JR.,'* DAVID F. WIEMER,2 AND JEROME J. HOWARD3t Departments of Microbiology,' Chemistry,2 and Biology,3 University ofIowa, Iowa City, Iowa 52242 Received 12 December 1988/Accepted 8 March 1989 Seven pure-culture strains of fungi cultivated by attine ants (ant-garden fungi) were isolated from locally maintained leaf-cutting ant colonies. An ant-garden fungus strain obtained from an Atta cephalotes colony, when offered to ants of the colony from which the fungus was isolated, was accepted as their own. Young fungus cultures were harvested and incorporated into the fungus garden, and cultures of intermediate age were used to begin a new fungus garden; old cultures were simply harvested.
    [Show full text]
  • Antibiotic Susceptibility Testing (AST) Reports: a Basis for Environmental/Epidemiological Surveillance and Infection Control Amongst Environmental Vibrio Cholerae
    International Journal of Environmental Research and Public Health Article Antibiotic Susceptibility Testing (AST) Reports: A Basis for Environmental/Epidemiological Surveillance and Infection Control Amongst Environmental Vibrio cholerae Bright E. Igere 1,2,* , Anthony I. Okoh 1,2 and Uchechukwu U. Nwodo 1,2 1 Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa; [email protected] (A.I.O.); [email protected] (U.U.N.) 2 SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa * Correspondence: [email protected] or [email protected]; Tel.: +27-7334-91868 or +23-480-387-92425 Received: 14 May 2020; Accepted: 11 June 2020; Published: 6 August 2020 Abstract: Distribution, investigation, surveillance and control (DISC) of cholera outbreaks in endemic/non-endemic regions has been a concerted approach towards the management of the causal pathogen. Relevant organization, government, health systems and the public have implemented several steps towards controlling the menace, yet pathogen continues to occur with diverse phenotypes/genotypes of high clinical and epidemiological relevance. The study determines antibiotic susceptibility/resistance pattern of Vibrio cholerae isolates retrieved from six domestic water sources between March and August 2018. Serological and molecular typing methods (polymerase chain reaction or PCR) were used to confirm the isolates identity. Antibiotic susceptibility testing was conducted using six commonly employed antibiotics of V. cholerae according to the recommendation of Clinical Laboratory Standard and European Committee for Antimicrobial Susceptibility Testing with other relevant antibiotics of investigative epidemiology and infection control, employing both disc diffusion test and PCR gene detection.
    [Show full text]
  • Using Streak Plate Technique to Isolate Single Colonies
    Name ______________________________________ Per_______________ Using Streak Plate Technique to Isolate Single Colonies OVERVIEW Most microbiological work requires that a culture be started form a single colony. A colony is a single bacterium that has multiplied on a solid medium into millions of clones of itself and looks like a round visible dot on the solid medium. The streak plate method allows isolation of a single colony from a bacterial culture by splitting the plates into quadrants and diluting the bacteria repeatedly as the loop is streaked through each quadrant. Individual colonies of bacteria are referred to as colony forming units (CFUs), and these indicate a mass of individual cells of same organism, growing together. However, it is important to remember that CFU is not a measure for individual cells or spores as a colony may be formed from a single or a mass of cells or spores. OBJECTIVE Isolate single colonies on a LB agar plate from a lawn of bacteria. PROCEDURE Step 1: Obtain the proper media plate for your bacterial sample, such as an LB agar plate; label the bottom with your name, date and bacterial species, and set up your materials in a sterile environment such as a clean bench top. Step 2: Aseptically transfer a very small amount of your sample to the edge of your agar plate. Deposit your sample (gathered with a sterile loop from the other agar plate) on the outer edge of the new agar plate. Use your sterile loop to gently spread out the sample in a zig-zag manner along one quadrant of the plate from the edge inward.
    [Show full text]
  • Isolation of Pure Cultures
    ISOLATION OF PURE CULTURES A pure culture theoretically contains a single bacterial species. There are a number of procedures available for the isolation of pure cultures from mixed populations. A pure culture may be isolated by the use of special media with specific chemical or physical agents that allow the enrichment or selection of one organism over another. The differential and selective procedures will be utilized later in this course. Simpler methods for isolation of a pure culture include: (i) spread plating on solid agar medium with a glass spreader and (ii) streak plating with a loop. The purpose of spread plating and streak plating is to isolate individual bacterial cells (colony-forming units) on a nutrient medium. Both procedures (spread plating and streak plating) require understanding of the aseptic technique. Asepsis can be defined as the absence of infectious microorganisms. However, the term is usually applied to any technique designed to keep unwanted microorganisms from contaminating sterile materials. FIRST PERIOD Material: 1. Seven 9-ml dilution tubes of sterile saline 2. Seven nutrient agar plates 3. 1.0 ml and 0.1 ml pipets 4. Glass spreader aka “hockey stick” 5. 95% ethyl alcohol in glass beaker (WARNING: Keep alcohol away from flame!!) 6. Mixed overnight broth culture of Staphylococcus aureus and Serratia marcescens 27 Procedure: (work in pairs) A. Spread Plate Technique In this technique, the number of bacteria per unit volume of sample is reduced by serial dilution before the sample is spread on the surface of an agar plate. 1. Prepare serial dilutions of the broth culture as shown below.
    [Show full text]