Therapeutic Plasma Exchange Using Membrane Plasma Separation

Total Page:16

File Type:pdf, Size:1020Kb

Therapeutic Plasma Exchange Using Membrane Plasma Separation CJASN ePress. Published on April 20, 2020 as doi: 10.2215/CJN.12501019 Therapeutic Plasma Exchange Using Membrane Plasma Separation Sadiq Ahmed 1 and Andre Kaplan2 Abstract Therapeutic plasma exchange is a blood purification technique designed for the removal of large molecular weight toxins such as pathogenic antibodies and lipoproteins. Plasma exchange can be performed either by membrane 1Division of separation or centrifugation. Centrifugal plasma exchange is more common in the United States while Nephrology Bone and membrane separation is more popular in Germany and Japan. The membrane separation technique is similar to Mineral Metabolism, the ultrafiltration procedures performed with a standard dialysis machine but in which the membrane’s pores University of Kentucky, Lexington, are large enough to allow removal of all circulating molecules while retaining the cellular components. The Kentucky current availability of plasma separation membranes compatible with CRRT systems has dramatically increased 2Division of the potential for almost all nephrologists to perform these treatments. This review describes the membrane Nephrology, separation techniques available in the United States, the practical aspects of ordering and operating a membrane University of Connecticut Health separation plasma exchange procedure and its possible complications. Center, Farmington, CJASN 15: ccc–ccc, 2020. doi: https://doi.org/10.2215/CJN.12501019 Connecticut Correspondence: Introduction replacement by an equal volume of appropriate fluid Dr. Sadiq Ahmed, Therapeutic plasma exchange is a procedure carried Division of purify the blood by removing the pathogenic mole- Nephrology Bone and out for various life-threatening and debilitating diseases cules responsible for certain diseases. The substances Mineral Metabolism, as a principal mode of treatment or as an adjunct with removed by plasma exchange are abnormally pro- University of other therapies. In this procedure, plasma is separated duced in the body in various diseased states. These Kentucky, 800 Rose from the cellular components of blood. The removed high molecular weight pathogenic molecules, such as Street, Room MN564, Lexington, KY 40536- plasma is discarded and replaced with a colloid, a Igs, proteins, or immune complexes (Table 1) (4,5), 0298. Email: Sadiq. combination of crystalloid and colloid (1), or fresh cannot be removed from the blood by conventional [email protected] frozen plasma. Separation of plasma from the cellular methods, such as dialysis or hemofiltration, due to components of blood can be achieved by two differ- their large size. Urgent removal of these molecules is ent techniques: either by membrane separation or by necessary to prevent ongoing organ damage because centrifugation. Plasma separation by centrifugation is these molecules have long half-lives; additionally, commonly performed by pathologists, transfusion therapies aimed at suppression of their production medicine experts, and nephrologists. Alternatively, take weeks or months to be effective. Rapid removal the concept of membrane separation of plasma using of these large molecules by plasma exchange reduces a filtration device is very similar to hemofiltration or morbidity and mortality. The commonly removed ultrafiltration using a dialysis machine and hence, molecules and their molecular weights are described mainly performed by nephrologists. Membrane fil- in Table 1 (4,5). tration plasma exchange is also referred to as mem- brane plasma separation. Although very popular in Japan and Germany (2), in the United States, the Mechanism of Plasma Separation by Membrane membrane separation technique, although gaining pop- Filtration Plasma Exchange ularity (3), is used less often compared with centrifugal Separation of plasma from the blood’s cellular com- plasma exchange. Nephrologists and dialysis nurses are ponents can be accomplished by filtration through a naturally familiar with this technique because they are highly permeable membrane. This methodology sepa- experts in using these machines. This review article will rates the blood into its cellular and noncellular compo- discuss the basic principles, mechanisms, instruments, nents by subjecting it to sieving through a membrane complications, and practical aspects of prescribing with pores that allow the plasma proteins to pass but therapeutic plasma exchange by membrane separation. retain the larger cellular elements within the blood path (Figure 1). Twenty-five years after the first centrifugal plasma exchange procedure in a patient with multiple Principles of Blood Purification by Membrane myeloma in 1952, the membrane separation technique Separation Plasma Exchange was introduced in 1978 (6,7) as an alternative to the The separation and removal of plasma from the patient existing centrifugal technique. Membrane separation by a semipermeable membrane and its simultaneous plasma exchange is very similar to the operation of a www.cjasn.org Vol 15 September, 2020 Copyright © 2020 by the American Society of Nephrology 1 2 CJASN Table 1. Size and distribution of some of the proteins removed by therapeutic plasma exchange Protein Concentration, mg/ml M.W. 3 103 D Percentage Intravascular IgG (except IgG3 subclass) 12 150 45 IgG3 0.7 150 64 IgMa 0.9 950 78 IgA 2.5 160 42 IgD 0.02 175 75 IgE 0.0001 190 45 Albumin 45 66 44 C3 1.4 240 67 C4 0.5 200 66 Fibrinogen 3–434081 Factor VIII 0.1 100–340 71 Antithrombin III 0.2 56–58 45 Lipoprotein cholesterol 1.5–2.0 1300 .90 M.W., molecular weight. Modified from refs. 4 and 5, with permission. conventional dialysis machine running in ultrafiltration contains all of the noncellular components of the patient’s mode (Figure 2) or a continuous RRT (CRRT) in venovenous plasma (Figure 1); as plasma is filtered out, it is replaced hemofiltration mode. In membrane separation plasma simultaneously with appropriate fluids (usually albumin exchange, instead of a regular filter designed for the or fresh frozen plasma [FFP]) in equal volume to the removal of small and “middle” molecules, a special filter plasma removed to prevent hemodynamic compromise. with large pores (0.3–0.5 mm) is used. Pore sizes of these The removal rate of any given plasma component de- membranes are usually 0.5 mm or less, thus easily rejecting pends on the plasma filtration rate and its sieving co- the smallest cellular component, the platelets (3 mm). Blood efficient (ratio of a given plasma protein or solute drawn from a central venous access, such as a dialysis concentration between the filtrate and the blood side of catheter, is passed through this special plasma filter before it the membrane). With the currently available modern is returned to the patient (Figure 2). Because of the large plasma filtration membranes, the sieving coefficient of pores, the ultrafiltrate or effluent produced in this manner even the largest molecules, weighing .1 million D (LDL Figure 1. | Schematic section of a hollow fiber for plasma exchange. Whole blood flows lengthwise along the interior of the fiber, whereas its plasma components, such as Igs, clotting factors, fibrinogen, and albumin, pass through the pores in the fiber wall and collect outside the fiber. The wall of the hollow fiber functions as the separating membrane with a pore size that allows penetration by plasma but not by the blood’s cellular components (red blood cells [RBCs], white blood cells [WBCs], and platelets). CJASN 15: ccc–ccc, September, 2020 Membrane Separation Plasma Exchange, Ahmed and Kaplan 3 purpose, but most are not available in the United States (2,8,9). Practitioners in the United States have only two choices of filters for membrane separation plasma exchange. They are the Prismaflex TPE-2000 plasma filter (Baxter) and the Plasmaflo OP-05W (Asahi Kasei Medical Company Ltd. Japan). The physical properties of these two filters are very similar but different from a conventional dialyzer, and they are compared in Table 2. Efficacy of Membrane Separation in Comparison with Centrifugal Plasma Exchange Membrane separation is limited to plasma exchange only and cannot separate the cellular components of blood. For this reason, it cannot be used for cellular apheresis procedures, such as red blood cell exchange, leukapheresis, platelet removal, and harvesting stem fi Figure 2. | Blood flowing through the plasma filter, plasma separa- cells. The plasma exchanging ef ciency of membrane tion and infusion of replacement solution, and return to the patient. separation is similar to the centrifugal technique due to a very high (close to 100%) sieving coefficient(ratioofthe concentrations of the molecules between the filtrate and cholesterol, etc.), is essentially “one.” Thus, the concen- the blood) of the plasma proteins and the pathogenic tration of these larger proteins in the removed plasma molecules (10). Studies from the 1980s showed that flat- (effluent) is essentially equal to that in the patient’s plate parallel membranes had similar efficacy to centrif- circulating plasma. ugal plasma exchange (4). A recent prospective study compared membrane filtration by the Plasmaflo filter with the centrifugal separation by the Spectra Optia and found that both systems are equally effective in removing Igs Membrane Separation Plasma Exchange Options (Figure 3) (11); however, the centrifugal procedure required Available in the United States less time (11,12). In a retrospective study, membrane sepa- The flat parallel plate membrane (Centry TPE; Cobe) (8) ration was also found to be effective in the pediatric was the first membrane separation plasma exchange
Recommended publications
  • Policy and Procedure
    Policy and Procedure Title: Exchange Transfusion for Sickle Cell Division: Medical Management Disease Department: Utilization Management Approval Date: 2/9/18 LOB: Medicaid, Medicare, HIV SNP, CHP, MetroPlus Gold, Goldcare I&II, Market Plus, Essential, HARP Effective Date: 2/9/18 Policy Number: UM-MP224 Review Date: 1/18/19 Cross Reference Number: Retired Date: Page 1 of 7 1. POLICY: Exchange Transfusion for Sickle Cell Disease 2. RESPONSIBLE PARTIES: Medical Management Administration, Utilization Management, Integrated Care Management, Claims Department, Provider Contracting 3. DEFINITIONS • Sickle cell disease – Sickle cell disease (SCD) refers to a group of inherited disorders characterized by sickled red blood cells (RBCs), caused either by homozygosity for the sickle hemoglobin mutation (HbSS; sickle cell anemia) or by compound heterozygosity for the sickle mutation and a second beta globin gene mutation (e.g., sickle-beta thalassemia, HbSC disease). In either HbSS or compound heterozygotes, the majority of Hgb is sickle Hgb (HgbS; i.e., >50 percent). • Transfusion – Simple transfusion refers to transfusion of RBCs without removal of the patient's blood. • Exchange Transfusion – Exchange transfusion involves transfusion of RBCs together with removal of the patient's blood. Exchange transfusion can be performed manually or via apheresis (also called cytapheresis or hemapheresis) using an extracorporeal continuous flow device. 4. PROCEDURE: A. Exchange transfusion for sickle cell disease will be covered as an ambulatory surgery procedure when all the following criteria are met: i) The member has documented SCD. ii) The exchange transfusion is a pre-scheduled procedure. iii) The purpose of the exchange transfusion is to prevent stroke, acute chest syndrome, or recurrent painful episodes.
    [Show full text]
  • Sickle Cell Disease: Chronic Blood Transfusions
    Sickle Cell Disease: Chronic Blood Transfusions There may be times when sickle cell patients require a blood transfusion. Such situations include preparing for surgery, during pregnancy, or during a severe complication such as an aplastic crisis, splenic sequestration or acute chest syndrome. In these cases, transfusion is a one-time intervention used to reduce the severity of the complication you are experiencing. However, if you have had a stroke, or an MRI or TCD shows that you are at high risk for having a stroke, your hematologist may recommend you begin chronic blood transfusions. What Does a Blood Transfusion Do? What are The Risks? Chronic (monthly) blood transfusions have been proven to Blood transfusions are not without risks. One risk is drastically reduce a sickle cell patient’s risk of stroke. They alloimmunization, a process in which the patient receiving have also been shown to reduce the frequency, severity blood transfusions creates antibodies to certain types of and duration of other sickle cell complications. Sickle cell blood. As a result he/she may have a reaction to the blood patients usually have a hemoglobin S level of about 80- that was transfused. Alloimmunization makes it more 90%. This means 80-90% of the circulating red blood cells difficult to find blood that is a good match for the patient. are cells that can sickle and cause complications. The goal In order to prevent alloimmunization, some centers of chronic blood transfusion therapy is to bring that routinely perform RBC phenotyping (special testing for percentage down below 30%. This will mean fewer sickle antibodies) on sickle cell disease patients so that they may cells circulating in the body, and a lower risk of give blood that is a better match for the patient.
    [Show full text]
  • Pediatric Orthotopic Heart Transplant Requiring Perioperative Exchange Transfusion: a Case Report
    JECT. 2004;36:361–363 The Journal of The American Society of Extra-Corporeal Technology Case Reports Pediatric Orthotopic Heart Transplant Requiring Perioperative Exchange Transfusion: A Case Report Brian McNeer, BS; Brent Dickason, BS, RRT; Scott Niles, BA, CCP; Jay Ploessl, CCP The University of Iowa Hospitals and Clinics, Iowa City, Iowa Presented at the 41st International Conference of the American Society of Extra-Corporeal Technology, Las Vegas, Nevada, March 6–9, 2003 Abstract: An 11-month-old patient with idiopathic cardio- the venous line just proximal to the venous reservoir while si- myopathy was scheduled for orthotopic heart transplantation. A multaneously transfusing the normalized prime at normother- perioperative exchange transfusion was performed because of mia. Approximately 125% of the patients calculated blood vol- elevated panel reactive antibody levels. This process was accom- ume was exchanged. This technique greatly reduces the likeli- plished in the operating room prior to instituting cardiopulmo- hood of hyperacute rejection. The exchange transfusion process, nary bypass using a modified cardiopulmonary bypass circuit. In in addition to the patient immature immune system, provides preparation for the procedure, the cardiopulmonary bypass cir- additional options in orthotopic heart transplantation for pa- cuit was primed with washed leukocyte-filtered banked packed tients that may otherwise not be considered suitable candi- red blood cells, fresh-frozen plasma, albumin, and heparin. Pump dates. Keywords: exchange transfusion, heart transplant, pediat- prime laboratory values were normalized prior to beginning the ric, panel reactive antibodies. JECT. 2004;36:361–363 exchange transfusion. The patient’s blood was downloaded from Despite continuing advances in the management of end- humoral sensitization is determined by the presence of a stage cardiac failure, cardiac transplantation remains the positive panel reactive antibody (PRA) screen.
    [Show full text]
  • Laboratory Best Transfusion Practice for Neonates, Infants and Children
    Laboratory Best Transfusion Practice for Neonates, Infants and Children This summary guidance should be used in conjunction with the appropriate 20161 and 20122 BSH Guidelines and laboratory SOPs Compatibility testing Neonates and infants < 4 months Obtain neonatal and maternal transfusion history (including any fetal transfusions) for all admissions. Obtain a maternal sample for initial testing where possible, in addition to the patient sample. Red cell selection: no maternal antibodies present Select appropriate group and correct neonatal specification red cells. Group O D-negative red cells may be issued electronically without serological crossmatch. If the laboratory does not universally select group O D-negative red cells for this age group, blood group selection should either be controlled by the LIMS or an IAT crossmatch should be performed using maternal or neonatal plasma to serologically confirm ABO compatibility with both mother and neonate. Red cell selection: where there is maternal antibody Select appropriate group red cells, compatible with maternal alloantibody/ies. An IAT crossmatch should be performed using the maternal plasma. If it is not possible to obtain a maternal sample it is acceptable to crossmatch antigen-negative units against the infant’s plasma. Where paedipacks are being issued from one donor unit it is only necessary to crossmatch the first split pack. Subsequent split packs from this multi-satellite unit can be automatically issued without further crossmatch until the unit expires or the infant is older than 4 months. If packs from a different donor are required, an IAT crossmatch should be performed. Infants and children ≥ 4 months For infants and children from 4 months of age, pre-transfusion testing and compatibility procedures should be performed as recommended for adults.
    [Show full text]
  • Apheresis Red Cell Exchange/Transfusions
    APHERESIS RED CELL EXCHANGE/TRANSFUSIONS In a patient treated in Manchester, parasitemia was virtually eliminated over eight hours by a 3.5 liter exchange blood transfusion (Plasmodium Falciparum Hyperparasitemia: Use of Exchange Transfusion in Seven Patients and a Review of the Literature). Several cases of severe babesiosis refractory to appropriate antibiotic therapy have been reported to respond promptly and dramatically to red blood cell (RBC) exchange transfusion. Asplenic patients, however, generally have a more severe course of illness, with hemolytic anemia, acute renal failure, disseminated intravascular coagulation, and pulmonary edema. Primary therapy is with antibiotics including clindamycin and quinine, with RBC exchange transfusion reported to be effective in severe cases. The RBC exchange transfusions succeeded in reducing significantly the level of parasitemia, dramatically improving the condition of an extremely ill patient. Our report adds to the small but growing literature on severe Babesia infection in humans, and provides further evidence to support the use of RBC exchange transfusion to treat severe babesiosis. Its single great advantage over antibiotic therapy is its rapid therapeutic effectiveness (Treatment of Babesiosis by Red Blood Cell Exchange in an HIV-Positive Splenectomized Patient). There was rapid clinical improvement after the whole-blood exchange transfusion. In cases of severe babesiosis, prompt institution of whole-blood exchange transfusion, in combination with appropriate antimicrobial therapy, can be life-saving. In patients with progressive babesiosis, early intervention with exchange transfusion, along with appropriate antimicrobial therapy, should be considered to speed clinical recovery. (Fulminant babesiosis treated with clindamycin, quinine, and whole-blood exchange transfusion. However, asplenic patients may have a much more serious clinical course.
    [Show full text]
  • Use of Blood Components in the Newborn
    NNF Clinical Practice Guidelines Use of Blood Components in the Newborn Summary of recommendations • Transfusion in the newborn requires selection of appropriate donor, measures to minimize donor exposure and prevent graft versus host disease and transmission of Cytomegalovirus. • Component therapy rather than whole blood transfusion, is appropriate in most situations. • A clear cut policy of cut-offs for transfusions in different situations helps reduce unnecessary exposure to blood products. • Transfusion triggers should be based on underlying disease, age and general condition of the neonate. Writing Group : Chairperson: Arvind Saili ; Members: RG Holla, S Suresh Kumar Reviewers: Neelam Marwaha, Ruchi Nanawati Page | 129 Downloaded from www.nnfpublication.org NNF Clinical Practice Guidelines Introduction Blood forms an important part of the therapeutic armamentarium of the neonatologist. Very small premature neonates are amongst the most common of all patient groups to receive extensive transfusions. The risks of blood transfusion in today’s age of rigid blood banking laws, while infrequent, are not trivial. Therefore, as with any therapy used in the newborn, it is essential that one considers the risk- benefit ratio and strive to develop treatment strategies that will result in the best patient outcomes. In addition, the relatively immature immune status of the neonate predisposes them to Graft versus Host Disease (GVHD), in addition to other complications including transmission of infections, oxidant damage, allo- immunization and
    [Show full text]
  • Transfusion Support Issues in Hematopoietic Stem Cell Transplantation Claudia S
    Knowledge of transfusion complications related to HSCT can help with the early detection and treatment of patients before and after transplantation. Ray Paul. SP12-6796 × 40, 2013. Acrylic, latex, enamel on canvas printed with an image of myxofibrosarcoma with metastases to the artist’s lung, 26" × 36". Transfusion Support Issues in Hematopoietic Stem Cell Transplantation Claudia S. Cohn, MD, PhD Background: Patients receiving hematopoietic stem cell transplantation require extensive transfusion support until red blood cell and platelet engraftment occurs. Rare but predictable complications may arise when the transplanted stem cells are incompatible with the native ABO type of the patient. Immediate and delayed hemolysis is often seen. Methods: A literature review was performed and the results from peer-reviewed papers that contained reproducible findings were integrated. Results: A strong body of clinical evidence has developed around the common complications experienced with ABO-incompatible hematopoietic stem cell transplantation. These complications are discussed and the underlying pathophysiology is explained. General treatment options and guidelines are enumerated. Conclusions: ABO-incompatible hematopoietic stem cell transplantations are frequently performed. Immune-related hemolysis is a commonly encountered complication; therefore, health care professionals must recognize the signs of immune-mediated hemolysis and understand the various etiologies that may drive the process. Introduction antigen (HLA) matching remains an important predic- Hematopoietic stem cell transplantation (HSCT) is used tor of success with HSCT; however, the ABO barrier is to treat a variety of hematological and congenital diseas- often crossed when searching for the most appropriate es. The duration and specificity of transfusion support HLA match between donor and patient.
    [Show full text]
  • A Fatal Case of Severe Hemolytic Disease of Newborn Associated with Anti-Jkb
    J Korean Med Sci 2006; 21: 151-4 Copyright � The Korean Academy ISSN 1011-8934 of Medical Sciences A Fatal Case of Severe Hemolytic Disease of Newborn Associated with Anti-Jkb The Kidd blood group is clinically significant since the Jk antibodies can cause acute Won Duck Kim, Young Hwan Lee* and delayed transfusion reactions as well as hemolytic disease of newborn (HDN). In general, HDN due to anti-Jkb incompatibility is rare and it usually displays mild Department of Pediatrics, Dongguk University, College of Medicine, Gyeongju; Department of Pediatrics*, clinical symptoms with a favorable prognosis. Yet, we apparently experienced the Yeungnam University, College of Medicine, Daegu, second case of HDN due to anti-Jkb with severe clinical symptoms and a fatal out- Korea come. A female patient having the AB, Rh(D)-positive boodtype was admitted for jaundice on the fourth day after birth. At the time of admission, the patient was lethar- gic and exhibited high pitched crying. The laboratory data indicated a hemoglobin value of 11.4 mg/dL, a reticulocyte count of 14.9% and a total bilirubin of 46.1 mg/dL, Received : 18 October 2004 a direct bilirubin of 1.1 mg/dL and a strong positive result (+++) on the direct Coomb’s Accepted : 11 February 2005 test. As a result of the identification of irregular antibody from the maternal serum, anti-Jkb was detected, which was also found in the eluate made from infant’s blood. Despite the aggressive treatment with exchange transfusion and intensive photother- apy, the patient died of intractable seizure and acute renal failure on the fourth day Address for correspondence of admission.
    [Show full text]
  • How Do I Perform Whole Blood Exchange?
    HOW DO I? How do I perform whole blood exchange? † † † David Ming-Hung Lin ,1, Joanne Becker,2, YanYun Wu,1 and Laura Cooling3, here are a number of clinical scenarios in which crossmatched against plasma or adsorbed plasma, if avail- simultaneous exchange of the patient’s plasma able. Because preparation of reconstituted WB is considered and red blood cells (RBCs) are indicated. Some of an open system with a 24-hour outdate, we prepared only these clinical indications for therapeutic whole one reconstituted WB unit at a time (i.e., after dispensing Tblood exchange (WBEx) include hemolytic disease of the one unit, the next unit was prepared). WBEx was performed newborn, severe autoimmune hemolytic anemia (AIHA), by physically removing WB with a syringe, followed by infu- – babesiosis, sickle cell disease, and hyperleukocytosis.1 4 sion of reconstituted WB. In adult patients, this involved WBEx has been performed with manual, semiautomated, removal of 200 mL (50 mL per draw with 60-mL syringes) and fully automated methods using replacements fluids over 10 minutes through a triple-lumen central venous (i.e., RBCs with plasma, RBCs with 5% albumin, and whole catheter, followed by infusion of WB over 1 to 1.5 hours. blood [WB]) reconstituted to a prespecified target hemato- Overall, it required 20 hours to complete a manual WBEx crit (Hct); however, methodologies vary widely and each exchange with 12 units of WB as replacement. For pediatric carry advantages and disadvantages. Here, we describe our patients, a similar process was followed using a central or combined experiences in performing WBEx, including clini- femoral venous catheter (5 mL/kg per draw).
    [Show full text]
  • Clinical Transfusion Practice
    Clinical Transfusion Practice Guidelines for Medical Interns Foreword Blood transfusion is an important part of day‐to‐day clinical practice. Blood and blood products provide unique and life‐saving therapeutic benefits to patients. However, due to resource constraints, it is not always possible for the blood product to reach the patient at the right time. The major concern from the point of view of both user (recipient) and prescriber (clinician) is for safe, effective and quality blood to be available when required. Standard practices should be in place to include appropriate testing, careful selection of donors, screening of donations, compatibility testing, storage of donations for clinical use, issue of blood units for either routine or emergency use, appropriate use of blood supplied or the return of units not needed after issue, and reports of transfusion reactions – all are major aspects where standard practices need to be implemented. In order to implement guidelines for standard transfusion practices, a coordinated team effort by clinicians, blood transfusion experts, other laboratory personnel and health care providers involved in the transfusion chain, is needed. Orientation of standard practices is vital in addressing these issues to improve the quality of blood transfusion services. Bedside clinicians and medical interns are in the forefront of patient management. They are responsible for completing blood request forms, administering blood, monitoring transfusions and being vigilant for the signs and symptoms of adverse reactions.
    [Show full text]
  • Newborn Exchange Transfusion
    Title: Newborn Exchange Transfusion Approval Date: Pages: NEONATAL CLINICAL March 2015 1 of 8 PRACTICE GUIDELINE Approved by: Supercedes: Neonatal Patient Care Teams, HSC & SBH HSC 80.275.404 Child Health Standards Committee SBH: #001 1.0 PURPOSE AND INTENT: 1.1 To provide guidelines for safe exchange transfusions in newborns performed in Neonatal areas. 2.0 PRACTICE OUTCOME 2.1 Reduce dangerous levels in the blood of red blood cells, bilirubin, medications or other body chemistry elements that have risen due to illness or treatment of illness and to prevent negative long term developmental outcomes that may result. Note: All recommendations are approximate guidelines only and practitioners must take in to account individual patient characteristics and situation. Concerns regarding appropriate treatment must be discussed with the attending neonatologist. 3.0 INDICATIONS 3.1 Alloimmune Hemolytic Disease: Neonates demonstrating clinical evidence of alloimmune hemolytic disease; pallor, petechiae, hepatosplenomegaly, will require an exchange transfusion. 3.1.1 IF immediately after delivery, the CORD BLOOD levels are: A hemoglobin of less than or equal to 105 g/L or bilirubin greater than or equal to 80 µmol/L – exchange transfusion within 3 hours of birth A hemoglobin less than or equal to 80 g/L or bilirubin greater than or equal to 100 µmol/L – exchange transfusion within 1 hour of birth 3.1.2 Subsequent exchange transfusions will occur under the following conditions: Term neonate – indirect bilirubin greater than or equal to 340 µmol/L
    [Show full text]
  • Adverse Events Associated with Exchange Transfusion in Healthy and Ill Newborns
    Adverse Events Associated With Exchange Transfusion in Healthy and Ill Newborns J. Craig Jackson, MD ABSTRACT. Objective. To determine the incidence of there are few recent reports of the complication rates adverse events attributable to exchange transfusion dur- from exchange transfusion or attempts to stratify the ing the past 15 years and compare the incidence of severe risk of adverse events based on clinical condition. complications between healthy and ill infants. Mortality rates attributable to exchange transfu- Design. Medical records for the past 15 years from sion ranged from .65% to 3.2% in studies performed two teaching hospitals with neonatal intensive care units 4–7 were reviewed. Those newborns who underwent ex- in the 1960s and from .4% to 3.2% during the 1970s 8–10 change transfusions were classified as healthy or ill. Ad- and 1980s. Causes of death ascribed to exchange verse events were analyzed to determine whether they transfusion included cardiovascular collapse during were attributable to the procedure. the transfusion, and the subsequent complications of Results. Of the 106 patients who underwent exchange necrotizing enterocolitis, bacterial sepsis, and pulmo- transfusion, 81 were healthy and had no medical prob- nary hemorrhage. lems other than jaundice. The remaining 25 patients were The most frequently cited review of adverse events classified as ill and had medical problems ranging from from exchange transfusion is from the 1974 to 1976 mild to severe. At least 2 (2%) of the 106 patients died of complications probably attributable to exchange transfu- prospective National Institute of Child Health and sion. None of the 81 healthy infants died, but 1 had Human Development (NICHD) phototherapy study.
    [Show full text]