<<

International Association of Geomorphologists Working Group on Planetary Geomorphology

Recommended Reading List for Aeolian Studies

Compiled by Dr. Mary Bourke, Planetary Science Institute, Tucson, Arizona, Dr. Lori Fenton Carl Center, NASA Ames, Moffett Field, CA 94035 and Dr. Nathan Bridges, Jet Propulsion Laboratory, Pasadena, CA 91109, USA.

March 24th 2007

General (Mars):...... 2 General (Earth)...... 2 Mars Sand Dunes:...... 2 Mars Aeolian Sediments and Stratigraphy: ...... 4 Landing site observations: ...... 5 Mars Dust and Dust Devils:...... 6 Wind Streaks:...... 7 Ventifacts:...... 8 Laboratory experiments and modeling ...... 9 Earth analogues...... 9 Yardangs: ...... 10 Sediment Transport:...... 10 Mars Winds and General Circulation Models: ...... 11

1

International Association of Geomorphologists Working Group on Planetary Geomorphology

General (Mars): El-Baz, F., and Maxwell, T. A. (1982). Desert Landforms of Southwest Egypt: A Basis for Comparison with Mars, pp. 372. NASA Scientific and Technical Information Branch, Washington DC. , R., Womer, M. B., Papson, R. P., and Spudis, P. D. (1978). Aeolian features of southern California: A comparative planetary geology guidebook. Arizona State University. Greeley, R., Williams, S. H., White, B. R., et al. (1984). Wind abrasion on Earth and Mars. In Models in Geomorphology. (M. J. Woldenberg, Ed.), pp. 373-422. Allen and Unwin, Boston. Greeley, R., and Iversen, J. D. (1985). Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge University Press, Cambridge. Greeley, R., Lancaster, N., Lee, S., and Thomas, P. (1992). Martian aeolian processes, sediments, and features. In Mars. (H. H. Kieffer, B. M. Jakosky, C. W. Snyder, and M. S. Matthews, Eds.), pp. 730-766. The University of Arizona Press, Tucson, Arizona. Ward, A. W., Doyle, K. B., Helm, P. J., et al. (1985). Global map of aeolian features of Mars. Journal of Geophysical Research 90, 2038-2056. , G. L., and Zimbelman, J. R. (1997). Extraterrestrial arid surface processes. In Arid Zone Geomorphology: Process, Form and Change in Drylands. (D. S. G. Thomas, Ed.), pp. 659-690. Wiley & Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto.

General (Earth) Bagnold, R. A. (1941). The Physics of blown Sand and Desert Dunes. Methuen, London. Cooke, R. U., Warren, A., and Goudie, A. S. (1993). Desert Geomorphology. UCL Press Limited, London. Goudie, A. S. (2002). Great warm deserts of the world: landscapes and evolution. Oxford University Press, New York. Lancaster, N. (1995). Geomorphology of desert dunes. Routledge, London. McKee, E. D. (1979). A study of global sand seas. United States Geological Survey Professional Paper. Thomas, D. S. G. (1997). Arid Zone Geomorphology: Process, Form and Change in Drylands, pp. 713. Wiley & Sons, New York.

Mars Sand Dunes: Bourke, M. C., Balme, M., , R., et al. (2006). A comparison of methods used to estimate the height of sand dunes on Mars. Geomorphology 81, 440-452. Bourke, M. C., Bullard, J., and Barnouin-Jha, O. (2004). Aeolian sediment transport pathways and aerodynamics at troughs on Mars. Journal of Geophysical Research (Planets) 109, 10.1029/2003JE002155. Breed, C. S. (1977). Terrestrial analogs of the Hellespontus dunes, Mars. Icarus 30, 326- 40.

2

International Association of Geomorphologists Working Group on Planetary Geomorphology

Breed, C. S., Grolier, M. J., and McCauley, J. F. (1979). Morphology and distribution of common 'sand' dunes on Mars: Comparison with the Earth. Journal of Geophysical Research (Planets) 84, 8183-8204. Byrne, S., and Murray, B. C. (2002). North polar stratigraphy and the paleo-erg of Mars. Journal of Geophysical Research (Planets) 107, 10.1029/2001JE001615. Claudin, P., and Andreotti, B. (2006). A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth and Planetary Science Letters 252, 30- 44. Cutts, J. A., Blasius, K. R., , G. A., et al. (1976). North polar region of Mars: Imaging results from Viking 2. Science 194, 1329-1337. Cutts, J. A., and , R. S. U. (1973). Eolian deposits and dunes on Mars. Journal of Geophysical Research 78, 4139-4154. Cwick, G. J., and Campos-Marquetti, P. (1984). An analysis of dome-shaped dunes in a portion of the north polar region of Mars. Professional Paper - Indiana State University, Terre Haute, Department of Geography & Geology 15, 31-44. Edgett , K. S. (1997). Aeolian dunes as evidence for explosive volcanism in the region of Mars. Icarus 130, 96-114. Edgett, K. S., and Blumberg, D. G. (1994). Star and linear dunes on Mars. Icarus 112, 448-464. Edgett, K. S., and Lancaster, N. (1993). Volaniclastic aeolian dunes:Terrestrial examples and application to martian sands. Journal of Arid Environments 25, 271-297. Edgett, K. S., and Malin, M. C. (2000). New views of Mars eolian activity, materials, and surface properties: Three vignettes from the Mars orbital camera. Journal of Geophysical Research (Planets) 105, 1623-1650. Edgett, K. S., Williams, R. M. E., Malin, M. C., et al. (2003). Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology 52, 289-297. Fenton, L. K. (2005). Potential sand sources for the dune fields in Noachis Terra, Mars. Journal of Geophysical Research (Planets) 110, 1-27. Fenton, L. K. (2006). Dune migration and slip face advancement in the Crater dune field, Mars. Geophysical Research Letters 33, doi:10.1029/2006GL027133. Fenton, L. K., Bandfield, J. L., and Ward, A. W. (2003). Aeolian processes in Crater on Mars: Sedimentary history as analyzed from multiple data sets. Journal of Geophysical Research (Planets) 108, 10.1029/2002JE002015. Kossacki, K. J., and Leliwa-Kopystynski, J. (2004). Non-uniform seasonal defrosting of subpolar dune field on Mars. Icarus 168, 201-204. Lancaster, N., and Greeley, R. (1990). Sediment volume in the North Polar sand seas of Mars. Journal of Geophysical Research (Planets) 95, 10921-10927. Lee, P., and Thomas, P. (1995). Longitudinal dunes on Mars: Relation to current wind regimes. Journal of Geophysical Research 100, 5381-5395. Mangold, N., and Costard, F. (2003). Debris flows over sand dunes on Mars: Evidence for liquid water. Journal of Geophysical Research (Planets) 108, 5027.

3

International Association of Geomorphologists Working Group on Planetary Geomorphology

Miyamoto, H., Dohm, J. M., Baker, V. R., et al. (2004). Dynamics of unusual debris flows on Martian sand dunes. Geophysical Research Letters 31, 10.1029/2004GL020313. Reiss, D., and Jaumann, R. (2003). Recent debris flows on Mars: Seasonal observations of the Crater dune field. Geophysical Research Letters 30, doi:10.1029/2002GL016704. Reiss, D., van Gasselt, S., , G., and Jaumann, R. (2004). Absolute dune ages and implications for the time of formation of gullies in , Mars. Journal of Geophysical Research 109, 10.1029/2004JE002251. Schatz, V., Tsoar, H., Edgett, K. S., et al. (2006). Evidence for indurated sand dunes in the Martian north polar region. Journal of Geophysical Research (Planets) 111, 10.1029/2005JE002514. Thomas, P., and Weitz, C. (1989). Sand dunes and polar layered deposits on Mars. Icarus 81, 185-215. Thomas, P. C., Malin, M. C., Carr, M. H., et al. (1999). Bright dunes on Mars. Nature 397, 592-594. Wilson, S. A., and Zimbelman, J. R. (2004). -dependent nature and physical characteristics of transverse aeolian ridges on Mars. Journal of Geophysical Research (Planets) 109, doi:10.1029/2004JE002247. Zimbelman, J. R. (2000). Non-active dunes in the region of Mars between the Viking and Mars Global Surveyor eras. Geophysical Research Letters 27, 1069-1072.

Mars Aeolian Sediments and Stratigraphy: Christensen, P. R. (1983). Eolian intracrater deposits on Mars: Physical properties and global distributions. Icarus 56, 496-518. Edgett, K. S. (2002). Low albedo surfaces and eolian sediment: Mars Orbiter Camera views of Western craters and wind streaks. Journal of Geophysical Research (Planets) 107, 10.1029/2001JE001587. Edgett, K., and Christensen, P. R. (1991). The particle size of Martian aeolian dunes. Journal of Geophysical Research (Planets) 96, 22,765-22,776. Edgett, K., and Christensen, P. R. (1994). Mars aeolian sand: Regional variations among dark-hued crater floor features. Journal of Geophysical Research (Planets) 99, 1997-2018. Fenton, L. K., and Mellon, M. T. (2006). Thermal properties of sand from Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS): Spatial variations within the Proctor Crater dune field on Mars. Journal of Geophysical Research (Planets) 111, E06014, doi:10.1029/2004JE002363. Fergason, R. L., Christensen, P. R., , J. F., et al. (2006). Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES derived thermal inertia. Journal of Geophysical Research (Planets) 111, doi:10.1029/2005JE002583. Goetz, W., Bertelsen, P., Binau, C. S., et al. (2005). Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust. Nature 436, 62-65.

4

International Association of Geomorphologists Working Group on Planetary Geomorphology

Greeley, R. (1979). Silt-clay aggregates on Mars. Journal of Geophysical Research (Planets) 84, 6248-6254. Greeley, R., Kuzmin, R. O., and Haberle, R. M. (2001). Aeolian processes and their effects on understanding the chronology of Mars. Chronology and Evolution of Mars. (R. Kallenbach, J. Geiss, and W. K. Hartmann, Eds.), pp. 393-404. Space Science Reviews / Vol. 96, Nos. 1-4 2001. Kluwer Academic Publishers, London. Greeley, R., and Williams, S. H. (1994). Dust deposits on Mars: The "Parna" analog. Icarus 110, 165-177. Grotzinger, J. P., Arvidson, R. E., Bell III, J. F., et al. (2005). Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, , Mars. Earth and Planetary Science Letters 240, 11-72. Herkenhoff, K. E., and Vasavada, A. R. (1999). Dark material in the polar layered deposits and dunes on Mars. Journal of Geophysical Research (Planets) 104, 16,487-16,500. Howard, A. D., Cutts, J. A., and Blasius, K. R. (1982). Stratigraphic relationships within Martian polar cap deposits. Icarus 50, 161-215. Langevin, Y., Poulet, F., Bibring, J.-P., and Gondet, B. (2005). Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science 307, 1584-1586. Rogers, D., and Christensen, P. R. (2003). Age relationshpe of basaltic and andesitic surface compositions on Mars: Analysis of high-resolution TES observations of the northern hemisphere. Journal of Geophysical Research (Planets) 108, 5030, doi:10.1029/2002JE001913. Ruff, S. W., Christensen, P. R., , R. N., et al. (2001). Mars' "White Rock" feature lacks evidence of an aqueous origin: Results from Mars Global Surveyor. Journal of Geophysical Research 106, 23,921-23,927. Schneider, R. D., and Hamilton, V. E. (2006). Evidence for locally derived, ultramafic intracrater materials in , Mars. Journal of Geophysical Research (Planets) 111, doi:10.1029/2005JE002611. Smith, H. T. U. (1972). Aeolian deposition in Martian craters. Nature 238, 72-74. Treiman, A. H. (2003). Geologic settings of Martian gullies: Implications for their origins. Journal of Geophysical Research 108, doi:10.1029/2002JE001900.

Landing site observations: Arvidson, R. E., , R. C., Bartlett, P., et al. (2004). Localization and Physical Properties Experiments Conducted by at Crater. Science 305, 821- 824. Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al. (2006). Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the . Journal of Geophysical Research E: Planets 111. Chavdarian, G. V., and Sumner, D. Y. (2006). Cracks and fins in sulfate sand: Evidence for recent mineral-atmospheric water cycling in Meridani Planum outcrops? Geology 34, 229-232. Greeley, R., Squyres, S. W., Arvidson, R. E., et al. (2004). Wind-Related Processes Detected by the Spirit Rover at Gusev Crater, Mars. Science 305, 810-813.

5

International Association of Geomorphologists Working Group on Planetary Geomorphology

Greeley, R., Christensen, P., Foley, D., et al. (2005). Martian variable features: New insight from the Mars express orbiter and the Mars Exploration Rover Spirit. Journal of Geophysical Research (Planets) 110, 1-7. Greeley, R., Arvidson, R. E., Barlett, P. W., et al. (2006). Gusev crater: Wind-related features and processes observed by the Mars Exploration Rover Spirit. Journal of Geophysical Research (Planets) 111. Herkenhoff, K. E., Squyres, S. W., Anderson, R., et al. (2006). Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater. Journal of Geophysical Research E: Planets 111. Jerolmack, D. J., Mohrig, D., Grotzinger, J. P., et al. (2006). Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces: Application to Meridiani Planum. Journal of Geophysical Research 111, doi:10.1029/2005JE002544. Richter, L., Grzesik, A., Krause, C., and MER Athena Science Team. (2006). Soil crusts observed and investigated at the MER landing sites. European Geosciences Union, abs. # 05489. Sullivan, R., Banfield, D., Bell, J. F., et al. (2005). Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site. Nature 436, 58-61. Squyres, S. W., and Knoll, A. H. (2005). Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for . Earth and Planetary Science Letters 240, 1-10.

Mars Dust and Dust Devils: Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al. (2006). Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. Journal of Geophysical Research E: Planets 111. Balme, M. R., Metzger, S. M., Towner, M. C., et al. (2003). Friction wind speeds in dust devils: a field study. Geophysical Research Letters 30, 10.1029/2003GL017493. Balme, M. R., Whelley, P. L., and Greeley, R. (2003). Mars: Dust devil track survey in and Hellas Basin. Journal of Geophysical Research (Planets) 108, 5086, doi:10.1029/2003JE002096. Cantor, B., Kanak, A., K. M. , and Edgett, K. S. (2006). Mars Orbiter Camera observations of martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. Journal of Geophysical Research (Planets) 111, doi:10.1029/2006JE002700. Christensen, P. R. (1988). Global albedo variations on Mars: Implications for active aeolian transport, deposition, and erosion. Journal of Geophysical Research (Planets) 93, 7611-7624. Drake, N. B., Tamppari, L. K., Baker, R. D., et al. (2006). and wind streaks in the North Polar Region of Mars: A study of the 2007 Phoenix Mars Lander Sites. Geophysical Research Letters 33, doi:10.1029/2006GL026270. Fisher, J. A., Richardson, M. I., Newman, C. E., et al. (2005). A survey of Martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images. Journal of Geophysical Research (Planets) 110, doi:10.1029/2003JE002165.

6

International Association of Geomorphologists Working Group on Planetary Geomorphology

Geissler, P. E. (2005). Three decades of changes. Journal of Geophysical Research (Planets) 110, 02001. Grant, J. A., and Schultz, P. H. (1987). Possible tornado-like tracks on Mars. Science 237, 883-885. Greeley, R. (2002). Saltation impact as a means for raising dust on Mars. Planetary and Space Science 50, 151-155. Greeley, R., Balme, M. R., Iversen, J. D., et al. (2003). Martian dust devils: Laboratory simulations of particle threshold. Journal of Geophysical Research (Planets) 108, 5041, doi:10.1029/2002JE001987. Greeley, R., Christensen, P., Foley, D., et al. (2005). Martian variable features: New insight from the Mars express orbiter and the Mars Exploration Rover Spirit. Journal of Geophysical Research (Planets) 110, 1-7. Greeley, R., Whelley, P. L., and Neakrase, L. D. V. (2004). Martian dust devils: Directions of movement inferred from their tracks. Geophysical Research Letters 31, 1-3. Krauss, C. E., Horanyi, M., and Robertson, S. (2003). Experimental evidence for electrostatic discharging of dust near the surface of Mars. New Journal of Physics 5, 70.1-70.9. Levoy, C. B. (2003). The devil is in the dust. Nature 424, 1008-1009. Murphy, J. R., and Nelli, S. (2002). Mars Pathfinder convective vortices: Frequency of occurrence. Geophysical Research Letters 29. Renno, N. O., Abreu, V. J., Koch, J., Smith, P. H., Hartogensis, O. K., De , Bruin, H. A. R., Burose, D., Delory, G. T., Farrell, W. M., Watts, C. J., , Garatuza, J., et al. (2004). MATADOR 2002: A pilot field experiment on convective plumes and dust devils. Journal of Geophysical Research (Planets) 109, E07001, doi:10.1029/2003JE002219. Renno, N. O., Burkett, M. L., and Larkin, M. P. (1998). A simple thermodynamical theory for dust devils. Journal of Atmospheric Science 55, 3244-3252. Ringrose, T. J., Towner, M. C., and Zarnecki, J. C. (2003). Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1-60. Icarus 163, 78-87. Szwast, M. A., Richardson, M. I., and Vasavada, A. R. (2006). Surface dust redistribution on Mars as observed by the Mars Global Surveyor and Viking orbiters. Journal of Geophysical Research (Planets) 111, doi:10.1029/2005JE002485.

Wind Streaks: Arvidson, R. E. (1974). Wind-blown streaks, splotches, and associated craters on Mars: Statistical analysis of 9 photographs. Icarus 21, 12-27. Greeley, R., Iversen, J. D., , J. B., et al. (1974). Wind tunnel simulations of light and dark streaks on Mars. Science 183, 847-849. Lee, S. W., Thomas, P. C., and Veverka, J. (1982). Wind streaks in Tharsis and Elysium: Implications for sediment transport by slope winds. Journal of Geophysical Research (Planets) 87, 10,025-10,041. Thomas, P. (1981). North- asymmetry of eolian features in Martian polar regions: Analysis based on crater-related wind markers. Icarus 48, 76-90.

7

International Association of Geomorphologists Working Group on Planetary Geomorphology

Thomas, P. C. (1984). Martian intracrater splotches: Occurrence, morphology, and colors. Icarus 57, 205-227. Thomas, P. C., and Veverka, J. (1986). Red/violet contrast reversal on Mars: significance for eolian sediments. Icarus 66, 39-55. Thomas, P. C., Gierasch, P., Sullivan, R., et al. (2003). Mesoscale linear streaks on Mars: environments of dust entrainment. Icarus 162, 242-258. Veverka, J., Cook, K., and Goguen, J. (1978). A statistical study of crater-associated wind streaks in the North Equatorial Zone of Mars. Icarus 33, 466-482. Veverka, J., Thomas, P., and Greeley, R. (1977). A study of variable features on Mars during the Viking primary mission. Journal of Geophysical Research (Planets) 82, 4167-4187. Zimbelman, J. R. (1986). Surface properties of the wind streak on Mars: Implications for sediment transport. Icarus 66, 83-93. Zimbelman, J., and Williams, S. (1996). Wind Streaks: geological and botanical effects on surface albedo contrast. Geomorphology 17, 167-185.

Ventifacts: Binder, A. B., Arvidson, R. E., Guinness, E. A., et al. (1977). The geology of the Viking Lander 1 site. Journal of Geophysical Research 82, 4439-4451. Bridges, N. T., Greeley, R., Haldemann, A. F. C., et al. (1999). Ventifacts at the Pathfinder landing site. Journal of Geophysical Research 104, 8595-8615. Bridges, N. T., Laity, J. E., Greeley, R., et al. (2004). Insights on rock abrasion and ventifact formation from laboratory and field analog studies with applications to Mars. Planetary and Space Science 52, 199-213. Bridges, N. T., Phoreman, J., White, B. R., et al. (2005). Trajectories and Energy Transfer of Saltating Particles onto Rock Surfaces: Application to Abrasion and Ventifact Formation on Earth and Mars. Journal of Geophysical Research 110, 1- 24. Golombek, M. P., and Bridges, N. T. (2000). Erosion rates on Mars and implications for climate change: Constraints from the Pathfinder landing site. Journal of Geophysical Research 105, 1841-1853. Greeley, R., Arvidson, R. E., Barlett, P. W., et al. (2006). Gusev crater: Wind-related features and processes observed by the Mars Exploration Rover Spirit. Journal of Geophysical Research (Planets) 111. Greeley, R., Kraft, M., Sullivan, R., et al. (1999). Aeolian features and processes at the Mars Pathfinder landing site. Journal of Geophysical Research (Planets) 104, 8573-8584. Greeley, R., Kuzmin, R. O., Rafkin, S. C. R., et al. (2003). Wind-related features in Gusev crater, Mars. Journal of Geophysical Research (Planets) 108, 8077 10.1029/2002JE002006. Greeley, R., Leach, R. N., Williams, S. H., et al. (1982). Rate of wind abrasion on Mars. Journal of Geophysical Research (Planets) 87, 10,009-10,024. Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al. (2004). Textures of the Soils and Rocks at Gusev Crater from Spirit's Microscopic Imager. Science 305, 824-826.

8

International Association of Geomorphologists Working Group on Planetary Geomorphology

Rodriguez-Navarro, C., Doehne, E., and Sebastian, E. (1999). Origins of honeycomb weathering: The role of salts and wind. Geological Society of America Bulletin 111, 1250-1255. Viking Lander Team (1978) The Martian Landscape, NASA Spec. Publ., SP-425, p. 160

Laboratory experiments and modeling Anderson, R. S. (1986). Erosion profiles due to particles entrained by wind: Application of an eolian sediment-transport model. Geological Society of America Bulletin 97, 1270-1278. Anderson, R. S., and Hallet, B. (1986). Sediment transport by wind: Toward a general model. Geological Society of America Bulletin 97. Chepil, W. S. (1958). The use of evenly spaced hemispheres to evaluate aerodynamic forces on a soil surface. Trans., Amer. Geophys. Union. p. 397-403. Krinsley, D., Greeley, R., and Pollack, J. B. (1979). Abrasion of windblown particles on Mars--Erosion of quartz and basaltic sand under simulated Martian conditions. Icarus 39, 364-384. Liu, L., Gao, S., Shi, P., et al. (2003). Wind tunnel measurements of adobe abrasion by blown sand: Profile characteristics in relation to wind velocity and sand flux. Journal of Arid Environments 53, 351-363. Routbort, J. L., Scattergood, R. O., and Kay, E. W. (1980). Erosion of silicon single crystals. J. Amer. Ceramic Soc 63, 635-640. Scattergood, R. O., and Routbort, J. L. (1983). Velocity exponent in solid-particle erosion. J. Amer. Ceramic Soc 66, C184-186. Schoewe, W. H. (1932). Experiments on the formation of wind-faceted pebbles. American Journal of Science 24, 111-134. Suzuki, T., and Takahashi, K. (1981). An experimental study of wind abrasion. Journal of Geology 89, 23-36.

Earth analogues Bryan, K. (1931). Wind-worn stones or ventifacts - A discussion and bibliography, pp. 29-50. National Research Council Circular. Greeley, R., Bridges, N. T., Kuzmin, R. O., and Laity, J. E. (2002). Terrestrial analogs to wind-related features at the Viking and Pathfinder landing sites on Mars. Journal of Geophysical Research (Planets) 107. Knight, J., and Burningham, H. (2003). Recent ventifact development on the central Oregon coast, western USA. Earth Surface Processes and Landforms 28, 87-98. Knight, J. (2005). Controls on the formation of coastal ventifacts. Geomorphology 64, 243-253. Laity, J. E. (1987). Topographic effects on ventifact development, Desert, California. Physical Geography 8, 113-132. Laity, J. E. (1992). Ventifact evidence for Holocene wind patterns in the east-central Mojave Desert. Zeitschrift fur Geomorphologie 84, 1-16.

9

International Association of Geomorphologists Working Group on Planetary Geomorphology

Laity, J. E. (1994). Landforms of aeolian erosion. In Geomorphology of Desert Environments. (A. D. Abrahams, and A. J. Parsons, Eds.), pp. 506-535. Chapman and Hall, London. Laity, J. (1995). Wind abrasion and ventifact formation in California. In "Desert Aeolian Processes." (V. Tchakerian, Ed.), pp. 295-321. Chapman & Hall, London. Malin, M. C. (1984). Abrasion rate observations in Valley, Antarctica: 340-day experiment. Antarctic Journal of the United States 19, 14-16. McCauley, J. F., Breed, C. S., El-Baz, F., et al. (1979). Pitted and fluted rocks in the Western Desert of Egypt: Viking comparison. Journal of Geophysical Research (Planets) 84, 8222-8232. McCauley, J. F., Breed, C. S., Grolier, M. J., and El-Baz, F. (1980). Pitted Rocks and Other Ventifacts in the Western Desert. The Geographical Journal 146, 84-85. Needham, C. E. (1937). Ventifacts from New Mexico. Journal of Sedimentary Petrology 7, 31-33. Schlyter, P. (1994). Paleo-periglacial ventifact formation by suspended silt or snow - site studies in south Sweden. Geografiska Annaler, Series A 76 A, 187-201. Sharp, R. P. (1949). Pleistocene ventifacts east of the Big Horn Mountains, Wyoming. Journal of Geology 57, 175-195. Sharp, R. P. (1964). Wind-driven sand in Caochella Valley, California,. Geological Society of America Bulletin 75, 785-804. Sharp, R. P. (1980). Wind Driven Sand in Coachella Valley, California: Further Data. Bull. Geol. Soc. Am 91, 724-730. Shepherd, M. (2003). Wave-faceted pebbles, Sovi Bay beach, Viti Levu, Fiji. Zeitschrift fur Geomorphologie 47, 439-448. Woodworth, J. B. (1894). Post-glacial aeolian action in southern New England. American Journal of Science 47, 63-71.

Yardangs: Ward, A. W. (1979). Yardangs on Mars: Evidence of recent wind erosion. Journal of Geophysical Research 84, 8147-8166.

Sediment Transport: Greeley, R., Iversen, J. D., Pollack, J. B., et al. (1974). Wind tunnel studies of Martian aeolian processes. Proceedings of the Royal Society, London 341, 331-360. Greeley, R., Leach, R., White, B. R., et al. (1980). Threshold windspeeds for sand on Mars: wind tunnel simulations. Geophysical Research Letters 7, 121-124. Iversen, J. D., Greeley, R., and Pollack, J. B. (1976). Windblown dust on Earth, Mars, and Venus. Journal of Atmospheric Science 33, 2425-2429. White, B. R. (1979). Soil transport by winds on Mars. Journal of Geophysical Research (Planets) 84, 4643-4651.

10

International Association of Geomorphologists Working Group on Planetary Geomorphology

Mars Winds and General Circulation Models: Anderson, F. S., Greeley, R., Xu, P., et al. (1999). Assessing the Martian surface distribution of aeolian sand using a Mars general circulation model. Journal of Geophysical Research (Planets) 104, 18,991-19,002. , J. C., and Leovy, C. B. (2005). Long term wind erosion on Mars. Icarus 176, 57-74. Basu, S., Richardson, M. I., and Wilson, R. J. (2004). Simulation of the Martian dust cycle with the GFDL Mars GCM. Journal of Geophysical Research (Planets) 109, doi:10.1029/2004JE002243. Fenton, L. K., and Richardson, M. I. (2001). Martian surface winds: Insensitivity to orbital changes and implications for aeolian processes. Journal of Geophysical Research (Planets) 106, 32,885-32,902. Fenton, L. K., Toigo, A. D., and Richardson, M. I. (2005). Aeolian processes in Proctor Crater on Mars: Mesoscale modeling of dune-forming winds. Journal of Geophysical Research (Planets) 110, 1-18. Forget, F., Hourdin, F., and Talagrand, O. (1998). CO2Snowfall on Mars: Simulation with a General Circulation Model. Icarus 131, 302-316. French, R. G., and Gierasch, P. J. (1979). The Martian polar vortex: Theory of seasonal variation and observations of eolian features. Journal of Geophysical Research 84, 4634-4642. Greeley, R., and Thompson, S. D. (2003). Mars: Aeolian features and wind predictions at the Terra Meridiani and potential Mars Exploration Rover landing sites. Journal of Geophysical Research (Planets) 108, 8093, doi:10.1029/2003JE002110. Haberle, R. M., Leovy, C. B., and Pollack, J. B. (1979). A numerical model of the Martian polar cap winds. Icarus 39, 151-183. Kahre, M. A., Murphy, J. R., Chanover, N. J., et al. (2005). Observing the martian surface albedo pattern: Comparing the AEOS and TES data sets. Icarus 179, 55- 62. Kuzmin, R. O., Greeley, R., and Rafkin, S. C. R. (2001). Wind-related modification of some small impact craters on Mars. 153, 61-70. Lorenz, R. D. (1996). Martian surface wind speeds described by the Weibull Distribution. J. Spacecraft 33, 754-756. McCauley, J. F. (1973). Mariner 9 evidence for wind erosion in the equatorial and mid- latitude regions of Mars. Journal of Geophysical Research (Planets) 78, 4123- 4137. Newman, C. E., Lewis, S. R., and Read, P. L. (2005). The atmospheric circulation and dust activity in different orbital epochs on Mars. Icarus 174, 135-160. Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F. (2002). Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. Journal of Geophysical Research 107, 5124. Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F. (2002). Modeling the Martian dust cycle, 1. Representations of dust transport processes. Journal of Geophysical Research 107, 5123?

11

International Association of Geomorphologists Working Group on Planetary Geomorphology

Rafkin, S. C. R., Sta. Maria, M. R. V., and T. I. Michaels. (2002). Simulation of the atmospheric thermal circulation of a Martian volcano using a mesoscale numerical model. Nature 419, 697-699 Sagan, C., Pieri, D., Fox, P., et al. (1977). Particle motion on Mars inferred from the Viking lander cameras. Journal of Geophysical Research (Planets) 82, 4430-4438. Thomas, P. C. (1982). Present wind activity on Mars:Relation to large latitudinally zoned sediment deposits. Journal of Geophysical Research 87, 999-10,008. Thomas, P. C., and Gierasch, P. J. (1995). Polar margin dunes and winds on Mars. Journal of Geophysical Research 100, 5397-5406. Tsoar, H., Greeley, R., and Peterfreund, A. R. (1979). Mars:The north polar sand sea and related wind patterns. Journal of Geophysical Research 84, 8167-8180. Ward, A. W., and Doyle, K. B. (1983). Speculation on Martian north polar wind circulation and resultant orientations of polar sand dunes. Icarus 55, 420-431 Thomas, P. C. (1982). Present wind activity on Mars: Relation to large latitudinally zoned sediment deposits. Journal of Geophysical Research 87, 999-10,008.

For Earth and planetary references see also:

Bibliography of Aeolian Research 1646-2007 by Thomas E. , Andrew Warren , John E. Stout

12