Fish Memory Cues (Common AGRRA Species)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings. -
Sharkcam Fishes
SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam -
Ecology of Prognathodes Obliquus, a Butterflyfish Endemic to Mesophotic
Coral Reefs https://doi.org/10.1007/s00338-019-01822-8 NOTE Ecology of Prognathodes obliquus, a butterflyfish endemic to mesophotic ecosystems of St. Peter and St. Paul’s Archipelago 1 1 2 Lucas T. Nunes • Isadora Cord • Ronaldo B. Francini-Filho • 3 4 4 Se´rgio N. Stampar • Hudson T. Pinheiro • Luiz A. Rocha • 1 5 Sergio R. Floeter • Carlos E. L. Ferreira Received: 11 March 2019 / Revised: 17 May 2019 / Accepted: 20 May 2019 Ó Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Chaetodontidae is among the most conspicuous consumed and used mostly as refuge. In conclusion, P. families of fishes in tropical and subtropical coral and obliquus is a generalist invertebrate feeder typical of rocky reefs. Most ecological studies focus in the genus mesophotic ecosystems of SPSPA. Chaetodon, while Prognathodes remains poorly under- stood. Here we provide the first account on the ecology of Keywords Chaetodontidae Á Diet Á Deep reefs Á Prognathodes obliquus, a butterflyfish endemic to St. Peter Microplastics Á Mid-Atlantic Ridge Á St. Paul’s Rocks and St. Paul’s Archipelago (SPSPA), Mid-Atlantic Ridge. We studied the depth distribution and foraging behaviour of P. obliquus through technical diving, remote-operated Introduction vehicles and submarines. Also, we characterized its diet by analysing stomach contents. Prognathodes obliquus is Chaetodontidae (butterflyfishes) is an iconic and diverse mostly found below 40 m, with abundance peaking fish family inhabiting tropical and subtropical reefs. It between 90 and 120 m and deepest record to date at 155 m. contains approximately 130 species (Froese and Pauly It forages mostly over sediment, epilithic algal matrix and 2019), most of them living in shallow coral ecosystems complex bottoms formed by fused polychaete tubes, (SCEs; 0–30 m depth) and about 10% in the mesophotic preying mostly upon polychaetes, crustaceans, hydroids coral ecosystems (MCEs; 30–150 m; Pratchett et al. -
Behavioral and Ecological Correlates of Foureye Butterflyfish, Chaetodon
Rev. Biol. Trop., 51, Supl. 4: 77-81, 2003 www.rbt.ac.cr, www.ucr.ac.cr Behavioral and ecological correlates of foureye butterflyfish, Chaetodon capistratus, (Perciformes: Chaetodontidae) infected with Anilocra chaetodontis (Isopoda: Cymothoidae) Dwayne W. Meadows and Christina M. Meadows Department of Zoology, Weber State University, Ogden, UT 84408-2505, U.S.A. Current address: 789 Mahealani Place, Kihei, HI 96753, U. S. A. Phone (808) 879-4921, e-mail: [email protected] (Received 31-VIII-2001. Corrected 11-III-2002. Accepted 22-XI-2002) Abstract: We observed the behavior and ecology of Chaetodon capistratus infected and uninfected with the ecto- parasitic isopod Anilocra chaetodontis to assess whether there may be parasite induced alterations in host biology, host defenses against infection, and/or pathology related to infection. We also examined habitat related differences in infection rates. Infected fish had higher rates of interaction with conspecifics and spent more time in low flow envi- ronments (which might improve transmission of juvenile parasites to new hosts). Butterflyfish without isopods were chased more frequently by damselfishes, fed more, and had larger territories. Time spent near conspecifics, and fish condition and gonadosomatic index did not vary between infected and uninfected fish. These results suggest that foureye butterflyfish behavior is altered by the isopod parasite in order for the isopods to more easily gain mates or transmit offspring to new hosts. Key words: Caribbean, coral reef, fish, host behavior, parasite, isopod. Animals infected with parasites often be- studies examining whether parasites alter be- have differently than uninfected conspecifics havior in definitive hosts (see reviews in (see reviews in Moore 1995, Poulin 1995). -
Andrew David Dorka Cobián Rojas Felicia Drummond Alain García Rodríguez
CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington ACKNOWLEDGMENTS This research was supported by the NOAA Office of Ocean Exploration and Research under award number NA14OAR4320260 to the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) at Harbor Branch Oceanographic Institute-Florida Atlantic University (HBOI-FAU), and by the NOAA Pacific Marine Environmental Laboratory under award number NA150AR4320064 to the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) at the University of Miami. This expedition was conducted in support of the Joint Statement between the United States of America and the Republic of Cuba on Cooperation on Environmental Protection (November 24, 2015) and the Memorandum of Understanding between the United States National Oceanic and Atmospheric Administration, the U.S. National Park Service, and Cuba’s National Center for Protected Areas. We give special thanks to Carlos Díaz Maza (Director of the National Center of Protected Areas) and Ulises Fernández Gomez (International Relations Officer, Ministry of Science, Technology and Environment; CITMA) for assistance in securing the necessary permits to conduct the expedition and for their tremendous hospitality and logistical support in Cuba. We thank the Captain and crew of the University of Miami R/V F.G. Walton Smith and ROV operators Lance Horn and Jason White, University of North Carolina at Wilmington (UNCW-CIOERT), Undersea Vehicle Program for their excellent work at sea during the expedition. -
1 What Is a Coral Reef?
THE NATURENCYCLOPEDIA SERIES THE C L COLOR BOO · by Katherine Katherine Orr was born in New York, received a B.A. in Biology from Goucher College in 1972 and later an M .S. in Zoology at the University of Connecticut. She has spent many years both in the Caribbean and the Pacific on marine research projects and conducted numerous courses on awareness of the marine environment which is increasingly being threatened and destroyed by man. From 1982 until late 1986 she was attached to the Marine Biological Laboratory, Woods Hole, Mass. and now lives at Marathon Shores, Florida. THE CORAL REEF COLORING BOOK by Katherine Orr ~ Stemmer House Publishers 4 White Brook Rd. Gilsum, NH 03448 Copyright © 1988 Katherine Orr This book was first published by Macmillan Publishers Ltd., London and Basingstoke. It is derived from a project funded by World Wildlife - U.S. No part of this book may be used or reproduced in any manner whatsoever, electrical or mechanical, including xerography, microfilm, recording and photocopying, without written permission, except in the case of brief quotations in critical articles and reviews. The book may not be reproduced as a whole, or in substantial part, without pennission in writing from the publishers. Inquiries should be directed to Stemmer House Publishers, Inc. 4 White Brook Rd. Gilsum, NH 03448 A Barbara Holdridge book Printed and bound in the United States of America First printing 1988 Second printing 1990 Third printing 1992 Fourth printing 1995 Fifth printing 1999 Sixth printing 2003 Seventh printing 2007 -
Alikes Among Tropical Reef Fishes
Who Resembles Whom? Mimetic and Coincidental Look- Alikes among Tropical Reef Fishes D. Ross Robertson* Smithsonian Tropical Research Institute, Balboa, Republic of Panama´ Abstract Studies of mimicry among tropical reef-fishes usually give little or no consideration to alternative explanations for behavioral associations between unrelated, look-alike species that benefit the supposed mimic. I propose and assess such an alternative explanation. With mimicry the mimic resembles its model, evolved to do so in response to selection by the mimicry target, and gains evolved benefits from that resemblance. In the alternative, the social-trap hypothesis, a coincidental resemblance of the model to the ‘‘mimic’’ inadvertently attracts the latter to it, and reinforcement of this social trapping by learned benefits leads to the ‘‘mimic’’ regularly associating with the model. I examine three well known cases of supposed aggressive mimicry among reef-fishes in relation to nine predictions from these hypotheses, and assess which hypothesis offers a better explanation for each. One case, involving precise and complex morphological and behavioral resemblance, is strongly consistent with mimicry, one is inconclusive, and one is more consistent with a social- trap based on coincidental, imprecise resemblance. Few cases of supposed interspecific mimicry among tropical reef fishes have been examined in depth, and many such associations may involve social traps arising from generalized, coincidental resemblance. Mimicry may be much less common among these fishes than is generally thought. Citation: Robertson DR (2013) Who Resembles Whom? Mimetic and Coincidental Look-Alikes among Tropical Reef Fishes. PLoS ONE 8(1): e54939. doi:10.1371/ journal.pone.0054939 Editor: David L. -
Quantitative Estimates of Species Composition and Abundance of Fishes, and Fish Species/Habitat Associations in St
Quantitative estimates of species composition and abundance of fishes, and fish species/habitat associations in St. Croix, U.S. Virgin Islands Dr. Wesley Toller Division of Fish and Wildlife Department of Planning and Natural Resources US Virgin Islands Converted to digital format by Thomas F. Barry (NOAA/RSMAS) in 2004. Copy available at the NOAA Miami Regional Library. Minor editorial changes may have been made. Final Report: Patterns of habitat utilization by reef fish on St. Croix F-7-17, Study3 Period: 1 October 2001 to 30 September 2002 Quantitative estimates of species composition and abundance of fishes, and fish species/habitat associations in St. Croix, U.S. Virgin Islands Dr. Wesley Toller Fisheries Biologist II Division of Fish and Wildlife Department of Planning and Natural Resources US Virgin Islands November 2002 Final Report: Patterns of habitat utilization by reef fish on St. Croix F-7-17, Study 3 Period: 1 October 2001 to 30 September 2002 ABSTRACT Reef fish communities around St. Croix, U.S. Virgin Islands were studied by visual census methods in order to identify fisheries habitat links, to document the role of local coral reefs as essential fish habitat, and to provide a baseline for monitoring studies. Seven reef sites were surveyed by stationary fish censuses during spring and fall of 2002. In general, the fish communities were similar across sites and survey periods: all reefs supported a diverse and abundant fish assemblage that was largely replicated between spring and fall surveys. Planktivorous fish (primarily labrids and pomacentrids) dominated the fauna numerically. Herbivorous fish (acanthurids and scarids) were common and abundant at all sites. -
5 Coral Condition Flat
The Western Atlantic Health and Resilience Cards provide photographic examples of the dominant habitat features and biological indicators of coral reef condition, health and resilience to future perturbations. Representative examples of benthic substrates types, indicators of coral health, algal functional groups, dominant sessile invertebrates, large, motile invertebrates, and herbivorous and predatory fishes are presented, with emphasis on major functional groups regulating coral diversity, abundance and condition. This is not intended as a taxonomic ID guide. Resilience is the ability of the reef community to maintain or restore structure and function and remain in an equivalent ‘phase’ as before an unusual disturbance. The most critical attributes of resilience for monitoring programs are compiled in this guide. A typical protocol involves an assessment of replicate belt transects in multiple reef environments to characterize 1) the diversity, abundance, size structure cover and condition of corals, 2) the abundance/cover of other associated and competing benthic organisms, including “pest” species; 3) fish diversity, abundance and size for the key functional groups (avoiding many of the small blennies, gobies, wrasses, juveniles and non‐reef species, and focusing on large herbivores, piscivores, invertebrate feeders, and detritivores); 4) abundance of motile macroinvertebrates that feed on algae and invertebrates, especially corallivores; 5) habitat quality and substrate condition (biomass and cover of five functional algal groups, turf, CCA, macroalgae, erect corallines and cyanobacteria; amount of rubble, pavement and sediment); 6) coral condition (prevalence of disease and corallivores, broken corals, levels of recruitment); and 7) evidence of human disturbance such as levels and types of fishing, runoff, and coastal development. -
Baseline Multispecies Coral Reef Fish Stock Assessment for the Dry Tortugas
NOAA Technical Memorandum NMFS-SEFSC-487 Baseline Multispecies Coral Reef Fish Stock Assessment for the Dry Tortugas Jerald S. Ault, Steven G. Smith, Geoffrey A. Meester, Jiangang Luo, James A. Bohnsack, and Steven L. Miller U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, Florida 33149 August 2002 NOAA Technical Memorandum NMFS-SEFSC-487 Baseline Multispecies Coral Reef Fish Stock Assessment for the Dry Tortugas Jerald S. Ault 1, Steven G. Smith 1, Geoffrey A. Meester 1, Jiangang Luo 1, James A. Bohnsack 2 , and Steven L. Miller3 with significant contributions by Douglas E. Harper2, Dione W. Swanson3, Mark Chiappone3, Erik C. Franklin1, David B. McClellan2, Peter Fischel2, and Thomas W. Schmidt4 _____________________________ U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary National Oceanic and Atmospheric Administration Conrad C. Lautenbacher, Jr., Under Secretary for Oceans and Atmosphere National Marine Fisheries Service William T. Hogarth, Assistant Administrator for Fisheries August 2002 This technical memorandum series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information. Although the memoranda are not subject to complete formal review, editorial control, or detailed editing, they are expected to reflect sound professional work. 1 University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL 2 NOAA/Fisheries Southeast Fisheries Science Center, Miami, FL 3 National Undersea Research Center, Key Largo, FL 4 National Park Service, Homestead, FL NOTICE The National Marine Fisheries Service (NMFS) does not approve, recommend, or endorse any proprietary product or material mentioned in this publication. -
Colour Pattern As a Single Trait Driving Speciation in Hypoplectrus Coral
Proc. R. Soc. B (2007) 274, 1265–1271 doi:10.1098/rspb.2006.0435 Published online 13 March 2007 Colour pattern as a single trait driving speciation in Hypoplectrus coral reef fishes? Oscar Puebla1,2,*, Eldredge Bermingham1,2, Fre´de´ric Guichard2 and Elizabeth Whiteman3 1Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama 2Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, Canada H3A1B1 3Centre for Ecology, Evolution & Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK Theory shows that speciation in the presence of gene flow occurs only under narrow conditions. One of the most favourable scenarios for speciation with gene flow is established when a single trait is both under disruptive natural selection and used to cue assortative mating. Here, we demonstrate the potential for a single trait, colour pattern, to drive incipient speciation in the genus Hypoplectrus (Serranidae), coral reef fishes known for their striking colour polymorphism. We provide data demonstrating that sympatric Hypoplectrus colour morphs mate assortatively and are genetically distinct. Furthermore, we identify ecological conditions conducive to disruptive selection on colour pattern by presenting behavioural evidence of aggressive mimicry, whereby predatory Hypoplectrus colour morphs mimic the colour patterns of non-predatory reef fish species to increase their success approaching and attacking prey. We propose that colour-based assortative mating, combined with disruptive selection on colour pattern, is driving speciation in Hypoplectrus coral reef fishes. Keywords: speciation; coral reef fishes; colour pattern; population genetics; assortative mating; aggressive mimicry 1. INTRODUCTION (Randall 1983; Bo¨hlke & Chaplin 1993). -
Tropical Reef-Fish Disease Outbreaks and Mass Mortalities in Florida, USA: What Is the Role of Dietary Biological Toxins?
DISEASES OF AQUATIC ORGANISMS Vol. 22: 83-100, 1995 Published June 15 Dis aquat Org Tropical reef-fish disease outbreaks and mass mortalities in Florida, USA: what is the role of dietary biological toxins? Jan H. Landsberg Florida Marine Research Institute, Florida Department oí Environmental Protection, 100 Eighth Avenue Southeast, St. Petersburg, Florida 33701-5095, USA ABSTRACT From November 1993 to February 1994, heavy mortalities of tropical reef fish were reported in the Palm Beach area on Florida's southeast coast and the Islamorada area in the upper Florida Keys. Severely affected fish were typically adult herbivores or omnivores such as the angel- fishes Pomacanthus paru and P. arcuatus, the rock beauty Holacanthus tricolor, the cherubfish Centropyge argi, the princess parrotfish Scarus taeniopterus, the blue chromis Chromis cyaneus, the balloonfish Diodon holocanthus, the whitespotted filefish Cantherhines macroceros, the doctorfish Acanthurus chirurgus, and less severely affected, the reef butterflyfish Chaetodon sedentarius and the foureye butterflyfish C. capistratus. Diseased fish typically had lesions on the anterior part of the head, ulcerated body sores, fin and tail rot, and a heavy mucus coating on the body surface. Protis- tan parasites such as Brooklynella hostilis, Uronema marinum, and amoebae were common. Turbel- larians and bacterial infestations were also detected. There is, however, no evidence that these potential pathogens are the principal cause of the disease syndrome and resultant fish mortality — they may be secondary invaders of fish whose health has already been compromised. The possi bility is considered that biological toxins from macroalgae such as C aulerpa spp., or from benthic dinoflagellates such as Gambierdiscus toxicus may act as principal stressors that influence reef-fish health.