ADAR-Deficiency Perturbs the Global Splicing Landscape in Mouse Tissues

Total Page:16

File Type:pdf, Size:1020Kb

ADAR-Deficiency Perturbs the Global Splicing Landscape in Mouse Tissues Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press 1 ADAR-deficiency perturbs the global splicing 2 landscape in mouse tissues 3 Running Title: A-to-I RNA editing impacts pre-mRNA splicing 4 5 Authors: 1* 1* 1,2 6 Utkarsh Kapoor , Konstantin Licht , Fabian Amman , Tobias 3 1 3 1 7 Jakobi , David Martin , Christoph Dieterich and Michael F. Jantsch 8 9 10 1. Center of Anatomy & Cell Biology, 11 Department of Cell and Developmental Biology, 12 Medical University of Vienna 13 Schwarzspanierstrasse 17 14 A-1090 Vienna, Austria 15 16 2. Institute of Theoretical Biochemistry 17 University of Vienna 18 Währingerstrasse 17 19 A-1090 Vienna, Austria 20 21 3. Department of Internal Medicine III and Klaus Tschira Institute for 22 Computational Cardiology, 23 Section of Bioinformatics and Systems Cardiology, 24 Im Neuenheimer Feld 669, 25 University Hospital 26 D-96120 Heidelberg, Germany. 27 28 *) equal contribution 29 30 Correspondence to: 31 Michael F. Jantsch 32 Center for Anatomy and Cell Biology 33 Division of Cell- and Developmental Biology 34 Schwarzspanierstrasse 17 35 A-1090 Vienna, Austria 36 Email: [email protected] 37 Tel: +43-1-40160 37510 Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Abstract 2 Adenosine to inosine RNA-editing and pre-mRNA splicing largely occur co-transcriptionally 3 and influence each other. Here we use mice deficient in either one of the two editing 4 enzymes ADAR (ADAR1) or ADARB1 (ADAR2) to determine the transcriptome-wide impact of 5 RNA-editing on splicing across different tissues. We find that ADAR has a 100× higher impact 6 on splicing than ADARB1, although both enzymes target a similar number of substrates with 7 a large common overlap. Consistently, differentially spliced regions frequently harbor ADAR 8 editing sites. Moreover, catalytically dead ADAR also impacts splicing, demonstrating that 9 RNA-binding of ADAR affects splicing. In contrast, ADARB1 editing sites are found enriched 10 5’ of differentially spliced regions. Several of these ADARB1-mediated editing events change 11 splice consensus sequences therefore strongly influencing splicing of some mRNAs. A 12 significant overlap between differentially edited and differentially spliced sites suggests 13 evolutionary selection towards splicing being regulated by editing in a tissue-specific 14 manner. 15 16 2 Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Introduction 2 RNA modifications affect composition, stability, structure and function of messenger RNAs 3 (Licht and Jantsch 2016). In metazoans, adenosine-to-inosine (A-to-I) RNA editing is the 4 most abundant type of RNA editing and is mediated by the adenosine deaminase acting on 5 RNA (ADAR) family of enzymes (Nishikura 2016; Eisenberg and Levanon 2018). During A-to-I 6 editing, an inosine is generated by hydrolytic deamination of adenosines. Inosines are 7 primarily read as guanosines by cellular machines and occasionally as adenosines or uracils 8 (Basilio et al. 1962; Licht et al. 2018). In mammals, two types of active ADARs, ADAR 9 (ADAR1) and ADARB1 (ADAR2) are found that modify different, but partially overlapping 10 substrate sites (Eggington et al. 2011). 11 12 ADARs bind double-stranded RNA (dsRNA) which can be formed between different regions 13 of an RNA. In mRNAs this can involve exon-intron, exon-exon or intron-intron base-pairing. 14 We recently showed that in the mouse most editing-competent structures are formed 15 within introns (intron-intron base-pairing), followed by structures formed within UTRs (Licht 16 et al. 2019). The definition of some editing sites by base-pairing between exonic and intronic 17 sequences has led to the notion that A-to-I editing must occur co-transcriptionally, or before 18 intron removal (O'Connell 1997). Splicing itself occurs mostly co-transcriptional (Merkhofer 19 et al. 2014). Consistently, both pre-mRNA splicing and RNA editing are coordinated (Bratt 20 and Ohman 2003). Moreover, both processes contribute to proteomic diversity (Wang and 21 Burge 2008). 22 23 Splicing efficiency can control editing levels. Both, mini-gene reporter assays as well as 24 analyses of endogenous targets, demonstrated that exon-intron dependent editing sites are 25 strongly affected by the efficiency of splicing (Licht et al. 2016). Conversely, A-to-I RNA 26 editing may affect splicing by creating or disrupting splice sites or branch points (Rueter et 27 al. 1999). Similarly, ADARs may alter binding sites for splicing factors and compete with 28 splicing factors for binding and/or access to the same RNA. Several studies have shown an 29 impact of RNA editing on splicing for selected substrates. For instance, inhibition of editing 30 of the glutamate receptor subunit Gria2 impairs splicing of intron 11 and affects alternative 31 splicing at intron 13/14 (Higuchi et al. 2000; Schoft et al. 2007; Penn et al. 2013). Similarly, 3 Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press 1 global studies performed in human tissue culture cells, flies, and mouse brains lacking 2 ADARB1 have provided insights into the impact of editing on splicing (Solomon et al. 2013; 3 St Laurent et al. 2013; Mazloomian and Meyer 2015; Dillman et al. 2016; Hsiao et al. 2018). 4 However, a transcriptome-wide splicing analysis comparing different tissues within a mouse 5 genetic deletion model of Adar remains elusive. 6 7 In mice, both ADARs are essential but can be rescued to different extents. Adar null mice are 8 embryonic lethal and die at stage E11.5 and show defects in erythropoiesis, elevated 9 interferon signaling and widespread apoptosis (Hartner et al. 2004; Wang et al. 2004; 10 Hartner et al. 2009; Liddicoat et al. 2015). It has been shown that a deletion in Adar can be 11 rescued by a concomitant deletion of the cytoplasmic RNA sensor MDA5 (Ifih1) or its 12 downstream signaling mediator MAVS (Mavs). The extent to which Adar deficiency can be 13 rescued depends strongly on the Adar allele used and ranges from complete viability, over 14 reduced growth to post-natal death (Mannion et al. 2014; Liddicoat et al. 2015; Pestal et al. 15 2015; Bajad et al. 2020). Similarly, Adarb1 null mice die within a few weeks after birth 16 accompanied by seizures and epilepsy. Adarb1 deficiency can be rescued by a pre-edited 17 version of the AMPA glutamate receptor subunit 2 (Gria2) (Higuchi et al. 2000). These mice 18 have been extensively studied and appear phenotypically normal under standard laboratory 19 conditions (Higuchi et al. 2000). The Adar deletion mice rescued by a concomitant Mavs 20 deletion exhibit a minute phenotype (Bajad et al. 2020). 21 In this study, for the first time, we use Adar-deficient, rescued mice to characterize the 22 ADAR-mediated impact on the transcriptome-wide splicing landscape in different mouse 23 tissues and compare their splicing landscape with that of Adarb1-deficient rescued mice 24 (Higuchi et al. 2000). 25 26 Results 27 RNA-seq and Global Splicing Analysis 28 To determine the impact of ADAR on splicing, we interbred Mavs-/- mice with Adar+/- 29 (AdarΔ7-9) mice to generate Adar+/- ; Mavs-/- mice (Bajad et al. 2020). Offspring of these mice 30 with genotype Adar+/+ ; Mavs-/- (Adar WT) and Adar-/- ; Mavs-/- (Adar KO) were collected at 31 P14. In the Adar-/- mice used here a truncated, editing-deficient ADAR protein is expressed 4 Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press 1 (Bajad et al. 2020). To assess the impact of ADARB1 on splicing, we crossed heterozygous 2 Adarb1+/- ; Gria2R/R mice and collected Adarb1+/+ ; Gria2R/R (Adarb1 WT) and Adarb1-/- ; 3 Gria2R/R (Adarb1 KO) pups at P14. 4 Since A-to-I RNA editing events are enriched in tissues of neuronal origin, we sequenced 5 poly(A) selected RNA of cortices isolated from Adar WT, Adar KO, Adarb1 WT and Adarb1 6 KO mice in biological triplicates in 125-bp paired-end mode on a Illumina HiSeq 2500 7 (Supplemental Figure 1A, 1B). Editing sites were detected in these RNA-seq data sets using a 8 machine learning algorithm RDDpred (Kim et al. 2016). Editing levels for each site were 9 calculated by dividing the number of edited reads by the total number of reads spanning the 10 editing site. Following removal of known SNPs and stringent filtering, we compiled a list of 11 differentially edited sites where we observed a significant change (Welch’s t-test; p ≤ 0.1) in 12 RNA editing levels between WT and KO cortex samples. We detected 9,382 editing sites in 13 Adar WT out of which 1,459 were found to be differentially edited in the Adar KO cortex. 14 Similarly, we detected 8,161 editing sites in Adarb1 WT out of which 1,413 were found to be 15 differentially edited in the Adarb1 KO cortex. As expected, most differentially edited sites 16 showed reduced editing upon Adar or Adarb1 deletion. In contrast, editing levels were 17 increased for a small number of editing sites upon depletion of one of the two ADARs 18 (Figure 1A). In the Adar-/- cortex, 117 sites showed an increase in editing between 1% and 19 83%. Similarly, in Adarb1-/- cortex, 107 sites showed an increase in editing between 1% and 20 54% (Supplemental Figure 2A, 2B and Supplemental Dataset 1). This observation suggests 21 competition between ADAR and ADARB1 for access to the same editing site that hints 22 towards a regulatory mechanism to keep editing levels in check.
Recommended publications
  • Supplemental Material Table of Contents
    Supplemental material Table of Contents Detailed Materials and Methods ......................................................................................................... 2 Perioperative period ........................................................................................................................... 2 Ethical aspects ................................................................................................................................... 4 Evaluation of heart failure ................................................................................................................. 4 Sample preparation for ANP mRNA expression .................................................................................. 5 Sample preparation for validative qRT-PCR (Postn, Myh7, Gpx3, Tgm2) ............................................ 6 Tissue fibrosis .................................................................................................................................... 7 Ventricular remodeling and histological tissue preservation ................................................................ 8 Evaluation of the histological preservation of cardiac tissue ................................................................ 9 Sample preparation and quantitative label-free proteomics analyses .................................................. 10 Statistical methods ........................................................................................................................... 12 References ........................................................................................................................................
    [Show full text]
  • An Overview of the Role of Hdacs in Cancer Immunotherapy
    International Journal of Molecular Sciences Review Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy Debarati Banik, Sara Moufarrij and Alejandro Villagra * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, 800 22nd St NW, Suite 8880, Washington, DC 20052, USA; [email protected] (D.B.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +(202)-994-9547 Received: 22 March 2019; Accepted: 28 April 2019; Published: 7 May 2019 Abstract: Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration.
    [Show full text]
  • Datasheet: VPA00331KT Product Details
    Datasheet: VPA00331KT Description: PRPF19 ANTIBODY WITH CONTROL LYSATE Specificity: PRPF19 Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 2 Westerns Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse, Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation 20μl Rabbit polyclonal antibody purified by affinity chromatography Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN ) Stabilisers 3 Immunogen KLH-conjugated synthetic peptide corresponding to aa 4-33 of human PRPF19 External Database Links UniProt: Q9UMS4 Related reagents Entrez Gene: 27339 PRPF19 Related reagents Synonyms NMP200, PRP19, SNEV Page 1 of 3 Specificity Rabbit anti Human PRPF19 antibody recognizes PRPF19, also known as PRP19/PSO4 homolog, PRP19/PSO4 pre-mRNA processing factor 19 homolog, nuclear matrix protein 200, nuclear matrix protein NMP200 related to splicing factor PRP19, psoralen 4 and senescence evasion factor. The PRPF19 gene is the human homolog of yeast Pso4, a gene essential for cell survival and DNA repair (Beck et al.
    [Show full text]
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H.
    [Show full text]
  • Molecular Interactions Underpinning the Phenotype of Hibernation in Mammals Matthew T
    © 2019. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2019) 222, jeb160606. doi:10.1242/jeb.160606 REVIEW Molecular interactions underpinning the phenotype of hibernation in mammals Matthew T. Andrews* ABSTRACT most mammals. This Review covers recent advances in the Mammals maintain a constant warm body temperature, facilitating a molecular biology of hibernation, with a focus on molecular wide variety of metabolic reactions. Mammals that hibernate have the interactions underpinning the hibernation phenotype. Specific – ability to slow their metabolism, which in turn reduces their body topics include the torpor arousal cycle, the role of small temperature and leads to a state of hypothermic torpor. For this molecules, changes in gene expression, cold-inducible RNA- metabolic rate reduction to occur on a whole-body scale, molecular binding proteins, the somatosensory system and emerging interactions that change the physiology of cells, tissues and organs information on hibernating primates. This new information not are required, resulting in a major departure from normal mammalian only is beginning to explain how natural hibernators survive homeostasis. The aim of this Review is to cover recent advances in the physiological extremes that would be lethal to most mammals, but molecular biology of mammalian hibernation, including the role of also identifies molecular mechanisms that may prove useful to small molecules, seasonal changes in gene expression, cold- human medicine. inducible RNA-binding proteins,
    [Show full text]
  • Nuclear PTEN Safeguards Pre-Mrna Splicing to Link Golgi Apparatus for Its Tumor Suppressive Role
    ARTICLE DOI: 10.1038/s41467-018-04760-1 OPEN Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role Shao-Ming Shen1, Yan Ji2, Cheng Zhang1, Shuang-Shu Dong2, Shuo Yang1, Zhong Xiong1, Meng-Kai Ge1, Yun Yu1, Li Xia1, Meng Guo1, Jin-Ke Cheng3, Jun-Ling Liu1,3, Jian-Xiu Yu1,3 & Guo-Qiang Chen1 Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are 1234567890():,; largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers. 1 Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 2 Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China.
    [Show full text]
  • Human Prefoldin Modulates Co-Transcriptional Pre-Mrna Splicing
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.14.150466; this version posted July 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. BIOLOGICAL SCIENCES: Biochemistry Human prefoldin modulates co-transcriptional pre-mRNA splicing Payán-Bravo L 1,2, Peñate X 1,2 *, Cases I 3, Pareja-Sánchez Y 1, Fontalva S 1,2, Odriozola Y 1,2, Lara E 1, Jimeno-González S 2,5, Suñé C 4, Reyes JC 5, Chávez S 1,2. 1 Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville, Spain. 2 Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain. 3 Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain. 4 Department of Molecular Biology, Institute of Parasitology and Biomedicine "López Neyra" IPBLN-CSIC, PTS, Granada, Spain. 5 Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain. Correspondence: Sebastián Chávez, IBiS, campus HUVR, Avda. Manuel Siurot s/n, Sevilla, 41013, Spain. Phone: +34-955923127: e-mail: [email protected]. * Co- corresponding; [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2020.06.14.150466; this version posted July 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Prefoldin is a heterohexameric complex conserved from archaea to humans that plays a cochaperone role during the cotranslational folding of actin and tubulin monomers.
    [Show full text]
  • SET-Induced Calcium Signaling and MAPK/ERK Pathway Activation Mediate Dendritic Cell-Like Differentiation of U937 Cells
    Leukemia (2005) 19, 1439–1445 & 2005 Nature Publishing Group All rights reserved 0887-6924/05 $30.00 www.nature.com/leu SET-induced calcium signaling and MAPK/ERK pathway activation mediate dendritic cell-like differentiation of U937 cells A Kandilci1 and GC Grosveld1 1Department of Genetics and Tumor Cell Biology, Mail Stop 331, St Jude Children’s Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA Human SET, a target of chromosomal translocation in human G1/S transition by allowing cyclin E–CDK2 activity in the leukemia encodes a highly conserved, ubiquitously expressed, presence of p21.11 Second, SET interacts with cyclin B–CDK1.19 nuclear phosphoprotein. SET mediates many functions includ- ing chromatin remodeling, transcription, apoptosis and cell Overexpression of SET inhibits cyclin B-CDK1 activity, which in cycle control. We report that overexpression of SET directs turn, blocks the G2/M transition; this finding suggests a negative 13 differentiation of the human promonocytic cell line U937 along regulatory role for SET in G2/M transition. Overexpression of the dendritic cell (DC) pathway, as cells display typical cell division autoantigen-1 (CDA1), another member of the morphologic changes associated with DC fate and express NAP/SET family, inhibits proliferation and decreases bromo- the DC surface markers CD11b and CD86. Differentiation occurs deoxyuridine uptake in HeLa cells.20 Acidic and basic domains via a calcium-dependent mechanism involving the CaMKII and 20 MAPK/ERK pathways. Similar responses are elicited by inter- of CDA1 show 40% identity and 68% similarity to SET. feron-c (IFN-c) treatment with the distinction that IFN-c signaling We have recently shown that overexpression of SET in the activates the DNA-binding activity of STAT1 whereas SET human promonocytic cell line U937 causes G0/G1 arrest and overexpression does not.
    [Show full text]