Directed Therapy to Combat Mycobacterial Infections*

Total Page:16

File Type:pdf, Size:1020Kb

Directed Therapy to Combat Mycobacterial Infections* Received: 18 December 2020 | Accepted: 27 December 2020 DOI: 10.1111/imr.12951 INVITED REVIEW Host- directed therapy to combat mycobacterial infections* Gül Kilinç | Anno Saris | Tom H. M. Ottenhoff | Mariëlle C. Haks Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Abstract Netherlands Upon infection, mycobacteria, such as Mycobacterium tuberculosis (Mtb) and nontu- Correspondence berculous mycobacteria (NTM), are recognized by host innate immune cells, triggering Mariëlle C. Haks, Department of a series of intracellular processes that promote mycobacterial killing. Mycobacteria, Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, ZA Leiden however, have developed multiple counter- strategies to persist and survive inside host 2333, The Netherlands. cells. By manipulating host effector mechanisms, including phagosome maturation, email: [email protected] vacuolar escape, autophagy, antigen presentation, and metabolic pathways, patho- Funding information genic mycobacteria are able to establish long- lasting infection. Counteracting these Netherlands Organisation for Scientific Research (NWO- TTW), Grant/Award mycobacteria- induced host modifying mechanisms can be accomplished by host- Number: 16444; European Union (Horizon directed therapeutic (HDT) strategies. HDTs offer several major advantages compared 2020 programme), Grant/Award Number: 847762; IMI2 JU (AMR Accelerator to conventional antibiotics: (a) HDTs can be effective against both drug- resistant and program), Grant/Award Number: 853932 drug- susceptible bacteria, as well as potentially dormant mycobacteria; (b) HDTs are and 853903 less likely to induce bacterial drug resistance; and (c) HDTs could synergize with, or shorten antibiotic treatment by targeting different pathways. In this review, we will explore host- pathogen interactions that have been identified for Mtb for which poten- tial HDTs impacting both innate and adaptive immunity are available, and outline those worthy of future research. We will also discuss possibilities to target NTM infection by HDT, although current knowledge regarding host- pathogen interactions for NTM is limited compared to Mtb. Finally, we speculate that combinatorial HDT strategies can potentially synergize to achieve optimal mycobacterial host immune control. KEYWORDS drug resistance, host- directed therapy, Mycobacterium avium, Mycobacterium tuberculosis, nontuberculous mycobacteria 1 | INTRODUCTION of deaths globally.1 Approximately a quarter of the world's popula- tion is infected with Mtb and in most cases, progression toward TB Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), re- disease is prevented by an efficient host immune response, often mains a major health problem. With an estimated 10 million disease resulting in a latent TB infection (LTBI).1 Five to fifteen percent of cases and 1.4 million deaths in 2019, Mtb is the deadliest infec- LTBI individuals will develop TB disease during their life- time, often tious agent worldwide and TB is one of the top- 10 leading causes concomitant with host immunocompromising conditions, including This article is part of a series of reviews covering Immunity to Mycobacteria appearing in HIV infection and use of immunosuppressive medication. Treatment Volume 301 of Immunological Reviews. of patients with active TB has largely remained unchanged for over Kilinç, Saris, Ottenhoff, and Haks authors are Contributed equally. 30 years,1 and due to its lengthiness (6- 24 months) and considerable This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2021 The Authors. Immunological Reviews published by John Wiley & Sons Ltd. Immunological Reviews. 2021;00:1–22. wileyonlinelibrary.com/journal/imr | 1 2 | KILINÇ et aL side effects, treatment- adherence is low fueling development of regimens, thereby increasing compliance. Fifth, HDT may permit multi- drug and extensive- drug resistance (MDR and XDR). The large dose lowering of standard antibiotics, thus reducing toxicity with- TB disease burden and the increasing incidence of drug resistance out impacting efficacy. Finally, as HDT and mycobacterium- targeting make alternative treatment solutions imperative. compounds (ie, antibiotics) by definition act on different pathways, While the number of TB cases is slowly declining, a trend that combinatorial regimens would be expected to synergize. In this re- may well be broken as a result of the COVID- 19 pandemic,2 the prev- view, we will provide a comprehensive overview of host- pathogen alence of infections known to be caused by nontuberculous myco- interactions that have been identified in Mtb infections and that are bacteria (NTM) is increasing at an alarming rate, currently reaching amenable to targeting by HDTs (summarized in Figure 1 and Table 1). 0.2- 9.8 per 100.000 individuals.3 NTM represent a group of op- Furthermore, despite a limited number of reports, we will also dis- portunistic mycobacterial pathogens that mostly cause pulmonary cuss NTM- mediated host modulation and speculate whether HDTs diseases (PD), predominantly in vulnerable populations due to immu- could also be of interest to combat these mycobacterial infections. nodeficiencies and/or pre- existing lung conditions. Mycobacterium Finally, we will discuss the possibility of combinatorial HDTs that tar- avium (Mav) complex (MAC) and Mycobacterium abscessus (Mab) ac- get distinct host signaling pathways to promote possible synergistic count for the large majority of reported cases.3 Despite extended treatment effects. treatment regimens, clinical outcome is poor, with cure rates of approximately 50%- 88% among MAC- PD patients and 25%- 58% among Mab- infected individuals,3 urging the development of novel 2 | HDT MODULATING INNATE IMMUNE treatment modalities. CELL FUNCTION Mycobacteria are well known for their capability to manipulate intracellular signaling pathways to escape from host- defense mech- 2.1 | Phagocytosis and phagosome maturation anisms in human cells. Mtb is best studied in this regard, but NTM have also been shown to modulate host immune responses, includ- The first potential target for HDT to interfere with host- pathogen in- ing preventing phagosome acidification and maturation or escap- teractions is to modulate mycobacterial host- cell entry. Mycobacteria ing from phagosomes into the nutrient- rich cytosol. Counteracting infect host cells, predominantly alveolar macrophages and epithe- pathogen- induced immune modulation by host- directed therapy lial cells, in the lower respiratory tract, following inhalation of small (HDT) is a promising adjunct therapy to antibiotic therapy to combat bacteria- containing aerosols. Mycobacteria express pathogen- intracellular mycobacterial infections, with several major advantages associated molecular patterns (PAMPs) that are recognized by pat- over current antibiotics. First, HDT can also be effective against tern recognition receptors (PRRs), such as Toll- like receptors (TLRs), MDR/XDR mycobacteria that are insensitive to current standard C- type lectin receptors, and other scavenger receptors expressed on antibiotics. Second, because there is no direct selection pressure on the surface of host cells to initiate phagocytosis.4 especially TLR2, mycobacteria, host- targeting compounds are less likely to result in which forms heterodimers with TLR1 and TLR6 to recognize lipo- drug resistance. Third, host- targeting compounds have the potential proteins or lipopeptides (eg, lipomannan), and TLR4, which recog- to target metabolically inactive, non- replicating bacilli during LTBI, nizes cell wall lipids, glycoproteins, and secreted proteins, are known which are tolerant or resistant to conventional therapies. Fourth, to mediate Mtb- induced cellular activation.5 Mice lacking TLR2 are HDT may allow shortening of current lengthy TB/NTM- treatment more susceptible to infections with virulent Mtb and Mav strains.6- 8 FIGURE 1 Host- pathogen interactions and potential host- directed therapies (HDT). Granulomas are characteristic for tuberculosis and mycobacterial infections in general. Pathologic granulomas are poorly vascularized due to ineffective angiogenesis, leading to hypoxia and concomitant host- cell necrosis and bacterial dissemination. Blocking angiogenesis, preventing host- cell necrosis (or stimulating apoptosis) or inhibiting extracellular matrix (eCM) degradation improves granuloma structure and concomitant disease outcome. Macrophages, key cells in the anti- mycobacterial response, initiate phagocytosis after toll- like receptor (TLR) recognition, which is prevented and/or modulated by mycobacteria. Promoting TLR4 engagement, TLR2 signaling and post- phagocytic signaling via receptor tyrosine kinase are all potential targets for HDT to improve host immunity during mycobacterial infection. After internalization, mycobacteria are located to phagosomes that slowly mature and ultimately fuse with lysosomes, which are all inhibited by mycobacteria. Alternatively, mycobacteria escape to the cytosol where they can be recognized by cytoplasmic pathogen recognition receptor (PRR) and “recaptured” using autophagy, which again is inhibited by mycobacteria. HDTs that (1) prevent phagosomal escape, (2) alleviate blockage of (auto- )phagosome maturation, (3) promote autophagy
Recommended publications
  • Interleukin-10 Family and Tuberculosis: an Old Story Renewed Abualgasim Elgaili Abdalla1, 2, Nzungize Lambert1, Xiangke Duan1, Jianping Xie1
    Int. J. Biol. Sci. 2016, Vol. 12 710 Ivyspring International Publisher International Journal of Biological Sciences 2016; 12(6): 710-717. doi: 10.7150/ijbs.13881 Review Interleukin-10 Family and Tuberculosis: An Old Story Renewed Abualgasim Elgaili Abdalla1, 2, Nzungize Lambert1, Xiangke Duan1, Jianping Xie1 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China. 2. Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Khartoum, Sudan. Corresponding author: Jianping Xie E-mail: [email protected] Tel&Fax: 862368367108. © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. Received: 2015.09.17; Accepted: 2016.01.15; Published: 2016.04.27 Abstract The interleukin-10 (IL-10) family of cytokines consists of six immune mediators, namely IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26. IL-10, IL-22, IL-24 and IL-26 are critical for the regulation of host defense against Mycobacterium tuberculosis infections. Specifically, IL-10 and IL-26 can suppress the antimycobacterial immunity and promote the survival of pathogen, while IL-22 and IL-24 can generate protective responses and inhibit the intracellular growth of pathogen. Knowledge about the new players in tuberculosis immunology, namely IL-10 family, can inform novel immunity-based countermeasures and host directed therapies against tuberculosis.
    [Show full text]
  • Expression of Interleukin-24 and Its Receptor in Human Pancreatic Myofibroblasts
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 28: 993-999, 2011 Expression of interleukin-24 and its receptor in human pancreatic myofibroblasts HIROTSUGU IMAEDA1, ATSUSHI NISHIDA1, OSAMU INATOMI1, YOSHIHIDE FUJIYAMA1 and AKIRA ANDOH2 1Department of Medicine and 2Division of Mucosal Immunology, Graduate School of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Japan Received July 12, 2011; Accepted August 30, 2011 DOI: 10.3892/ijmm.2011.793 Abstract. Interleukin (IL)-24 is a member of the IL-10 family broblasts play a pivotal role in the progression of pancreatic of cytokines. In this study, we investigated IL-24 expression fibrosis (1-6). Pancreatic myofibroblasts actively proliferate, in chronic pancreatitis tissue and characterized the molecular migrate and produce large amounts of extracellular matrix mechanisms responsible for IL-24 expression in human (ECM) components such as type I collagen and fibronectin. pancreatic myofibroblasts. IL-24 expression in the tissues was In addition, these cells possess proinflammatory functions evaluated by immunohistochemical methods. IL-24 mRNA characterized by the expression of cytokines, chemokines and and protein expression in the pancreatic myofibroblasts was cell adhesion molecules (1-6). determined by real-time-PCR and ELISA, respectively. IL-24 Interleukin (IL)-24, a member of the IL-10 family of was expressed by α-smooth muscle actin-positive myofibro- cytokines (together with IL-10, -19, -20, -22, -26, -28 and -29), blasts in the chronic pancreatitis tissues. In isolated human was originally termed melanoma differentiation-associated pancreatic myofibroblasts, IL-1β significantly enhanced IL-24 protein 7 (MDA-7) (7), and was renamed IL-24 (8). The mRNA and protein expression.
    [Show full text]
  • Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
    UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: [email protected]; [email protected] Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type.
    [Show full text]
  • Table SII. Significantly Differentially Expressed Mrnas of GSE23558 Data Series with the Criteria of Adjusted P<0.05 And
    Table SII. Significantly differentially expressed mRNAs of GSE23558 data series with the criteria of adjusted P<0.05 and logFC>1.5. Probe ID Adjusted P-value logFC Gene symbol Gene title A_23_P157793 1.52x10-5 6.91 CA9 carbonic anhydrase 9 A_23_P161698 1.14x10-4 5.86 MMP3 matrix metallopeptidase 3 A_23_P25150 1.49x10-9 5.67 HOXC9 homeobox C9 A_23_P13094 3.26x10-4 5.56 MMP10 matrix metallopeptidase 10 A_23_P48570 2.36x10-5 5.48 DHRS2 dehydrogenase A_23_P125278 3.03x10-3 5.40 CXCL11 C-X-C motif chemokine ligand 11 A_23_P321501 1.63x10-5 5.38 DHRS2 dehydrogenase A_23_P431388 2.27x10-6 5.33 SPOCD1 SPOC domain containing 1 A_24_P20607 5.13x10-4 5.32 CXCL11 C-X-C motif chemokine ligand 11 A_24_P11061 3.70x10-3 5.30 CSAG1 chondrosarcoma associated gene 1 A_23_P87700 1.03x10-4 5.25 MFAP5 microfibrillar associated protein 5 A_23_P150979 1.81x10-2 5.25 MUCL1 mucin like 1 A_23_P1691 2.71x10-8 5.12 MMP1 matrix metallopeptidase 1 A_23_P350005 2.53x10-4 5.12 TRIML2 tripartite motif family like 2 A_24_P303091 1.23x10-3 4.99 CXCL10 C-X-C motif chemokine ligand 10 A_24_P923612 1.60x10-5 4.95 PTHLH parathyroid hormone like hormone A_23_P7313 6.03x10-5 4.94 SPP1 secreted phosphoprotein 1 A_23_P122924 2.45x10-8 4.93 INHBA inhibin A subunit A_32_P155460 6.56x10-3 4.91 PICSAR P38 inhibited cutaneous squamous cell carcinoma associated lincRNA A_24_P686965 8.75x10-7 4.82 SH2D5 SH2 domain containing 5 A_23_P105475 7.74x10-3 4.70 SLCO1B3 solute carrier organic anion transporter family member 1B3 A_24_P85099 4.82x10-5 4.67 HMGA2 high mobility group AT-hook 2 A_24_P101651
    [Show full text]
  • Autocrine Regulation of Mda-7/IL-24 Mediates Cancer-Specific Apoptosis
    Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis Moira Sauane*, Zao-zhong Su*†‡, Pankaj Gupta*, Irina V. Lebedeva*, Paul Dent‡§¶, Devanand Sarkar*†‡¶ʈ, and Paul B. Fisher*†‡¶ʈ**†† Departments of *Urology, ʈPathology, and **Neurosurgery, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and Departments of †Human and Molecular Genetics and §Biochemistry and Molecular Biology, ¶Virginia Commonwealth Universtiy Institute of Molecular Medicine, ‡Massey Cancer Center, School of Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298 Communicated by George J. Todaro, Targeted Growth, Inc., Seattle, WA, April 29, 2008 (received for review January 19, 2008) A noteworthy aspect of melanoma differentiation-associated immunostimulatory, radiosensitizing and ‘‘bystander’’ antitumor gene-7/interleukin-24 (mda-7/IL-24) as a cancer therapeutic is its activities (6, 11, 17, 18). ability to selectively kill cancer cells without harming normal mda-7/IL-24 expression is detected in human tissues and cells cells. Intracellular MDA-7/IL-24 protein, generated from an ad- associated with the immune system such as spleen, thymus, periph- enovirus expressing mda-7/IL-24 (Ad.mda-7), induces cancer- eral blood leukocytes, and normal melanocytes (19). Secreted specific apoptosis by inducing an endoplasmic reticulum (ER) MDA-7/IL-24 stimulates monocytes and specific populations of T stress response. Secreted MDA-7/IL-24 protein, generated from lymphocytes and promotes proinflammatory cytokine production. cells infected with Ad.mda-7, induces growth inhibition and When expressed at low, presumably physiological levels, MDA-7/ apoptosis in surrounding noninfected cancer cells but not in IL-24 binds to currently recognized MDA-7/IL-24 receptor com- normal cells, thus exerting an anti-tumor ‘‘bystander’’ effect.
    [Show full text]
  • Interleukin-24 (Il-24) Is Suppressed by Pax3-Foxo1 and Is a Novel
    Author Manuscript Published OnlineFirst on September 6, 2018; DOI: 10.1158/1535-7163.MCT-18-0118 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 INTERLEUKIN-24 (IL-24) IS SUPPRESSED BY PAX3-FOXO1 AND IS A NOVEL THERAPY FOR RHABDOMYOSARCOMA Alexandra Lacey1, Erik Hedrick1, Yating Cheng1, Kumaravel Mohankumar1, Melanie Warren2, and Stephen Safe1 1 Department of Veterinary Physiology and Pharmacology Texas A&M University College Station, TX 77843 2 Department of Molecular and Cellular Medicine Texas A&M Health Science Center College Station, TX 77843 Running Title: PAX3-FOXO1 regulates IL-24 in ARMS cells Keywords: ARMS, PAX3-FOXO1, IL-24, tumor inhibition Funding: Funding was provided by the National Institutes of Health (P30-ES023512), the Sid Kyle Endowment, and Texas AgriLife Research. To whom correspondence should be addressed: Stephen Safe Department of Veterinary Physiology and Pharmacology Texas A&M University 4466 TAMU College Station, TX 77843-4466 Tel: 979-845-5988 / Fax: 979-862-4929 Email: [email protected] Conflict of Interest: There are no conflicts of interest to declare. Word Count: 4535 words Figures: 7 figures Table: 0 tables Downloaded from mct.aacrjournals.org on September 29, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 6, 2018; DOI: 10.1158/1535-7163.MCT-18-0118 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 2 ABSTRACT Alveolar Rhabdomyosarcoma (ARMS) patients have a poor prognosis and this is primarily due to overexpression of the oncogenic fusion protein PAX3-FOXO1.
    [Show full text]
  • Human Cytokine Response Profiles
    Comprehensive Understanding of the Human Cytokine Response Profiles A. Background The current project aims to collect datasets profiling gene expression patterns of human cytokine treatment response from the NCBI GEO and EBI ArrayExpress databases. The Framework for Data Curation already hosted a list of candidate datasets. You will read the study design and sample annotations to select the relevant datasets and label the sample conditions to enable automatic analysis. If you want to build a new data collection project for your topic of interest instead of working on our existing cytokine project, please read section D. We will explain the cytokine project’s configurations to give you an example on creating your curation task. A.1. Cytokine Cytokines are a broad category of small proteins mediating cell signaling. Many cell types can release cytokines and receive cytokines from other producers through receptors on the cell surface. Despite some overlap in the literature terminology, we exclude chemokines, hormones, or growth factors, which are also essential cell signaling molecules. Meanwhile, we count two cytokines in the same family as the same if they share the same receptors. In this project, we will focus on the following families and use the member symbols as standard names (Table 1). Family Members (use these symbols as standard cytokine names) Colony-stimulating factor GCSF, GMCSF, MCSF Interferon IFNA, IFNB, IFNG Interleukin IL1, IL1RA, IL2, IL3, IL4, IL5, IL6, IL7, IL9, IL10, IL11, IL12, IL13, IL15, IL16, IL17, IL18, IL19, IL20, IL21, IL22, IL23, IL24, IL25, IL26, IL27, IL28, IL29, IL30, IL31, IL32, IL33, IL34, IL35, IL36, IL36RA, IL37, TSLP, LIF, OSM Tumor necrosis factor TNFA, LTA, LTB, CD40L, FASL, CD27L, CD30L, 41BBL, TRAIL, OPGL, APRIL, LIGHT, TWEAK, BAFF Unassigned TGFB, MIF Table 1.
    [Show full text]
  • RT² Profiler PCR Array (384-Well Format) Human Inflammatory Response & Autoimmunity
    RT² Profiler PCR Array (384-Well Format) Human Inflammatory Response & Autoimmunity Cat. no. 330231 PAHS-3803ZE For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 7900HT (384-well block), Format E ViiA™ 7 (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (384-well block) Format G Description The Human Inflammatory Response & Autoimmunity RT² Profiler PCR Array profiles the expression of 370 key genes involved in immune response during autoimmunity and inflammation. It represents the expression of inflammatory cytokines, chemokines, and their receptors. It also contains genes related to the production and metabolism of cytokines. Genes involved in cytokine-cytokine receptor interactions are as well as thoroughly researched panels of genes involved in the acute-phase, inflammatory, and humoral immune responses. Using real-time PCR, you can easily and reliably analyze the expression of a focused panel of genes related to autoimmunity and inflammation with this array. For further details, consult the RT² Profiler PCR Array Handbook. Sample & Assay Technologies Shipping and storage RT² Profiler PCR Arrays in formats E and G are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products. For long term storage, keep plates at –20°C. Note: Ensure that you have the correct RT² Profiler PCR Array format for your real-time cycler (see table above). Note: Open the package and store
    [Show full text]
  • Rh IL-24 / IL-10B)
    data sheet Recombinant Human Interleukin-24 (rh IL-24 / IL-10B) Synonyms: Suppression of Tumorigenicity 16 protein (ST16), Melanoma Differentiation-Associated gene 7 protein (MDA-7), C49A, FISP, Mob-5. Introduction: IL-24 is a member of the IL-10 family of cytokines. It was identified as a gene induced during terminal differentiation in melanoma cells. IL-24 encoded can induce apoptosis selectively in various cancer cells. Overexpression IL-24 leads to elevated expression of several GADD family genes which correlates with the induction of apoptosis. The phosphorylation of mitogen-activated protein kinase 14 (MAPK7/P38) and heat shock 27 kDa protein 1 (HSB2/HSP27) are found to be induced by this gene in melanoma cells, but not in normal immortal melanocytes. Alternatively spliced transcript variants encoding distinct isoforms have been reported. The glycosylation is essential for activity of IL-24. IL-24 has diverse functional activities. At low concentrations it induces type I proflammatory cytokines such as IFN-γ, IL-1β, IL-12 and TNF-α. At high concentration it is a strong inducer of apoptosis in tumor cells, but not normal cells. IL-24 is being hailed as a “magic bullet” for cancer gene therapy. Description: Recombinant human IL-24 produced in yeast is a single, glycosylated, polypeptide chain containing 158 amino acids and having a molecular mass of 18 kDa. As a result of glycosilation, the protein migrates at 19.5 kDa on SDS-Page. Source: Sacharomyces cerevisiae Physical Appearance: Sterile filtered white lyophilized (freeze-dried) powder. Formulation: Lyophilized from a 0.2µm filtered solution in PBS with BSA.
    [Show full text]
  • Uniprot Nr. Proseek Panel 2,4-Dienoyl-Coa Reductase, Mitochondrial
    Protein Name (Short Name) Uniprot Nr. Proseek Panel 2,4-dienoyl-CoA reductase, mitochondrial (DECR1) Q16698 CVD II 5'-nucleotidase (5'-NT) P21589 ONC II A disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAM-TS13) Q76LX8 CVD II A disintegrin and metalloproteinase with thrombospondin motifs 15 (ADAM-TS 15) Q8TE58 ONC II Adenosine Deaminase (ADA) P00813 INF I ADM (ADM) P35318 CVD II ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 (CD38) P28907 NEU I Agouti-related protein (AGRP) O00253 CVD II Alpha-2-macroglobulin receptor-associated protein (Alpha-2-MRAP) P30533 NEU I Alpha-L-iduronidase (IDUA) P35475 CVD II Alpha-taxilin (TXLNA) P40222 ONC II Aminopeptidase N (AP-N) P15144 CVD III Amphiregulin (AR) P15514 ONC II Angiopoietin-1 (ANG-1) Q15389 CVD II Angiopoietin-1 receptor (TIE2) Q02763 CVD II Angiotensin-converting enzyme 2 (ACE2) Q9BYF1 CVD II Annexin A1 (ANXA1) P04083 ONC II Artemin (ARTN) Q5T4W7 INF I Axin-1 (AXIN1) O15169 INF I Azurocidin (AZU1 P20160 CVD III BDNF/NT-3 growth factors receptor (NTRK2) Q16620 NEU I Beta-nerve growth factor (Beta-NGF) P01138 NEU I, INF I Bleomycin hydrolase (BLM hydrolase) Q13867 CVD III Bone morphogenetic protein 4 (BMP-4) P12644 NEU I Bone morphogenetic protein 6 (BMP-6) P22004 CVD II Brain-derived neurotrophic factor (BDNF) P23560 NEU I, INF I Brevican core protein (BCAN) Q96GW7 NEU I Brorin (VWC2) Q2TAL6 NEU I Brother of CDO (Protein BOC) Q9BWV1 CVD II Cadherin-3 (CDH3) P22223 NEU I Cadherin-5 (CDH5) P33151 CVD III Cadherin-6 (CDH6) P55285 NEU I Carbonic anhydrase 5A, mitochondrial
    [Show full text]
  • Characteristics of Cytokines in Regeneration of Injured Peripheral Nerves
    Characteristics of cytokines in regeneration of injured peripheral nerves Ruirui Zhang Nantong University Sailing Chen Nantong University Yinying Shen Nantong University Sheng Yi ( [email protected] ) Nantong University Hui Xu Nantong University Research Keywords: peripheral nerve injury, rat sciatic nerve crush injury, sciatic nerve stumps, dorsal root ganglia, upstream cytokines Posted Date: March 25th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-18898/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on November 23rd, 2020. See the published version at https://doi.org/10.1186/s40779-020-00286-0. Page 1/16 Abstract Background Cytokines are essential cellular modulators of a variety of physiological and pathological activities, including peripheral nerve repair and regeneration. However, the molecular changes of these cellular mediators during peripheral nerve regeneration are not well claried. The study is aimed to discover critical cytokines for the regenerative process of injured peripheral nerves. Methods The sequencing data of the injured nerve stumps and the dorsal root ganglia (DRGs) of Sprague-Dawley (SD) rats subjected to sciatic nerve (SN) crush injury was analyzed to determine expression patterns of genes coding for cytokines. PCR experiments were used to validate the accuracy of sequencing data. Results A total of 46, 52, and 54 upstream cytokines were differentially expressed in SNs at 1 day, 4 days, and 7 days after nerve injury. And a total of 25, 28, and 34 upstream cytokines were differentially expressed in DRGs at these time points.
    [Show full text]
  • Is Suppressed by PAX3-FOXO1 and Is a Novel Therapy For
    Published OnlineFirst September 6, 2018; DOI: 10.1158/1535-7163.MCT-18-0118 Cancer Biology and Translational Studies Molecular Cancer Therapeutics Interleukin-24 (IL24) Is Suppressed by PAX3-FOXO1 and Is a Novel Therapy for Rhabdomyosarcoma Alexandra Lacey1, Erik Hedrick1, Yating Cheng1, Kumaravel Mohankumar1, Melanie Warren2, and Stephen Safe1 Abstract Alveolar rhabdomyosarcoma (ARMS) patients have a poor with results reported for this tumor suppressor–like cytokine prognosis, and this is primarily due to overexpression of the in other solid tumors. We also observed in double knockdown oncogenic fusion protein PAX3-FOXO1. Results of RNA- studies that the inhibition of ARMS cell proliferation, survival, sequencing studies show that PAX3-FOXO1 represses expres- and migration after knockdown of PAX3-FOXO1 was signif- sion of interleukin-24 (IL24), and these two genes are inverse- icantly (>75%) reversed by knockdown of IL24. Adenoviral- ly expressed in patient tumors. PAX3-FOXO1 also regulates expressed IL24 was directly injected into ARMS tumors in histone deacetylase 5 (HDAC5) in ARMS cells, and results of athymic nude mice, and this resulted in decreased tumor RNA interference studies confirmed that PAX3-FOXO1– growth and weight. Because adenoviral IL24 has already suc- mediated repression of IL24 is HDAC5-dependent. Knock- cessfully undergone phase I in clinical trials, this represents an down of PAX3-FOXO1 decreases ARMS cell proliferation, alternative approach (alone and/or combination) for treating survival, and migration, and we also observed similar ARMS patients who currently undergo cytotoxic drug thera- responses in cells after overexpression of IL24, consistent pies. Mol Cancer Ther; 17(12); 2756–66. Ó2018 AACR.
    [Show full text]