IL-19 Is a Component of the Pathogenetic IL-23/IL-17 Cascade

Total Page:16

File Type:pdf, Size:1020Kb

IL-19 Is a Component of the Pathogenetic IL-23/IL-17 Cascade ORIGINAL ARTICLE IL-19 Is a Component of the Pathogenetic IL-23/IL-17 Cascade in Psoriasis Ellen Witte1,2, Georgios Kokolakis1,2,KatrinWitte1,2,SandraPhilipp1,2, Wolf-Dietrich Doecke3, Nina Babel4,5,BiancaM.Wittig6, Katarzyna Warszawska1, Agata Kurek1,2, Magdalena Erdmann-Keding1,2, Stefanie Kunz1,2, Khusru Asadullah3,MarshallE.Kadin7, Hans-Dieter Volk4,8, Wolfram Sterry9, Kerstin Wolk1,2,10 and Robert Sabat1,2,10 Psoriasis is a common chronic inflammatory disease with characteristic skin alterations and functions as a model of immune-mediated disorders. Cytokines have a key role in psoriasis pathogenesis. Here, we demonstrated that out of 30 individually quantified cytokines, IL-19 showed the strongest differential expression between psoriatic lesions and healthy skin. Cutaneous IL-19 overproduction was reflected by elevated IL-19 blood levels that correlated with psoriasis severity. Accordingly, anti-psoriatic therapies substantially reduced both cutaneous and systemic IL-19 levels. IL-19 production was induced in keratinocytes by IL-17A and was further amplified by tumor necrosis factor-a and IL-22. Among skin cells, keratinocytes were found to be important targets of IL-19. IL-19 alone, however, regulated only a few keratinocyte functions. While increasing the production of S100A7/8/9 and, to a moderate extent, also IL-1b, IL-20, chemokine C-X-C motif ligand 8, and matrix metalloproteinase 1, IL-19 had no clear influence on the differentiation, proliferation, or migration of these cells. Importantly, IL-19 amplified many IL-17A effects on keratinocytes, including the induction of b-defensins, IL-19, IL-23p19, and T helper type 17- cell- and neutrophil-attracting chemokines. In summary, IL-19 as a component of the IL-23/IL-17 axis strengthens the IL-17A action and might be a biomarker for the activity of this axis in chronic inflammatory disorders. Journal of Investigative Dermatology (2014) 134, 2757–2767; doi:10.1038/jid.2014.308; published online 11 September 2014 INTRODUCTION dilatation of dermal papillae vessels underlie the psoriatic skin Psoriasis vulgaris (referred to as psoriasis) is a common, alterations that appear as sharply demarcated, erythematous, chronic, inflammatory skin disease frequently accompanied scaly plaques (Schon and Boehncke, 2005; Griffiths and by arthritis as well as endocrine, cardiovascular, and meta- Barker, 2007). Despite the disturbed barrier function of these bolic alterations (Schon and Boehncke, 2005; Griffiths and lesions, they are highly protected against bacterial and viral Barker, 2007; Armstrong et al., 2013). Hyperproliferation and infections, which is due to the strong local upregulation of disturbed differentiation of keratinocytes as well as growth and anti-bacterial and anti-viral proteins (Ong et al., 2002; Wolk et al., 2013). 1Interdisciplinary Group of Molecular Immunopathology, Dermatology/ Although the pathogenesis of psoriasis is not fully under- 2 Medical Immunology, University Hospital Charite´, Berlin, Germany; Psoriasis stood, it is widely accepted that cytokines play a key role in Research and Treatment Center, University Hospital Charite´, Berlin, Germany; 3Global Biomarker, Bayer Pharma AG, Berlin, Germany; 4Berlin-Brandenburg both emergence and maintenance of psoriatic lesions. Accord- Center for Regenerative Therapies, University Hospital Charite´, Berlin, ingly, numerous immune mediators play been described as Germany; 5Department of Nephrology, University Hospital Charite´, Berlin, being elevated in the diseased skin of these patients (Sabat 6 Germany; Medical Clinic 1 (Gastroenterology, Rheumatology, Infectiology), et al., 2007). Among them are members of the IL-10 cytokine University Hospital Charite´, Berlin, Germany; 7Department of Dermatology, Boston University, Roger Williams Medical Center, Providence, Rhode Island, family—namely, IL-19, IL-20, IL-24, IL-22, IL-26, and IL-29 USA; 8Institute of Medical Immunology, University Hospital Charite´, Berlin, (Romer et al., 2003; Wolk et al., 2004; Kunz et al., 2006; Germany; 9Department of Dermatology and Allergy, University Hospital 10 Wolk et al., 2013). The cellular sources of these family Charite´, Berlin, Germany and Research Center Immunosciences, University members differ; in fact, IL-22, IL-26, and IL-29 are secreted Hospital Charite´, Berlin, Germany by T cells and innate lymphoid cells, whereas IL-24 is Correspondence: Robert Sabat, Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, University Hospital preferentially produced by dendritic cells/macrophages and Charite´, Charite´platz 1, Berlin D-10117, Germany. keratinocytes (Romer et al., 2003; Donnelly et al., 2010; E-mail: [email protected] Kumari et al., 2013; Wolk et al., 2013; Sabat et al., 2014). Abbreviations: BD, b-defensin; CXCL8, chemokine C-X-C motif ligand 8; IL-19 and IL-20 expression in psoriasis has been solely located GM-CSF, granulocyte-macrophage-CSF; M-CSF, macrophage colony-stimulating in keratinocytes as impressively demonstrated by the Kragballe factor; mRNA, messenger RNA; TNF-a, tumor necrosis factor-a group (Romer et al.,2003).WiththeexceptionofIL-10,the Received 27 March 2013; revised 10 June 2014; accepted 30 June 2014; accepted article preview online 21 July 2014; published online 11 September IL-10 family members do not act on immune cells but instead 2014 target certain tissue cells (Sabat, 2010). Despite this, transgenic & 2014 The Society for Investigative Dermatology www.jidonline.org 2757 EWitteet al. Role of IL-19 in Psoriasis overexpression of IL-20, IL-22, and IL-24 in mice led to very of these cytokines’ action reduced cutaneous pathological similar psoriatic-like skin alterations (Blumberg et al., 2001; alterations in murine dermatitis models (Ma et al., 2008; Wolk et al., 2009a; He and Liang, 2010). Moreover, inhibition Stenderup et al., 2009; Kumari et al., 2013). This appears IL-19 IL-1β IL-6 IL-12p35 IL-20 IL-23p19 p40 1 *** 1 1 1 1 1 1 *** *** 0.1 0.1 0.1 0.1 0.1 0.1 0.1 *** *** 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ** Skin mRNA, 0.001 0.001 0.001 0.001 0.001 0.001 0.001 relative to HPRT relative 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 IL-25 IL-27p28 EBI3 IL-33 IL-36γ TNF-α M-CSF 1 1 1 1 100 1 1 ** *** *** 0.1 0.1 0.1 *** 0.1 10 0.1 0.1 0.01 0.01 *** 0.01 0.01 1 0.01 0.01 ** Skin mRNA, 0.001 0.001 0.001 0.001 0.1 0.001 0.001 relative to HPRT relative 0.0001 0.0001 0.0001 0.0001 0.01 0.0001 0.0001 IFN-γ OSM IL-4 IL-17A IL-21 IL-22 1 1 1 1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 *** *** *** Healthy 0.01 0.01 *** 0.01 0.01 0.01 0.01 *** Psoriasis Skin mRNA, 0.001 0.001 0.001 0.001 0.001 0.001 relative to HPRT relative 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 IL-19 IL-19 IL-20 IL-22 Corr. with PASI 1,600 500 50 100 –1 rs P –1 *** 400 40 80 1,200 * * *** IL-19 0.653 0.000 Healthy 300 30 60 800 Psoriasis 200 20 40 IL-20 0.570 0.004 400 100 10 20 Skin protein, pg ml IL-22 0.624 0.001 Serum protein, pg ml 0 0 0 0 IL-19 IL-19 500 1,000 1,000 125 125 –1 400 100 100 100 100 * 300 75 * 75 10 10 * 200 50 50 * UV therapy * 1 1 % of 0 weeks 100 *** 25 25 etanercept therapy mRNA, % of 0 wks * mRNA, % of 0 weeks Serum protein, pg ml *** 0 0.1 0.1 0 0 0 weeks 4 weeks 0 weeks 2–5 weeks 0 weeks 0 weeks of ustekinumab therapy of UV-based therapy Healthy Asthma 1 week 12 week 4–6 weeks 24 weeks Serum IL-19 PASI Transplanted Crohn’s disease Crohn’s 2758 Journal of Investigative Dermatology (2014), Volume 134 EWitteet al. Role of IL-19 in Psoriasis to be caused by the direct effects of these mediators these patients. Importantly, IL-19 blood levels positively and on the keratinocytes, leading to their disturbed differentiation most significantly correlated with the disease severity repre- and chemokine production as demonstrated by in vitro sented by the psoriasis area and severity index value studies (Wolk et al., 2006; Sa et al., 2007; Wolk et al., (Figure 1d). Virtually no systemic levels of IL-19 were found 2009a; Kumari et al., 2013). Moreover, some IL-10 in healthy participants (Figure 1c and e). Analysis of further family members might have an essential role in the immune-mediated conditions revealed that patients suffering elevated anti-microbial competence of psoriatic lesions: from asthma and Crohn’s disease, but not those after renal IL-20, IL-22, and IL-24 strongly enhance the expression transplantation, also showed increased IL-19 blood levels, of anti-bacterial proteins in keratinocytes (Wolk et al., 2004; which, however, were far from reaching those of psoriasis Sa et al., 2007; Kumari et al., 2013), whereas the elevated patients (Figure 1e). anti-viral defense of psoriatic lesions seems to be dependent Next, we investigated the influence of anti-psoriatic thera- on IL-29 (Wolk et al., 2013). In contrast to IL-20, IL-22, IL-24, pies on the IL-19 levels in the skin and blood of psoriasis and IL-29, the roles of IL-19 and IL-26 were largely patients. A pronounced drop of cutaneous IL-19 mRNA to unexplored so far. below 1% of the initial expression levels was induced by UV In this study, we compared the expression of a broad range radiation and TNF-a inhibition–based therapies (Figure 1f). of cytokines belonging to different cytokine families (including Strikingly, only a single application of ustekinumab induced a the IL-1, IL-12/IL-23, IL-10, and IL-17 families) in psoriatic marked decrease in blood IL-19 concentrations (Figure 1g).
Recommended publications
  • T CELLS a Killer Cytokine
    RESEARCH HIGHLIGHTS S.Bradbrook/NPG T CELLS A killer cytokine T helper 17 (TH17) cells have specific for IL-26 or small interfering with live human cells. However, well-known antimicrobial and RNA against IL26. Similar to other when IL-26 was mixed with irradi- inflammatory functions, but exactly cationic antimicrobial peptides, such ated human cells to trigger cell how these functions are mediated as LL-37 and human β-defensin 3, death, IFNα production by pDCs is unclear. New research shows recombinant IL-26 was shown to was induced, and this was largely that the human TH17 cell-derived disrupt bacterial membranes by abrogated by DNase treatment. cytokine interleukin-26 (IL-26) pore formation. To investigate the mechanism of functions like an antimicrobial As LL-37 has been shown to form IFNα induction, the authors used peptide, directly lysing bacteria and complexes with extracellular DNA, fluorochrome-labelled DNA to track promoting immunogenicity of DNA the authors next tested whether this IL-26–DNA complexes in pDCs. from dead bacteria and host cells. was also the case for IL-26. Indeed, They found that the complexes were Three-dimensional modelling when mixed with bacterial DNA, internalized by pDCs through endo- of IL-26 showed that its structure is IL-26 formed insoluble particles cytosis following attachment to mem- unlike that of other cytokines from with DNA. Moreover, compared brane heparin-sulfate proteoglycans.­ the same family, and instead it shares with IL-26 alone or bacterial Once inside the cell, the IL-26–DNA features with antimicrobial peptides: DNA alone, IL-26–DNA com- complexes activated endosomal specifically, an amphipathic structure, plexes induced the production of Toll-like receptor 9 (TLR9), which with clusters of cationic charges, and interferon-α (IFNα) by plasmacytoid promotes IFNα production.
    [Show full text]
  • Interleukin-10 Family and Tuberculosis: an Old Story Renewed Abualgasim Elgaili Abdalla1, 2, Nzungize Lambert1, Xiangke Duan1, Jianping Xie1
    Int. J. Biol. Sci. 2016, Vol. 12 710 Ivyspring International Publisher International Journal of Biological Sciences 2016; 12(6): 710-717. doi: 10.7150/ijbs.13881 Review Interleukin-10 Family and Tuberculosis: An Old Story Renewed Abualgasim Elgaili Abdalla1, 2, Nzungize Lambert1, Xiangke Duan1, Jianping Xie1 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China. 2. Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Khartoum, Sudan. Corresponding author: Jianping Xie E-mail: [email protected] Tel&Fax: 862368367108. © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. Received: 2015.09.17; Accepted: 2016.01.15; Published: 2016.04.27 Abstract The interleukin-10 (IL-10) family of cytokines consists of six immune mediators, namely IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26. IL-10, IL-22, IL-24 and IL-26 are critical for the regulation of host defense against Mycobacterium tuberculosis infections. Specifically, IL-10 and IL-26 can suppress the antimycobacterial immunity and promote the survival of pathogen, while IL-22 and IL-24 can generate protective responses and inhibit the intracellular growth of pathogen. Knowledge about the new players in tuberculosis immunology, namely IL-10 family, can inform novel immunity-based countermeasures and host directed therapies against tuberculosis.
    [Show full text]
  • Cytokine Nomenclature
    RayBiotech, Inc. The protein array pioneer company Cytokine Nomenclature Cytokine Name Official Full Name Genbank Related Names Symbol 4-1BB TNFRSF Tumor necrosis factor NP_001552 CD137, ILA, 4-1BB ligand receptor 9 receptor superfamily .2. member 9 6Ckine CCL21 6-Cysteine Chemokine NM_002989 Small-inducible cytokine A21, Beta chemokine exodus-2, Secondary lymphoid-tissue chemokine, SLC, SCYA21 ACE ACE Angiotensin-converting NP_000780 CD143, DCP, DCP1 enzyme .1. NP_690043 .1. ACE-2 ACE2 Angiotensin-converting NP_068576 ACE-related carboxypeptidase, enzyme 2 .1 Angiotensin-converting enzyme homolog ACTH ACTH Adrenocorticotropic NP_000930 POMC, Pro-opiomelanocortin, hormone .1. Corticotropin-lipotropin, NPP, NP_001030 Melanotropin gamma, Gamma- 333.1 MSH, Potential peptide, Corticotropin, Melanotropin alpha, Alpha-MSH, Corticotropin-like intermediary peptide, CLIP, Lipotropin beta, Beta-LPH, Lipotropin gamma, Gamma-LPH, Melanotropin beta, Beta-MSH, Beta-endorphin, Met-enkephalin ACTHR ACTHR Adrenocorticotropic NP_000520 Melanocortin receptor 2, MC2-R hormone receptor .1 Activin A INHBA Activin A NM_002192 Activin beta-A chain, Erythroid differentiation protein, EDF, INHBA Activin B INHBB Activin B NM_002193 Inhibin beta B chain, Activin beta-B chain Activin C INHBC Activin C NM005538 Inhibin, beta C Activin RIA ACVR1 Activin receptor type-1 NM_001105 Activin receptor type I, ACTR-I, Serine/threonine-protein kinase receptor R1, SKR1, Activin receptor-like kinase 2, ALK-2, TGF-B superfamily receptor type I, TSR-I, ACVRLK2 Activin RIB ACVR1B
    [Show full text]
  • Interleukin-26 Activates Macrophages and Facilitates Killing Of
    www.nature.com/scientificreports OPEN Interleukin‑26 activates macrophages and facilitates killing of Mycobacterium tuberculosis Heike C. Hawerkamp 1, Lasse van Geelen 2, Jan Korte2, Jeremy Di Domizio 3, Marc Swidergall 4, Afaque A. Momin 5, Francisco J. Guzmán‑Vega5, Stefan T. Arold 5, Joachim Ernst4, Michel Gilliet 3, Rainer Kalscheuer2, Bernhard Homey1 & Stephan Meller1* Tuberculosis‑causing Mycobacterium tuberculosis (Mtb) is transmitted via airborne droplets followed by a primary infection of macrophages and dendritic cells. During the activation of host defence mechanisms also neutrophils and T helper 1 (TH1) and TH17 cells are recruited to the site of infection. The TH17 cell‑derived interleukin (IL)‑17 in turn induces the cathelicidin LL37 which shows direct antimycobacterial efects. Here, we investigated the role of IL‑26, a TH1‑ and TH17‑associated cytokine that exhibits antimicrobial activity. We found that both IL‑26 mRNA and protein are strongly increased in tuberculous lymph nodes. Furthermore, IL‑26 is able to directly kill Mtb and decrease the infection rate in macrophages. Binding of IL‑26 to lipoarabinomannan might be one important mechanism in extracellular killing of Mtb. Macrophages and dendritic cells respond to IL‑26 with secretion of tumor necrosis factor (TNF)‑α and chemokines such as CCL20, CXCL2 and CXCL8. In dendritic cells but not in macrophages cytokine induction by IL‑26 is partly mediated via Toll like receptor (TLR) 2. Taken together, IL‑26 strengthens the defense against Mtb in two ways: frstly, directly due to its antimycobacterial properties and secondly indirectly by activating innate immune mechanisms. Mycobacterium tuberculosis (Mtb)1–3 is the causing agent of tuberculosis in humans.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Expression of Interleukin-24 and Its Receptor in Human Pancreatic Myofibroblasts
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 28: 993-999, 2011 Expression of interleukin-24 and its receptor in human pancreatic myofibroblasts HIROTSUGU IMAEDA1, ATSUSHI NISHIDA1, OSAMU INATOMI1, YOSHIHIDE FUJIYAMA1 and AKIRA ANDOH2 1Department of Medicine and 2Division of Mucosal Immunology, Graduate School of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Japan Received July 12, 2011; Accepted August 30, 2011 DOI: 10.3892/ijmm.2011.793 Abstract. Interleukin (IL)-24 is a member of the IL-10 family broblasts play a pivotal role in the progression of pancreatic of cytokines. In this study, we investigated IL-24 expression fibrosis (1-6). Pancreatic myofibroblasts actively proliferate, in chronic pancreatitis tissue and characterized the molecular migrate and produce large amounts of extracellular matrix mechanisms responsible for IL-24 expression in human (ECM) components such as type I collagen and fibronectin. pancreatic myofibroblasts. IL-24 expression in the tissues was In addition, these cells possess proinflammatory functions evaluated by immunohistochemical methods. IL-24 mRNA characterized by the expression of cytokines, chemokines and and protein expression in the pancreatic myofibroblasts was cell adhesion molecules (1-6). determined by real-time-PCR and ELISA, respectively. IL-24 Interleukin (IL)-24, a member of the IL-10 family of was expressed by α-smooth muscle actin-positive myofibro- cytokines (together with IL-10, -19, -20, -22, -26, -28 and -29), blasts in the chronic pancreatitis tissues. In isolated human was originally termed melanoma differentiation-associated pancreatic myofibroblasts, IL-1β significantly enhanced IL-24 protein 7 (MDA-7) (7), and was renamed IL-24 (8). The mRNA and protein expression.
    [Show full text]
  • IL-1Β Induces the Rapid Secretion of the Antimicrobial Protein IL-26 From
    Published June 24, 2019, doi:10.4049/jimmunol.1900318 The Journal of Immunology IL-1b Induces the Rapid Secretion of the Antimicrobial Protein IL-26 from Th17 Cells David I. Weiss,*,† Feiyang Ma,†,‡ Alexander A. Merleev,x Emanual Maverakis,x Michel Gilliet,{ Samuel J. Balin,* Bryan D. Bryson,‖ Maria Teresa Ochoa,# Matteo Pellegrini,*,‡ Barry R. Bloom,** and Robert L. Modlin*,†† Th17 cells play a critical role in the adaptive immune response against extracellular bacteria, and the possible mechanisms by which they can protect against infection are of particular interest. In this study, we describe, to our knowledge, a novel IL-1b dependent pathway for secretion of the antimicrobial peptide IL-26 from human Th17 cells that is independent of and more rapid than classical TCR activation. We find that IL-26 is secreted 3 hours after treating PBMCs with Mycobacterium leprae as compared with 48 hours for IFN-g and IL-17A. IL-1b was required for microbial ligand induction of IL-26 and was sufficient to stimulate IL-26 release from Th17 cells. Only IL-1RI+ Th17 cells responded to IL-1b, inducing an NF-kB–regulated transcriptome. Finally, supernatants from IL-1b–treated memory T cells killed Escherichia coli in an IL-26–dependent manner. These results identify a mechanism by which human IL-1RI+ “antimicrobial Th17 cells” can be rapidly activated by IL-1b as part of the innate immune response to produce IL-26 to kill extracellular bacteria. The Journal of Immunology, 2019, 203: 000–000. cells are crucial for effective host defense against a wide and neutrophils.
    [Show full text]
  • IL-26, a Cytokine with Roles in Extracellular DNA-Induced
    IL-26, a Cytokine With Roles in Extracellular DNA-Induced Inflammation and Microbial Defense Vincent Larochette, Charline Miot, Caroline Poli, Elodie Beaumont, Philippe Roingeard, Helmut Fickenscher, Pascale Jeannin, Yves Delneste To cite this version: Vincent Larochette, Charline Miot, Caroline Poli, Elodie Beaumont, Philippe Roingeard, et al.. IL-26, a Cytokine With Roles in Extracellular DNA-Induced Inflammation and Microbial Defense. Frontiers in Immunology, Frontiers, 2019, 10, 10.3389/fimmu.2019.00204. inserm-02055151 HAL Id: inserm-02055151 https://www.hal.inserm.fr/inserm-02055151 Submitted on 3 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 12 February 2019 doi: 10.3389/fimmu.2019.00204 IL-26, a Cytokine With Roles in Extracellular DNA-Induced Inflammation and Microbial Defense Vincent Larochette 1, Charline Miot 1,2, Caroline Poli 1,2, Elodie Beaumont 3, Philippe Roingeard 3, Helmut Fickenscher 4, Pascale Jeannin 1,2* and Yves Delneste 1,2* 1 CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France, 2 CHU Angers, Département d’Immunologie et Allergologie, Angers, France, 3 Inserm unit 1259, Medical School of the University of Tours, Tours, France, 4 Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany Interleukin 26 (IL-26) is the most recently identified member of the IL-20 cytokine subfamily, and is a novel mediator of inflammation overexpressed in activated or transformed T cells.
    [Show full text]
  • Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
    UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: [email protected]; [email protected] Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type.
    [Show full text]
  • IL-26 Confers Proinflammatory Properties to Extracellular
    IL-26 Confers Proinflammatory Properties to Extracellular DNA Caroline Poli, Jean François Augusto, Jonathan Dauvé, Clément Adam, Laurence Preisser, Vincent Larochette, This information is current as Pascale Pignon, Ariel Savina, Simon Blanchard, Jean of October 2, 2021. François Subra, Alain Chevailler, Vincent Procaccio, Anne Croué, Christophe Créminon, Alain Morel, Yves Delneste, Helmut Fickenscher and Pascale Jeannin J Immunol published online 29 March 2017 http://www.jimmunol.org/content/early/2017/03/29/jimmun Downloaded from ol.1600594 Supplementary http://www.jimmunol.org/content/suppl/2017/03/29/jimmunol.160059 http://www.jimmunol.org/ Material 4.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • Table SII. Significantly Differentially Expressed Mrnas of GSE23558 Data Series with the Criteria of Adjusted P<0.05 And
    Table SII. Significantly differentially expressed mRNAs of GSE23558 data series with the criteria of adjusted P<0.05 and logFC>1.5. Probe ID Adjusted P-value logFC Gene symbol Gene title A_23_P157793 1.52x10-5 6.91 CA9 carbonic anhydrase 9 A_23_P161698 1.14x10-4 5.86 MMP3 matrix metallopeptidase 3 A_23_P25150 1.49x10-9 5.67 HOXC9 homeobox C9 A_23_P13094 3.26x10-4 5.56 MMP10 matrix metallopeptidase 10 A_23_P48570 2.36x10-5 5.48 DHRS2 dehydrogenase A_23_P125278 3.03x10-3 5.40 CXCL11 C-X-C motif chemokine ligand 11 A_23_P321501 1.63x10-5 5.38 DHRS2 dehydrogenase A_23_P431388 2.27x10-6 5.33 SPOCD1 SPOC domain containing 1 A_24_P20607 5.13x10-4 5.32 CXCL11 C-X-C motif chemokine ligand 11 A_24_P11061 3.70x10-3 5.30 CSAG1 chondrosarcoma associated gene 1 A_23_P87700 1.03x10-4 5.25 MFAP5 microfibrillar associated protein 5 A_23_P150979 1.81x10-2 5.25 MUCL1 mucin like 1 A_23_P1691 2.71x10-8 5.12 MMP1 matrix metallopeptidase 1 A_23_P350005 2.53x10-4 5.12 TRIML2 tripartite motif family like 2 A_24_P303091 1.23x10-3 4.99 CXCL10 C-X-C motif chemokine ligand 10 A_24_P923612 1.60x10-5 4.95 PTHLH parathyroid hormone like hormone A_23_P7313 6.03x10-5 4.94 SPP1 secreted phosphoprotein 1 A_23_P122924 2.45x10-8 4.93 INHBA inhibin A subunit A_32_P155460 6.56x10-3 4.91 PICSAR P38 inhibited cutaneous squamous cell carcinoma associated lincRNA A_24_P686965 8.75x10-7 4.82 SH2D5 SH2 domain containing 5 A_23_P105475 7.74x10-3 4.70 SLCO1B3 solute carrier organic anion transporter family member 1B3 A_24_P85099 4.82x10-5 4.67 HMGA2 high mobility group AT-hook 2 A_24_P101651
    [Show full text]
  • Autocrine Regulation of Mda-7/IL-24 Mediates Cancer-Specific Apoptosis
    Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis Moira Sauane*, Zao-zhong Su*†‡, Pankaj Gupta*, Irina V. Lebedeva*, Paul Dent‡§¶, Devanand Sarkar*†‡¶ʈ, and Paul B. Fisher*†‡¶ʈ**†† Departments of *Urology, ʈPathology, and **Neurosurgery, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and Departments of †Human and Molecular Genetics and §Biochemistry and Molecular Biology, ¶Virginia Commonwealth Universtiy Institute of Molecular Medicine, ‡Massey Cancer Center, School of Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298 Communicated by George J. Todaro, Targeted Growth, Inc., Seattle, WA, April 29, 2008 (received for review January 19, 2008) A noteworthy aspect of melanoma differentiation-associated immunostimulatory, radiosensitizing and ‘‘bystander’’ antitumor gene-7/interleukin-24 (mda-7/IL-24) as a cancer therapeutic is its activities (6, 11, 17, 18). ability to selectively kill cancer cells without harming normal mda-7/IL-24 expression is detected in human tissues and cells cells. Intracellular MDA-7/IL-24 protein, generated from an ad- associated with the immune system such as spleen, thymus, periph- enovirus expressing mda-7/IL-24 (Ad.mda-7), induces cancer- eral blood leukocytes, and normal melanocytes (19). Secreted specific apoptosis by inducing an endoplasmic reticulum (ER) MDA-7/IL-24 stimulates monocytes and specific populations of T stress response. Secreted MDA-7/IL-24 protein, generated from lymphocytes and promotes proinflammatory cytokine production. cells infected with Ad.mda-7, induces growth inhibition and When expressed at low, presumably physiological levels, MDA-7/ apoptosis in surrounding noninfected cancer cells but not in IL-24 binds to currently recognized MDA-7/IL-24 receptor com- normal cells, thus exerting an anti-tumor ‘‘bystander’’ effect.
    [Show full text]