The Reproductive System

Total Page:16

File Type:pdf, Size:1020Kb

The Reproductive System The Reproductive System The Male Reproductive System Part 1 Introduction General system functions Production of gametes Method for transfer of spermatozoa to ovum Site for fertilization Stable environment for protection and development of zygote Reproductive System Primary sex organs Testes and ovaries Produce sex cells (gametes) Secrete steroid sex hormones Androgens (males) Estrogens and progesterone (females) Accessory reproductive organs Ducts Glands External genitalia Male Reproductive System Testes Ducts Accessory glands Penis Hormonal function of the testis Ureter Urinary bladder Prostatic urethra Peritoneum Seminal Membranous vesicle urethra Ampulla of Urogenital ductus deferens diaphragm Pubis Ejaculatory Corpus duct cavernosum Rectum Corpus Prostate spongiosum Bulbourethral Spongy urethra gland Epididymis Anus Glans penis Bulb of penis Prepuce Ductus (vas) Testis External deferens Scrotum urethral orifice Copyright © 2010 Pearson Education, Inc. Figure 27.1 Testes Reside in scrotum Paired, located outside of body Descend into scrotum through inguinal canal Cryptorchidism Urinary bladder Superficial inguinal ring (end of inguinal canal) Testicular artery Spermatic cord Ductus (vas) deferens Penis Autonomic Middle septum of scrotum nerve fibers Pampiniform Cremaster muscle venous plexus External spermatic Epididymis fascia Tunica vaginalis (from peritoneum) Superficial fascia Tunica albuginea containing dartos of testis Scrotum muscle Internal spermatic Skin fascia Copyright © 2010 Pearson Education, Inc. Figure 27.2 Testes Septa divide the testis into lobules Contain seminiferous tubules Site of sperm production (spermatogenesis) Cells lining the tubules o Spermatogenic cells in various stages of development o Sustenocytes → support and produce ABP Cells around the tubules o Interstital/Leydig cells → produce testosterone o Myoid cells → contract & squeeze spermatozoa into tubule lumen Spermatic cord Blood vessels and nerves Ductus (vas) deferens Head of epididymis Testis Efferent ductule Seminiferous tubule Rete testis Lobule Straight tubule Septum Tunica albuginea Body of epididymis Tunica vaginalis Duct of epididymis Cavity of Tail of epididymis tunica vaginalis (a) Figure 27.3a Seminiferous tubule (c) Interstitial cells Spermatogenic cells in tubule Areolar epithelium connective Myoid Sperm tissue cells Copyright © 2010 Pearson Education, Inc. Figure 27.3c Ducts Direct sperm cells out of body 1. Epididymis 2. Ductus (vas) deferens 3. Ejaculatory duct 4. Urethra Ureter Urinary bladder Prostatic urethra Peritoneum Seminal Membranous vesicle urethra Ampulla of Urogenital ductus deferens diaphragm Pubis Ejaculatory Corpus duct cavernosum Rectum Corpus Prostate spongiosum Bulbourethral Spongy urethra gland Epididymis Anus Glans penis Bulb of penis Prepuce Ductus (vas) Testis External deferens Scrotum urethral orifice Copyright © 2010 Pearson Education, Inc. Figure 27.1 Spermatic cord Blood vessels and nerves Ductus (vas) deferens Head of epididymis Testis Efferent ductule Seminiferous tubule Rete testis Lobule Straight tubule Septum Tunica albuginea Body of epididymis Tunica vaginalis Duct of epididymis Cavity of Tail of epididymis tunica vaginalis (a) Figure 27.3a Ducts Epididymis Final aspects of sperm development Stored until ejaculation Duct contracts moving sperm into the ductus deferens Ducts Ductus (vas) deferens Passes through the inguinal canal into abdomen Joins the duct of the seminal vesicle to form the ejaculatory duct Propels sperm to the urethra Vasectomy Cutting and ligating the ductus deferens Nearly 100% effective form of birth control Urinary bladder Superficial inguinal ring (end of inguinal canal) Testicular artery Spermatic cord Ductus (vas) deferens Penis Autonomic Middle septum of scrotum nerve fibers Pampiniform Cremaster muscle venous plexus External spermatic Epididymis fascia Tunica vaginalis (from peritoneum) Superficial fascia Tunica albuginea Scrotum containing dartos of testis muscle Internal spermatic Skin fascia Copyright © 2010 Pearson Education, Inc. Figure 27.2 Copyright © 2010 Pearson Education, Inc. Ducts Ejaculatory duct Right and left join in prostate gland Join urethra Accessory Glands Semen Sperm + testicular fluid + accessory gland fluids Fluid nourishes and activates sperm Neutralizes acidity of urethra and vagina Glands Seminal vesicles Prostate gland Bulbourethral glands Accessory Glands Seminal vesicles Produce viscous alkaline seminal fluid Fructose, coagulating enzyme 60-70% of the volume of semen Duct of seminal vesicle joins the ductus deferens to form the ejaculatory duct Ureter Urinary bladder Prostatic urethra Peritoneum Seminal Membranous vesicle urethra Ampulla of Urogenital ductus deferens diaphragm Pubis Ejaculatory Corpus duct cavernosum Rectum Corpus Prostate spongiosum Bulbourethral Spongy urethra gland Epididymis Anus Glans penis Bulb of penis Prepuce Ductus (vas) Testis External deferens Scrotum urethral orifice Copyright © 2010 Pearson Education, Inc. Figure 27.1 Accessory Glands Prostate Encircles part of the urethra inferior to the bladder Secretes milky fluid Enzymes play a role in the activation of sperm Enters urethra during ejaculation Diseases Prostatitis Benign prostatic hyperplasia (BPH) Prostate cancer Accessory Glands Bulbourethral glands Inferior to the prostate Secrete prior to ejaculation Thick, clear mucus Neutralizes traces of acidic urine in the urethra Helps neutralize acidity of vagina Lubricates the glans penis during intercourse Ureter Ampulla of ductus deferens Seminal vesicle Urinary bladder Ejaculatory duct Prostate Prostatic urethra Orifices of prostatic ducts Bulbourethral gland and duct Membranous urethra Urogenital diaphragm Bulb of penis Root of penis Crus of penis Bulbourethral duct opening Ductus deferens Corpora cavernosa Epididymis Corpus spongiosum Shaft (body) of penis Testis Section of (b) Spongy urethra Glans penis Prepuce (foreskin) (a) External urethral orifice Dorsal vessels Corpora cavernosa and nerves Urethra Skin Tunica albuginea of erectile bodies Deep arteries (b) Corpus spongiosum Figure 27.4 The Penis Structure Root and shaft End in the glans penis Prepuce (foreskin) Cuff of loose skin covering the glans Circumcision Surgical removal of the foreskin Ureter Ampulla of ductus deferens Seminal vesicle Urinary bladder Ejaculatory duct Prostate Prostatic urethra Orifices of prostatic ducts Bulbourethral gland and duct Membranous urethra Urogenital diaphragm Bulb of penis Root of penis Crus of penis Bulbourethral duct opening Ductus deferens Corpora cavernosa Epididymis Corpus spongiosum Shaft (body) of penis Testis Section of (b) Spongy urethra Glans penis Prepuce (foreskin) (a) External urethral orifice Dorsal vessels Corpora cavernosa and nerves Urethra Skin Tunica albuginea of erectile bodies Deep arteries (b) Corpus spongiosum Figure 27.4 The Penis Urethra Erection Erectile tissue fills with blood Causes the penis to enlarge and become rigid Parasympathetic reflex The Penis Ejaculation Propulsion of semen from the male duct system Sympathetic spinal reflex Ducts and accessory glands contract and empty their contents Bladder sphincter muscle constricts Prevents the expulsion of urine About 3 -5 ml of semen released 300 million sperm cells Few survive Counts below 20 million/ml = fertility problems The Penis Impotence Erectile dysfunction (ED) Physical abnormalities Psychological causes Affects 50% of American men over 40 to some degree Hormonal Function of the Testes Testosterone Produced by interstitial (Leydig) cells Functions Development of male reproductive system Completion of sperm maturation Secondary sexual characteristics Body hair Bone and muscle growth Aggressive behavior 1 GnRH Anterior Via portal pituitary blood 8 7 2 Inhibin 2 LH FSH Interstitial 3 4 cells 6 Testosterone Somatic and Sustentacular psychological cell effects at Spermatogenic 5 other body cells sites Seminiferous tubule Stimulates Inhibits Figure 27.9 .
Recommended publications
  • Biomechanical Aspects of Peyronie's Disease in Development Stages And
    International Journal of Impotence Research (2002) 14, 389–396 ß 2002 Nature Publishing Group All rights reserved 0955-9930/02 $25.00 www.nature.com/ijir Biomechanical aspects of Peyronie’s disease in development stages and following reconstructive surgeries A Gefen1*, D Elad1 and J Chen2 1Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; and 2Department of Urology, Tel Aviv-Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel Peyronie’s disease is a disorder of the penile connective tissues that leads to development of dense fibrous or ossified plaques in the tunica albuginea, causing penile deformity and painful erection. A biomechanical model of the penis was utilized for analyzing the mechanical stresses that develop within its soft tissues during erection in the presence of Peyronie’s plaques. The model’s simulations demonstrated stress concentrations around nerve roots and blood vessels due to the plaques. These stresses may irritate nerve endings or compress the vascular bed, and thus cause penile deformity and=or painful erection. The model was further used to elaborate the effects of different biological or artificial materials for reconstruction of the penis following plaque removal. Clinical applications of the present model can range from analysis of the etiology of the disease to assisting in the determination of optimal timing for therapeutic interventions and in the selection of patch material for penile reconstructions. International Journal of Impotence Research (2002) 14, 389–396. doi:10.1038=sj.ijir.3900866 Keywords: erectile function=dysfunction; numerical model; finite element method; tissue ossification; plaque Introduction stresses and=or structural deformities.
    [Show full text]
  • The Reproductive System
    27 The Reproductive System PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The reproductive system is designed to perpetuate the species • The male produces gametes called sperm cells • The female produces gametes called ova • The joining of a sperm cell and an ovum is fertilization • Fertilization results in the formation of a zygote © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • Overview of the Male Reproductive System • Testis • Epididymis • Ductus deferens • Ejaculatory duct • Spongy urethra (penile urethra) • Seminal gland • Prostate gland • Bulbo-urethral gland © 2012 Pearson Education, Inc. Figure 27.1 The Male Reproductive System, Part I Pubic symphysis Ureter Urinary bladder Prostatic urethra Seminal gland Membranous urethra Rectum Corpus cavernosum Prostate gland Corpus spongiosum Spongy urethra Ejaculatory duct Ductus deferens Penis Bulbo-urethral gland Epididymis Anus Testis External urethral orifice Scrotum Sigmoid colon (cut) Rectum Internal urethral orifice Rectus abdominis Prostatic urethra Urinary bladder Prostate gland Pubic symphysis Bristle within ejaculatory duct Membranous urethra Penis Spongy urethra Spongy urethra within corpus spongiosum Bulbospongiosus muscle Corpus cavernosum Ductus deferens Epididymis Scrotum Testis © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • The Testes • Testes hang inside a pouch called the scrotum, which is on the outside of the body
    [Show full text]
  • Adipose Tissue-Derived Stem Cell-Seeded Small Intestinal Submucosa for Tunica Albuginea Grafting and Reconstruction
    Adipose tissue-derived stem cell-seeded small intestinal submucosa for tunica albuginea grafting and reconstruction Limin Maa,b,1, Yijun Yanga,1, Suresh C. Sikkaa,c, Philip J. Kadowitzc, Louis J. Ignarrod, Asim B. Abdel-Mageeda,c,2, and Wayne J. G. Hellstroma,2,3 Departments of aUrology and cPharmacology, Tulane University Health Sciences Center, New Orleans, LA 70112; bDepartment of Urology, Ninth People’s Hospital Affiliated with Medical College of Shanghai, Jiaotong University, Shanghai 200011, China; and dDepartment of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles Center for the Health Sciences, Los Angeles, CA 90095 Edited by Solomon H. Snyder, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved December 13, 2011 (received for review August 29, 2011) Porcine small intestinal submucosa (SIS) has been widely used in cell transplantation has been demonstrated in vascular (6) and car- tunica albuginea (TA) reconstructive surgery. Adipose tissue-derived tilage reconstruction (7) and in restoring immune response and stem cells (ADSCs) can repair damaged tissue, augment cellular hematopoiesis (8). In vivo scaffold-based studies further expanded differentiation, and stimulate release of multiple growth factors. the use of MSCs in new bone formation (9). The aim of this rat study was to assess the feasibility of seeding With the development of tissue engineering, cell-seeded acellu- ADSCs onto SIS grafts for TA reconstruction. Here, we demonstrate lar matrix
    [Show full text]
  • Morphology of the Male Reproductive Tract in the Water Scavenger Beetle Tropisternus Collaris Fabricius, 1775 (Coleoptera: Hydrophilidae)
    Revista Brasileira de Entomologia 65(2):e20210012, 2021 Morphology of the male reproductive tract in the water scavenger beetle Tropisternus collaris Fabricius, 1775 (Coleoptera: Hydrophilidae) Vinícius Albano Araújo1* , Igor Luiz Araújo Munhoz2, José Eduardo Serrão3 1Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Macaé, RJ, Brasil. 2Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil. 3Universidade Federal de Viçosa, Departamento de Biologia Geral, Viçosa, MG, Brasil. ARTICLE INFO ABSTRACT Article history: Members of the Hydrophilidae, one of the largest families of aquatic insects, are potential models for the Received 07 February 2021 biomonitoring of freshwater habitats and global climate change. In this study, we describe the morphology of Accepted 19 April 2021 the male reproductive tract in the water scavenger beetle Tropisternus collaris. The reproductive tract in sexually Available online 12 May 2021 mature males comprised a pair of testes, each with at least 30 follicles, vasa efferentia, vasa deferentia, seminal Associate Editor: Marcela Monné vesicles, two pairs of accessory glands (a bean-shaped pair and a tubular pair with a forked end), and an ejaculatory duct. Characters such as the number of testicular follicles and accessory glands, as well as their shape, origin, and type of secretion, differ between Coleoptera taxa and have potential to help elucidate reproductive strategies and Keywords: the evolutionary history of the group. Accessory glands Hydrophilid Polyphaga Reproductive system Introduction Coleoptera is the most diverse group of insects in the current fauna, The evolutionary history of Coleoptera diversity (Lawrence et al., with about 400,000 described species and still thousands of new species 1995; Lawrence, 2016) has been grounded in phylogenies with waiting to be discovered (Slipinski et al., 2011; Kundrata et al., 2019).
    [Show full text]
  • Ultrasonography of the Scrotum in Adults
    University of Massachusetts Medical School eScholarship@UMMS Radiology Publications and Presentations Radiology 2016-07-01 Ultrasonography of the scrotum in adults Anna L. Kuhn University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/radiology_pubs Part of the Male Urogenital Diseases Commons, Radiology Commons, Reproductive and Urinary Physiology Commons, Urogenital System Commons, and the Urology Commons Repository Citation Kuhn AL, Scortegagna E, Nowitzki KM, Kim YH. (2016). Ultrasonography of the scrotum in adults. Radiology Publications and Presentations. https://doi.org/10.14366/usg.15075. Retrieved from https://escholarship.umassmed.edu/radiology_pubs/173 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Radiology Publications and Presentations by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Ultrasonography of the scrotum in adults Anna L. Kühn, Eduardo Scortegagna, Kristina M. Nowitzki, Young H. Kim Department of Radiology, UMass Memorial Medical Center, University of Massachusetts Medical Center, Worcester, MA, USA REVIEW ARTICLE Ultrasonography is the ideal noninvasive imaging modality for evaluation of scrotal http://dx.doi.org/10.14366/usg.15075 abnormalities. It is capable of differentiating the most important etiologies of acute scrotal pain pISSN: 2288-5919 • eISSN: 2288-5943 and swelling, including epididymitis and testicular torsion, and is the imaging modality of choice Ultrasonography 2016;35:180-197 in acute scrotal trauma. In patients presenting with palpable abnormality or scrotal swelling, ultrasonography can detect, locate, and characterize both intratesticular and extratesticular masses and other abnormalities.
    [Show full text]
  • Role of Tunica Vaginalis Interposition Layer in Hypospadias Surgery
    Published online: 2020-05-14 Free full text on www.ijps.org Original Article Role of tunica vaginalis interposition layer in hypospadias surgery Yog Raj Handoo Deendayal Upadhyay Hospital, Hari Nagar, New Delhi, India Address for correspondence: Yog Raj Handoo, 87/Samaj Kalyan Apartments, Vikaspuri, Delhi - 110 018, India. E-mail: [email protected] ABSTRACT Hypospadias surgery has evolved with more than 150 procedures for surgical correction of single anomaly .urethro-cutaneous fistula continues to be single most common complication of regardless of location of meatus, procedure performed and experience of surgeon. Every effort goes in prevention of this complication including overlapping suture line. Two stage repair, burying repaired urethra in scrotum, dartose flap. Parietal layer of tunica vaginalis from testis as a water proofing layer over reconstructed neo urethra decreasing fistula rate. Unlike dissection of dartose layer which can damage blood supply of overlying skin with impaired wound healing, tunica vaginalis brings vascular supply from outside source hence helping in healing of suture line of neo-urethra. Study of effectiveness of tunica vaginalis flap covering different hypospadias procedures in 126 cases over 6 years is presented with inference of significant decrease of urethra-cutaneous fistula rate. KEY WORDS Hypospadias, fistula, tunica vaginalis flap INTRODUCTION in scrotum,[4] dartos flap,[5] overlapping denuded subcutaneous tissue,[6] rotating skin flaps etc. Tunica ypospadias repair continues to be a singularly vaginalis flap from the parietal layer of testis cover of demanding form of surgical expression with anastomosis of urethroplasty is one more option which Hconsiderable artistic latitude.[1] Hypospadias helps in the reduction of urethro-cutaneous fistulae.
    [Show full text]
  • The Male Body
    Fact Sheet The Male Body What is the male What is the epididymis? reproductive system? The epididymis is a thin highly coiled tube (duct) A man’s fertility and sexual characteristics depend that lies at the back of each testis and connects on the normal functioning of the male reproductive the seminiferous tubules in the testis to another system. A number of individual organs act single tube called the vas deferens. together to make up the male reproductive 1 system; some are visible, such as the penis and the 6 scrotum, whereas some are hidden within the body. The brain also has an important role in controlling 7 12 reproductive function. 2 8 1 11 What are the testes? 3 6 The testes (testis: singular) are a pair of egg 9 7 12 shaped glands that sit in the scrotum next to the 2 8 base of the penis on the outside of the body. In 4 10 11 adult men, each testis is normally between 15 and 3 35 mL in volume. The testes are needed for the 5 male reproductive system to function normally. 9 The testes have two related but separate roles: 4 10 • to make sperm 5 1 Bladder • to make testosterone. 2 Vas deferens The testes develop inside the abdomen in the 3 Urethra male fetus and then move down (descend) into the scrotum before or just after birth. The descent 4 Penis of the testes is important for fertility as a cooler 5 Scrotum temperature is needed to make sperm and for 16 BladderSeminal vesicle normal testicular function.
    [Show full text]
  • Anatomy and Physiology Male Reproductive System References
    DEWI PUSPITA ANATOMY AND PHYSIOLOGY MALE REPRODUCTIVE SYSTEM REFERENCES . Tortora and Derrickson, 2006, Principles of Anatomy and Physiology, 11th edition, John Wiley and Sons Inc. Medical Embryology Langeman, pdf. Moore and Persaud, The Developing Human (clinically oriented Embryologi), 8th edition, Saunders, Elsevier, . Van de Graff, Human anatomy, 6th ed, Mcgraw Hill, 2001,pdf . Van de Graff& Rhees,Shaum_s outline of human anatomy and physiology, Mcgraw Hill, 2001, pdf. WHAT IS REPRODUCTION SYSTEM? . Unlike other body systems, the reproductive system is not essential for the survival of the individual; it is, however, required for the survival of the species. The RS does not become functional until it is “turned on” at puberty by the actions of sex hormones sets the reproductive system apart. The male and female reproductive systems complement each other in their common purpose of producing offspring. THE TOPIC : . 1. Gamet Formation . 2. Primary and Secondary sex organ . 3. Male Reproductive system . 4. Female Reproductive system . 5. Female Hormonal Cycle GAMET FORMATION . Gamet or sex cells are the functional reproductive cells . Contain of haploid (23 chromosomes-single) . Fertilizationdiploid (23 paired chromosomes) . One out of the 23 pairs chromosomes is the determine sex sex chromosome X or Y . XXfemale, XYmale Gametogenesis Oocytes Gameto Spermatozoa genesis XY XX XX/XY MALE OR FEMALE....? Male Reproductive system . Introduction to the Male Reproductive System . Scrotum . Testes . Spermatic Ducts, Accessory Reproductive Glands,and the Urethra . Penis . Mechanisms of Erection, Emission, and Ejaculation The urogenital system . Functionally the urogenital system can be divided into two entirely different components: the urinary system and the genital system.
    [Show full text]
  • Diagnosis and Management of Infertility Due to Ejaculatory Duct Obstruction: Summary Evidence ______
    Vol. 47 (4): 868-881, July - August, 2021 doi: 10.1590/S1677-5538.IBJU.2020.0536 EXPERT OPINION Diagnosis and management of infertility due to ejaculatory duct obstruction: summary evidence _______________________________________________ Arnold Peter Paul Achermann 1, 2, 3, Sandro C. Esteves 1, 2 1 Departmento de Cirurgia (Disciplina de Urologia), Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brasil; 2 ANDROFERT, Clínica de Andrologia e Reprodução Humana, Centro de Referência para Reprodução Masculina, Campinas, SP, Brasil; 3 Urocore - Centro de Urologia e Fisioterapia Pélvica, Londrina, PR, Brasil INTRODUCTION tion or perineal pain exacerbated by ejaculation and hematospermia (3). These observations highlight the Infertility, defined as the failure to conceive variability in clinical presentations, thus making a after one year of unprotected regular sexual inter- comprehensive workup paramount. course, affects approximately 15% of couples worl- EDO is of particular interest for reproduc- dwide (1). In about 50% of these couples, the male tive urologists as it is a potentially correctable factor, alone or combined with a female factor, is cause of male infertility. Spermatogenesis is well- contributory to the problem (2). Among the several -preserved in men with EDO owing to its obstruc- male infertility conditions, ejaculatory duct obstruc- tive nature, thus making it appealing to relieve the tion (EDO) stands as an uncommon causative factor. obstruction and allow these men the opportunity However, the correct diagnosis and treatment may to impregnate their partners naturally. This review help the affected men to impregnate their partners aims to update practicing urologists on the current naturally due to its treatable nature. methods for diagnosis and management of EDO.
    [Show full text]
  • Brief Note Nonpigmented Tunica Vaginalis Testis in the Opossum1
    Copyright © 1979 Ohio Acad. Sci. 0030-0950/79/0002-0079$1.00/0 BRIEF NOTE NONPIGMENTED TUNICA VAGINALIS TESTIS IN THE OPOSSUM1 JANE N. SCOTT, Department of Anatomy H. IRA FRITZ, Department of Biological Chemistry, Wright State University School of Medicine, Dayton, OH 45435 OHIO J. SCI. 79(2): 79, 1979 Compared to other male mammals, the The average weight of the testes sur- American male marsupials have unusual rounded by nonpigmented tunics was reproductive systems: the scrotum is 1.23 g (1.08 g and 1.3S g) and testes sur- prepenial, the penis is bifid, and sperma- rounded by pigmented tunics had an tozoa pair as they pass through the epi- average weight of 1.31 g (1.16 g and didymis (Biggers 1966). In addition, it 1.46 g). The average weight of epi- has been reported that the tunica vagi- didymides surrounded by nonpigmented nalis testis is always pigmented due to tunics was 0.61 g (0.56 g and 0.66 g), and the presence of melanin (Ellsworth 1976). the average weight of epididymides sur- Biggers (1966) has suggested that the rounded by pigmented tunics was also pigmented tunic acts as a black-body 0.61 g (0.60 g and 0.63 g). There may radiator and helps lower testicular tem- perature, which is necessary for optimal spermatogenesis in mammals. In preliminary experiments designed to study the effect of temperature on spermatogenesis and sperm maturation in the opossum, we live-trapped 6 males and utilized 3 males raised in captivity. Examination of the pigmentation of the underlying tunica vaginalis testis was carried out superficially by noting the coloration of the tissue through the scrotal skin.
    [Show full text]
  • THE UNIVERSITY of EDINBURGH
    THE UNIVERSITY of EDINBURGH Title Urethroscopy: an aid to diagnosis, treatment and prognosis of urethral conditions in the male due to gonorrhoea Author McFarlane, Wilfrid Qualification MD Year 1919 Thesis scanned from best copy available: may contain faint or blurred text, and/or cropped or missing pages. Digitisation Notes: • Page 8 of Supplement at back is missing Scanned as part of the PhD Thesis Digitisation project http://librarvblogs.is.ed.ac.uk/phddigitisation URETHROSCOPY an aid to Diagnosis, Treatment and Prognosis of Urethral Conditions in the Male due to GONORRHOEA. "by Wilfrid McFarlane, M.C., M.B., Ch.E. (Edin) L.R.C.P. & S.E. M.O. 9. Stationary Hospital, Havre. 1916 M.O. i/c Gonorrhoeal Division, Military Hospital, Hemel Hempstead. 1918 M.O. Venereal Hospital, Cambridge. Thesis for"the Degree of M.D. - f 1• THE ANATOMY AMD HISTOLOGY OF THE URETHRA AND THE PATHOLOGY OF GONORRHOEA. In order to make a correct diagnosis and to carry out a sound treatment of any disease it is essential to have an accurate knowledge of the anatomy of the l • organ affected and of the pathology of the disease affecting it. THE -ANATOMY OF THE MALE URETHRA. It is merely necessary to bring out those points which will enable one to understand the effect of Gonorrhoea on the urethra, especially in longstanding cases. The urethra is the channel by which urine passes from the bladder to the outside. Into this channel open the ejaculatory ducts and thus it acts also as a passage for the spermatic fluid. In its course from the neck of the bladder to the root of the penis the urethra describes a curve, the concavity of which looks upwards and forwards.
    [Show full text]
  • Male Reproductive Organs Testes (Paired Gonads)
    Male Reproductive Organs Testes (paired Gonads) Penis Series of passageways . Epididymis . Ductus Deferens . Urethra Accessory Glands . Seminal vesicle . Prostate Functions • Paired Gonads (Testes) – Produce Spermatozoa (male germ cells) & Androgens (male sex hormones) •Penis– Copulatory organ • Series of passageways & ducts – To store the spermatozoa , ready for delivery to male copulatory organ • Male accessory glands – provide fluid vehicle for carrying spermatozoa Coverings Tunica Vaginalis Tunica Albuginea Tunica Vasculosa Outermost Layer . Tunica Albuginea (Dense connective tissue fibrous Memb.) – Consist of closely packed collagen Fibres with a few Elastic Fibres . form septa ,Project from Mediastinum Testis . Divide incompletely into pyramidal lobules with apex towards Mediatinum . Each Testis Approx-200 lobule . Each lobule has Approx1-4 seminiferous Tubules . Form loop to end in Straight tubule (20-30) • Straight tubules end up unite to form network (Rete testis) which gives off 15-20 efferent ductules • Space between tubules filled up by Loose connective tissue (collagen fibres & fibroblasts,macrophases , mast cells), blood vessels, Lymphatics & Interstitial cells of Leydig Seminiferous Tubules • Fill most of interior of Each Testes • Two types of cells • Germ cells (represent different stages of spermatogenesis) Spermatogonia (Type A & type B) Primary spermatocyte Secondary spermatocyte Spermatids Spermatozoa • Sustantacular cells (Sertoli) Mitosis Spermatogonium 44+X 44+X Type A +Y +Y Spermatogonium 44+X+ Y Type B Enlarge/Mitosis
    [Show full text]