A Vascular Plant Survey for Big Thicket National Preserve

Total Page:16

File Type:pdf, Size:1020Kb

A Vascular Plant Survey for Big Thicket National Preserve DRAFT FINAL REPORT Big Thicket National Preserve National Park Service Beaumont, TX A Vascular Plant Survey for Big Thicket National Preserve Principal Investigator: P.A. Harcombe Department of Ecology and Evolutionary Biology Rice University Houston, TX 77005 National Park Service Cooperative Agreement CA14001004 May 29, 2007 - 1 - - 2 - INTRODUCTION The goal of the project was to produce verified inventories of vascular plant species (including ferns and fern allies) by unit in the Big Thicket National Preserve (BTNP), a part of the National Park System located in southeastern Texas in Hardin, Tyler, Polk, Liberty, Jefferson, Orange and Jasper counties. Collection efforts focused on the major units (Big Sandy, Hickory Creek, Turkey Creek, Beech Creek, Lance Rosier, Neches Bottom/Jack Gore Baygall, Beaumont). Owing to time constraints collecting in Loblolly Unit and Menard Creek was minimal, and no new collecting was done in the other corridor units (Pine Island Bayou, Upper Neches, and Lower Neches). Between June 2001 and December 2006, a database of 8095 specimen records was compiled. The database contains 1384 valid names representing 1264 distinct taxa in 536 genera and 146 families . From the database, final species and specimen tables were generated. A total of 7198 specimens were delivered to Dale Kruse, Curator, Tracey Herbarium at Texas A&M University (TAES) on April 6, 2007. In this report we describe methods used in constructing the database, the collectors, and the unit-level collection efforts. A species-by-unit table is presented; collection results are compared with Watson (1982), and there is an examination of variation in species richness among units. METHODS Presence of species in units of the Big Thicket National Preserve was verified by collecting new specimens or by creating records from some existing specimens deposited at SBSC and TEX-LL or stored at Rice University. Information on collectors and collecting effort is given following the descriptions of database and table construction. - 1 - Database construction All records for new and existing specimens were managed in a taxonomic database (BIOTA ). We also entered a list of species of probable occurrence in Big Thicket National Preserve (Watson 1982, hereafter referred to as GW) . We used the list as a collecting guide, recognizing that since it was not documented by actual herbarium specimens, not all taxa on the list would necessarily be found because of possible mis- identifications or mis-attributions . In the data entry process, each specimen record was given a unique specimen code that consisted of the initials of the collector and the collector’s specimen number. Additional information entered included species code (first four letters of genus and species names), full species name, collector, collection date, habitat, location, and GPS location (where available). Species nomenclature was standardized to Kartesz and Meacham (1999), and a list was made of cases in which many authorities prefer alternative names (Appendix Table 3). To maintain taxonomic consistency, all newly- collected specimens and all but a few specimens deposited at TEX-LL were determined and annotated by Larry Brown, the authority on flora of southeast Texas. Determination history was retained by BIOTA. For specimens collected as part of this project, the depository field was coded as TAES (Tracey Herbarium at Texas A&M University, College Station, TX). For specimens that already existed in other collections, the depository field was coded as follows: SBSC Spring Branch Science Center Herbarium, Spring Branch ISD, Houston, TX. RICE Rice University, Houston, TX. TEX University of Texas Herbarium, Austin, TX LL Lundell Herbarium at University of Texas ATSC Stephen F. Austin State University Herbarium, Nacogdoches, TX All of the above except RICE are registered herbaria. Specimen table. For this report, records of specimens in BTNP were exported from BIOTA into a specimen table in EXCEL format containing 8095 records. From this, a new EXCEL workbook was created by adding fields for many of the variables required for input into - 2 - NPSpecies and breaking up the dataset into three parts, each as a separate spreadsheet in the workbook, as follows: name number description TAES 7198 specimens delivered to TAES vrecords 55 records of specimens in other herbaria that are the only record of that species in that unit Other 730 records of specimens in other herbaria that duplicate TAES or vrecords Subsequently, a fourth spreadsheet was added: GWX 84 GW specimens delivered to TAES that were collected outside NPS boundaries. ____ Total records 8067 Some specimens in the Rice University Reference Collection that duplicated other collections were retained at Rice. All other specimens were delivered to TAES for subsequent selection of specimens to be given NPS accession numbers. Specimens not accessioned will either be retained as part of the TAES collection or deposited at the Big Thicket National Preserve Field Research Station, Saratoga, TX Species table For this report, a list of all taxa known to exist within the boundaries of BTNP was exported from BIOTA. Residency status (native vs non-native) was obtained from Kartesz & Meacham (1999). Abundance by unit was calculated by converting the abundance-by-unit scores in Watson (1982) using eight abundance classes (-4 to +4), which she determined "arbitrarily by personal observation and experience." The abundance classes were converted to NPS abundance classes as follows: NPS abundance class GW abundance value Abundant +4 +3 Common +2 +1 Occasional -1 -2 Rare -3 -4 - 3 - Fields were also added for many of the variables required for input into NPSpecies, including nativity (obtained from Kartesz & Meacham 1999). The species table may be linked to the specimen table using the SpeciesCode variable. RESULTS Collectors The specimen record dataset contains the names of 22 collectors in various combinations. The collectors and their contributions are described briefly below. Geraldine Watson spent many years botanizing in the Big Thicket, guiding and working with many professionals, most notably D.S. Correll, senior author of Manual of the Vascular Plants of Texas (Correll & Johnston 1970) and Geyata Ajilsvgi, author of Wildflowers of the Big Thicket (Ajilvsgi 1979). In the late 1970s and early 1980s Watson was employed as a botanist in Big Thicket National Preserve, during which time she produced a record of species occurrences by unit (Watson 1982) amounting to nearly 7000 records for about 1300 species. This is the most complete inventory ever done for BITH, but it was not fully vouchered; only about 1000 specimens were collected. The specimens were stored at Lamar University until 2001, when they were loaned by NPS to Rice University for this project. They were subsequently transferred to The Tracey Herbarium at Texas A&M University. Investigators from Rice University engaged in ecological research from 1972 through 2006, and in the process, many specimens from BTNP were placed in the Rice University Reference Collection, by Paul A. Harcombe, Professor, (1972-2007), Donna R. Streng graduate student, (Hickory Creek, 1976-1980), and Changxiang Liu, graduate student, (Hickory Creek, Turkey Creek and Lance Rosier, 1996-1999). Most were subsequently duplicated by new collections made as part of this project, and so were retained at Rice University. Warren Pruess and I.Sandra. Elsik, Rice University research staff, collected specimens in Lance Rosier, JackGore-Neches Bottom, Beech Creek, Big Sandy, Turkey Creek and Loblolly mostly in 2004-2006. A few student collections were also made. Brooke Wheeler, a research assistant, collected 2 specimens. Katie Caldwell collected 150 specimens as part of a restoration study in the Turkey Creek Unit. - 4 - Michael and Barbara MacRoberts, Herbarium, Louisiana State University in Shreveport, studied savanna wetlands in the late 1990s (MacRoberts & MacRoberts 1998), collecting primarily in the Lance Rosier, Hickory Creek and Turkey Creek units. The Lance Rosier specimens were deposited at TEX (see MacRoberts & MacRoberts 1998). The MacRoberts subsequently completed a study of the Hickory Creek Savanna Unit (MacRoberts et al 2002). They collected primarily in Turkey Creek (2002-03), Big Sandy (2003-04) and Beech Creek (2004). Suzanne Walker, Azimuth Forestry Services, Nacogdoches, TX, was part of their collecting team at Beech Creek. Larry E. Brown, Professor, Houston Community College, began collecting in Big Thicket in the 1970s. Many of his specimens collected prior to 2001 when this project began were retained in the herbarium at the Spring Branch R.A. Vines Science Center, Spring Branch Independent School District, Houston, TX (this herbarium is registered as SBSC). Brown’s early collections were primarily at Menard Creek and Hickory Creek. As part of this project, he collected at Big Sandy (2003-04), Lance Rosier (2004-06) and Turkey Creek (2006). Dan Johnson, an amateur botanist from Houston collected under his supervision at Hickory Creek and Turkey Creek. A few specimens are listed as collected by Brown and Liggio or by Brown and Harper. Joe Liggio and Shawn Harper accompanied Brown in the field for some collection at Hickory Creek and Lance Rosier. Stanley Jones, consulting botanist, College Station, TX, supplied approximately 1000 specimens to the project from collections made for various consulting firms engaged in seismic prospecting in Jack Gore/Neches Bottom, Beaumont, Lance Rosier, and Big
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • A Checklist of the Vascular Flora of the Mary K. Oxley Nature Center, Tulsa County, Oklahoma
    Oklahoma Native Plant Record 29 Volume 13, December 2013 A CHECKLIST OF THE VASCULAR FLORA OF THE MARY K. OXLEY NATURE CENTER, TULSA COUNTY, OKLAHOMA Amy K. Buthod Oklahoma Biological Survey Oklahoma Natural Heritage Inventory Robert Bebb Herbarium University of Oklahoma Norman, OK 73019-0575 (405) 325-4034 Email: [email protected] Keywords: flora, exotics, inventory ABSTRACT This paper reports the results of an inventory of the vascular flora of the Mary K. Oxley Nature Center in Tulsa, Oklahoma. A total of 342 taxa from 75 families and 237 genera were collected from four main vegetation types. The families Asteraceae and Poaceae were the largest, with 49 and 42 taxa, respectively. Fifty-eight exotic taxa were found, representing 17% of the total flora. Twelve taxa tracked by the Oklahoma Natural Heritage Inventory were present. INTRODUCTION clayey sediment (USDA Soil Conservation Service 1977). Climate is Subtropical The objective of this study was to Humid, and summers are humid and warm inventory the vascular plants of the Mary K. with a mean July temperature of 27.5° C Oxley Nature Center (ONC) and to prepare (81.5° F). Winters are mild and short with a a list and voucher specimens for Oxley mean January temperature of 1.5° C personnel to use in education and outreach. (34.7° F) (Trewartha 1968). Mean annual Located within the 1,165.0 ha (2878 ac) precipitation is 106.5 cm (41.929 in), with Mohawk Park in northwestern Tulsa most occurring in the spring and fall County (ONC headquarters located at (Oklahoma Climatological Survey 2013).
    [Show full text]
  • Native Plant Group BBG Spring Sale List 2020 As of Mar22020
    Native Plant Group - BBG Spring Sale 2020 Scientific or Botanical Common name EXPOSURE MOISTURE COLOR HEIGHT BLOOM REMARKS Butterfly Host Bee Drought name as of Feb. 2013 or Nectar Friendly Tolerant self seeds, good in rock Allium cernuum Nodding Onion sun avg pink 10-12" lt spring gardens Bee yes Amsonia ciliata Blue Star Sun-ptsun avg-dry blue 3' Apr-May Sandy soil, very fine leaves Bee yes Amsonia Willow leaf Small shrub, fall color, AL tabernaemontana Bluestar sun-shade avg-dry blue 3' lt spring variety Bee sun-pt red/yello Self seeds, hummingbird Aquilegia canadensis Columbine shade avg-dry w 18-20" spring plant nectar Bee yes Deciduous Ginger Asarum canadense shade moist maroon 8" spring groundcover Host for Swamp Butterfly host & nectar Monarch & Asclepias incarnata milkweed Sun-pt sun avg-moist pink 3' summer plant nectar Bee Host for Butterfly host & nectar Monarch & Asclepias tuberosa Butterfly Weed sun avg-dry orange 2-3' summer plant nectar Bee yes White False Baptisia alba Indigo sun-pt sun avg white 3' spring New stems charcoal color nectar Bee False Blue sun-pt Tolerates drought & poor Baptisia australis Indigo shade avg blue 3' summer soil nectar Bee Baptisia australis v Small Leaflet aberrans Blue Indigo sun avg-dry blue 3' summer Coosa Prairie plant nectar Bee Apalachicola Baptisia megacarpa Wild Indigo sun avg-moist white 3' spring found in Eunice, LA prairie nectar Bee Seedlings AL variety; yellow, Baptisia species False Indigo sun avg-dry various 3' Apr May blue, alba nectar Bee Apr- Baptisia sphaerocarpa Yellow Baptisia
    [Show full text]
  • – the 2020 Horticulture Guide –
    – THE 2020 HORTICULTURE GUIDE – THE 2020 BULB & PLANT MART IS BEING HELD ONLINE ONLY AT WWW.GCHOUSTON.ORG THE DEADLINE FOR ORDERING YOUR FAVORITE BULBS AND SELECTED PLANTS IS OCTOBER 5, 2020 PICK UP YOUR ORDER OCTOBER 16-17 AT SILVER STREET STUDIOS AT SAWYER YARDS, 2000 EDWARDS STREET FRIDAY, OCTOBER 16, 2020 SATURDAY, OCTOBER 17, 2020 9:00am - 5:00pm 9:00am - 2:00pm The 2020 Horticulture Guide was generously underwritten by DEAR FELLOW GARDENERS, I am excited to welcome you to The Garden Club of Houston’s 78th Annual Bulb and Plant Mart. Although this year has thrown many obstacles our way, we feel that the “show must go on.” In response to the COVID-19 situation, this year will look a little different. For the safety of our members and our customers, this year will be an online pre-order only sale. Our mission stays the same: to support our community’s green spaces, and to educate our community in the areas of gardening, horticulture, conservation, and related topics. GCH members serve as volunteers, and our profits from the Bulb Mart are given back to WELCOME the community in support of our mission. In the last fifteen years, we have given back over $3.5 million in grants to the community! The Garden Club of Houston’s first Plant Sale was held in 1942, on the steps of The Museum of Fine Arts, Houston, with plants dug from members’ gardens. Plants propagated from our own members’ yards will be available again this year as well as plants and bulbs sourced from near and far that are unique, interesting, and well suited for area gardens.
    [Show full text]
  • Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas
    Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Texas milkweed (Asclepias texana), courtesy Bill Carr Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Created in partnership with the Lady Bird Johnson Wildflower Center Design and layout by Elishea Smith Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Introduction This document has been produced to serve as a quick guide to the identification of milkweeds (Asclepias spp.) in Texas. For the species listed in Table 1 below, basic information such as range (in this case county distribution), habitat, and key identification characteristics accompany a photograph of each species. This information comes from a variety of sources that includes the Manual of the Vascular Flora of Texas, Biota of North America Project, knowledge of the authors, and various other publications (cited in the text). All photographs are used with permission and are fully credited to the copyright holder and/or originator. Other items, but in particular scientific publications, traditionally do not require permissions, but only citations to the author(s) if used for scientific and/or nonprofit purposes. Names, both common and scientific, follow those in USDA NRCS (2015). When identifying milkweeds in the field, attention should be focused on the distinguishing characteristics listed for each species.
    [Show full text]
  • Castilleja Coccinea and C. Indivisa (Orobanchaceae)
    Nesom, G.L. and J.M. Egger. 2014. Castilleja coccinea and C. indivisa (Orobanchaceae). Phytoneuron 2014-14: 1–7. Published 6 January 2014. ISSN 2153 733X CASTILLEJA COCCINEA AND C. INDIVISA (OROBANCHACEAE) GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 www.guynesom.com J. M ARK EGGER Herbarium, Burke Museum of Natural History and Culture University of Washington Seattle, Washington 98195-5325 [email protected] ABSTRACT Castilleja coccinea and C. indivisa are contrasted in morphology and their ranges mapped in detail in the southern USA, where they are natively sympatric in small areas of Oklahoma, Arkansas, and Louisiana. Castilleja indivisa has recently been introduced and naturalized in the floras of Alabama and Florida. Castilleja ludoviciana , known only by the type collection from southwestern Louisiana, differs from C. coccinea in subentire leaves and relatively small flowers and is perhaps a population introgressed by C. indivisa . Castilleja coccinea and C. indivisa are allopatric except in small areas of Oklahoma, Arkansas, and Lousiana, but assessments of their native distributions are not consistent among various accounts (e.g. Thomas & Allen 1997; Turner et al. 2003; OVPD 2012; USDA, NRCS 2013). Morphological contrasts between the two species, via keys in floristic treatments (e.g., Smith 1994; Wunderlin & Hansen 2003; Nelson 2009; Weakley 2012), have essentially repeated the differences outlined by Pennell (1935). The current study presents an evaluation and summary of the taxonomy of these two species. We have examined specimens at CAS, TEX-LL, SMU-BRIT-VDB, MO, NLU, NO, USF, WS, and WTU and viewed digital images available through Florida herbaria and databases.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Checklist of Illinois Native Trees
    Technical Forestry Bulletin · NRES-102 Checklist of Illinois Native Trees Jay C. Hayek, Extension Forestry Specialist Department of Natural Resources & Environmental Sciences Updated May 2019 This Technical Forestry Bulletin serves as a checklist of Tree species prevalence (Table 2), or commonness, and Illinois native trees, both angiosperms (hardwoods) and gym- county distribution generally follows Iverson et al. (1989) and nosperms (conifers). Nearly every species listed in the fol- Mohlenbrock (2002). Additional sources of data with respect lowing tables† attains tree-sized stature, which is generally to species prevalence and county distribution include Mohlen- defined as having a(i) single stem with a trunk diameter brock and Ladd (1978), INHS (2011), and USDA’s The Plant Da- greater than or equal to 3 inches, measured at 4.5 feet above tabase (2012). ground level, (ii) well-defined crown of foliage, and(iii) total vertical height greater than or equal to 13 feet (Little 1979). Table 2. Species prevalence (Source: Iverson et al. 1989). Based on currently accepted nomenclature and excluding most minor varieties and all nothospecies, or hybrids, there Common — widely distributed with high abundance. are approximately 184± known native trees and tree-sized Occasional — common in localized patches. shrubs found in Illinois (Table 1). Uncommon — localized distribution or sparse. Rare — rarely found and sparse. Nomenclature used throughout this bulletin follows the Integrated Taxonomic Information System —the ITIS data- Basic highlights of this tree checklist include the listing of 29 base utilizes real-time access to the most current and accept- native hawthorns (Crataegus), 21 native oaks (Quercus), 11 ed taxonomy based on scientific consensus.
    [Show full text]
  • Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
    SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]