Page 1 of 89 Diabetes Insulin and glucose alter death-associated protein kinase 3 (DAPK3) DNA methylation in human skeletal muscle Jonathan M. Mudry1, David G. Lassiter1, Carolina Nylén1, Sonia García-Calzón2, Erik Näslund3, Anna Krook2, Juleen R. Zierath1,2,4. Running title: DAPK3 DNA methylation in human skeletal muscle 1Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden. 2Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden. 3Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden. 4Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark. Juleen R. Zierath Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, von Eulers väg 4a, SE 171 77 Stockholm, Sweden Phone: +46 (0)8 524 87581 Fax: +46 (0) 8 33 54 36 E-mail:
[email protected] Diabetes Publish Ahead of Print, published online December 23, 2016 Diabetes Page 2 of 89 Abstract DNA methylation is altered by environmental factors. We hypothesized DNA methylation is altered in skeletal muscle in response to either insulin or glucose exposure. We performed a genome-wide DNA methylation analysis in muscle from healthy men before and after insulin exposure. DNA methylation of selected genes was determined in muscle from healthy and type 2 diabetic men before and after a glucose tolerance test. Insulin altered DNA methylation in the 3’UTR of the calcium pump ATP2A3 gene. Insulin increased DNA methylation in the gene body of DAPK3, a gene involved in cell proliferation, apoptosis and autophagy.