Multiscale Analysis for Characterization of Remotely Sensed Images

Total Page:16

File Type:pdf, Size:1020Kb

Multiscale Analysis for Characterization of Remotely Sensed Images Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 2001 Multiscale Analysis for Characterization of Remotely Sensed Images. Wei Zhao Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Zhao, Wei, "Multiscale Analysis for Characterization of Remotely Sensed Images." (2001). LSU Historical Dissertations and Theses. 389. https://digitalcommons.lsu.edu/gradschool_disstheses/389 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. U MI MICROFILMED 2002 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. MULTISCALE ANALYSIS FOR CHARACTERIZATION OF REMOTELY SENSED IMAGES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geography and Anthropology by Wei Zhao B.S., Nanjing University, 1985 M.S., Chinese Academy o f Sciences, 1988 December, 2001 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3031771 __ __<s> UMI UMI Microform3031771 Copyright 2002 by Bell & Howell Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. Bell & Howell Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS I wish to express my sincerest gratitude to my major professor, Dr. Nina Lam, for her guidance, support, patience, confidence and encouragement during the entire course of my Ph.D. studies. I wish to express my appreciation to the other members of my graduate committee, Dr. Adrian, Mr. Braud, Dr. Huh, Dr. Leitner, and Dr. Liu, for their guidance and comments in the dissertation research. I would like to acknowledge Mr. Braud, in providing the Landsat TM data used in the experimental study. I would like to thank Dr. Qiu for providing suggestions and encouragement in the research. I appreciate the efforts of Mr. Bryant who reviewed the draft manuscript and made helpful editorial comments. I also thank fellow graduate students in the Computer Mapping Sciences Laboratory and Department of Geography and Anthropology for numerous fruitful conversations. In particular, Zuju Yao, Xiongping Zhang, Weiweng Feng, Ke Xiao, Jane Read, Michael Daniel, and Dennis Nicholas together with the faculty, staff, and other students, have made LSU an exciting place to conduct geographic information systems and remote sensing research. This dissertation could not have continued without the constant love, encouragement and support of my parents through the course of my education. Special thanks are due to my wife Weihong Zhu for her continual understanding and sacrificing, her hard work keeping us both on track to study together, and especially for bringing our daughter Julia into the world. ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ACKNOWLEDGEMENTS..................................................................................................ii LIST OF TABLES..................................................................................................................v LIST OF FIGURES............................................................................................................. vii ABSTRACT............................................................................................................................ xi CHAPTER 1 INTRODUCTION..........................................................................................I 1.1 Statement of problem ................................................................................................... 4 1.2 Methods ............................................................................................................................ 6 1.3 Objectives ......................................................................................................................... 8 1.4 Expected results and significances ......................................................................... 9 1.5 Chapter organization ..................................................................................................11 CHAPTER 2 BACKGROUND...........................................................................................14 2.1 Characteristics of Remote Sensing Imagery ...................................................... 14 2.2 Image A nalysis of Remote Sensing ..........................................................................18 2.2.1 Spectral A nalysis ..................................................................................................... 20 2.2.2 Spatial Analysis ........................................................................................................24 2.2.3 Image Classification ................................................................................................. 27 2.3 Image Spatial An a ly sis ..............................................................................................28 2.3.1 Scale and Structure.................................................................................................. 30 2.3.2 Texture Measurement..............................................................................................33 CHAPTER 3 REVIEW OF MULTISCALE APPROACH.......................................... 38 3.1 Multiscale A pproach .................................................................................................39 3.2 Multiscale Representation of Image D a ta ........................................................42 3.2.1 Pyramid ......................................................................................................................44 3.2.2 Scale-Space ............................................................................................................... 47 3.2.3 Wavelets.....................................................................................................................49 3.3 Multiscale Analysis in Remote Sensing .............................................................. 53 3.3.1 Variogram ..................................................................................................................55 3.3.2 Co-occurrence Matrix ..............................................................................................60 3.3.3 Fractal Geom etry ..................................................................................................... 64 CHAPTER 4 FRACTAL ANALYSIS.............................................................................. 70 4.1 O v e r v ie w ......................................................................................................................... 70 4.2 Fractals .......................................................................................................................... 71 4.3 Fractal D imension ...................................................................................................... 73 4.4 Fractional Brownian Motion ..................................................................................75 4.5 Fractal D imension Estimation .................................................................................77 4.5.1 Box-counting M ethod ..............................................................................................78 4.5.2 Isarithm
Recommended publications
  • Review Article Survey Report on Space Filling Curves
    International Journal of Modern Science and Technology Vol. 1, No. 8, November 2016. Page 264-268. http://www.ijmst.co/ ISSN: 2456-0235. Review Article Survey Report on Space Filling Curves R. Prethee, A. R. Rishivarman Department of Mathematics, Theivanai Ammal College for Women (Autonomous) Villupuram - 605 401. Tamilnadu, India. *Corresponding author’s e-mail: [email protected] Abstract Space-filling Curves have been extensively used as a mapping from the multi-dimensional space into the one-dimensional space. Space filling curve represent one of the oldest areas of fractal geometry. Mapping the multi-dimensional space into one-dimensional domain plays an important role in every application that involves multidimensional data. We describe the notion of space filling curves and describe some of the popularly used curves. There are numerous kinds of space filling curves. The difference between such curves is in their way of mapping to the one dimensional space. Selecting the appropriate curve for any application requires knowledge of the mapping scheme provided by each space filling curve. Space filling curves are the basis for scheduling has numerous advantages like scalability in terms of the number of scheduling parameters, ease of code development and maintenance. The present paper report on various space filling curves, classifications, and its applications. It elaborates the space filling curves and their applicability in scheduling, especially in transaction. Keywords: Space filling curve, Holder Continuity, Bi-Measure-Preserving Property, Transaction Scheduling. Introduction these other curves, sometimes space-filling In mathematical analysis, a space-filling curves are still referred to as Peano curves. curve is a curve whose range contains the entire Mathematical tools 2-dimensional unit square or more generally an The Euclidean Vector Norm n-dimensional unit hypercube.
    [Show full text]
  • Möbius Bridges
    { Final version for JMA - Nov 2, 2017 } Möbius Bridges Carlo H. Séquin CS Division, University of California, Berkeley E-mail: [email protected] Abstract Key concepts and geometrical constraints are discussed that allow the construction of a usable bridge that is topological equivalent to a Möbius band. A multi-year search in publications and on the internet for real-world bridges that meet these requirements has not identified a single clean construction that warrants the designation “Möbius bridge,” but a few promising designs can be found. Several simple but practical designs are presented here. 1. Introduction July 2017 marks the twentieth installment of the annual Bridges conference [1], which elucidates the connections between mathematics and art, music, architecture, and many other cultural venues. This year the conference has been held in Waterloo, Canada. In its twenty-year history it has visited many places around the globe, including Seoul in South Korea, Coimbra in Portugal, Pécz in Hungary, and Leeuwarden in the Netherlands, the hometown of M.C. Escher. This conference series got started by Reza Sarhangi [2] at Southwestern College in Winfield, Kansas. After a few occurrences at this initial location, Reza Sarhangi and other core members of this conference started discussing the possibility of establishing some kind of a commemorative entity of the conference on the Winfield campus. Since Escher, Möbius, and Klein are among the heroes of this Math-Art community, suggestions included an Escher Garden, a Möbius Bridge, or a Klein Bottle House. This prompted me to study the feasibility of such entities; and over the following year, I developed some practical designs for bridges and buildings that follow the geometry of a Möbius band [3].
    [Show full text]
  • Fractal-Based Magnetic Resonance Imaging Coils for 3T Xenon Imaging Fractal-Based Magnetic Resonance Imaging Coils for 3T Xenon Imaging
    Fractal-based magnetic resonance imaging coils for 3T Xenon imaging Fractal-based magnetic resonance imaging coils for 3T Xenon imaging By Jimmy Nguyen A Thesis Submitted to the School of Graduate Studies in thePartial Fulfillment of the Requirements for the Degree Master of Applied Science McMaster University © Copyright by Jimmy Nguyen 10 July 2020 McMaster University Master of Applied Science (2020) Hamilton, Ontario (Department of Electrical & Computer Engineering) TITLE: Fractal-based magnetic resonance imaging coils for 3T Xenon imaging AUTHOR: Jimmy Nguyen, B.Eng., (McMaster University) SUPERVISOR: Dr. Michael D. Noseworthy NUMBER OF PAGES: ix, 77 ii Abstract Traditional 1H lung imaging using MRI faces numerous challenges and difficulties due to low proton density and air-tissue susceptibility artifacts. New imaging techniques using inhaled xenon gas can overcome these challenges at the cost of lower signal to noise ratio. The signal to noise ratio determines reconstructed image quality andis an essential parameter in ensuring reliable results in MR imaging. The traditional RF surface coils used in MR imaging exhibit an inhomogeneous field, leading to reduced image quality. For the last few decades, fractal-shaped antennas have been used to optimize the performance of antennas for radiofrequency systems. Although widely used in radiofrequency identification systems, mobile phones, and other applications, fractal designs have yet to be fully researched in the MRI application space. The use of fractal geometries for RF coils may prove to be fruitful and thus prompts an investiga- tion as the main goal of this thesis. Preliminary simulation results and experimental validation results show that RF coils created using the Gosper and pentaflake offer improved signal to noise ratio and exhibit a more homogeneous field than that ofa traditional circular surface coil.
    [Show full text]
  • Bridges: a World Community for Mathematical Art
    Accepted manuscript for The Mathematical Intelligencer, ISSN: 0343-6993 (print version) ISSN: 1866-7414 (electronic version) The final publication is available at Springer via http://link.springer.com/article/10.1007/s00283-016-9630-9 DOI 10.1007/s00283-016-9630-9 Bridges: A World Community for Mathematical Art Kristóf Fenyvesi Mathematical Art Reborn: Academic Gathering or Festival of the Arts? This is not the first time the Mathematical Communities column has featured the Bridges Organization: the 2005 conference1, in the breathtaking Canadian Rocky Mountains at Banff, was described in these pages by Doris Schattschneider [Schattschneider, 2006], a regular Bridges participant and Escher-specialist. The 2005 conference saw the debut of Delicious Rivers, Ellen Maddow’s play on the life of Robert Ammann, a postal worker who discovered a number of aperiodic tilings.2 Marjorie Senechal, The Mathematical Intelligencer’s current editor-in-chief, served as Maddow's consultant.3 A theatre premiér at a conference on mathematics? A production performed by mathematicians, moonlighting as actors? But this is Bridges. A quick look at the 2005 conference relays the “essence” of this scientific and artistic “happening” resembling a first-rate festival of the arts. True to its title, Renaissance Banff, the 2005 Bridges gave all members of its community, whether based in the sciences or the arts, the feeling that they had helped bring about a genuine rebirth. I use “community” in its most complete sense—including adults, children, artists, university professors, art lovers and local people—for the wealth of conference activities could only be accomplished through the participation of each and every individual present.
    [Show full text]
  • Mathematics As “Gate-Keeper” (?): Three Theoretical Perspectives That Aim Toward Empowering All Children with a Key to the Gate DAVID W
    ____ THE _____ MATHEMATICS ___ ________ EDUCATOR _____ Volume 14 Number 1 Spring 2004 MATHEMATICS EDUCATION STUDENT ASSOCIATION THE UNIVERSITY OF GEORGIA Editorial Staff A Note from the Editor Editor Dear TME readers, Holly Garrett Anthony Along with the editorial team, I present the first of two issues to be produced during my brief tenure as editor of Volume 14 of The Mathematics Educator. This issue showcases the work of both Associate Editors veteran and budding scholars in mathematics education. The articles range in topic and thus invite all Ginger Rhodes those vested in mathematics education to read on. Margaret Sloan Both David Stinson and Amy Hackenberg direct our attention toward equity and social justice in Erik Tillema mathematics education. Stinson discusses the “gatekeeping” status of mathematics, offers theoretical perspectives he believes can change this, and motivates mathematics educators at all levels to rethink Publication their roles in empowering students. Hackenberg’s review of Burton’s edited book, Which Way Social Stephen Bismarck Justice in Mathematics Education? is both critical and engaging. She artfully draws connections across Laurel Bleich chapters and applauds the picture of social justice painted by the diversity of voices therein. Dennis Hembree Two invited pieces, one by Chandra Orrill and the other by Sybilla Beckmann, ask mathematics Advisors educators to step outside themselves and reexamine features of PhD programs and elementary Denise S. Mewborn textbooks. Orrill’s title question invites mathematics educators to consider what we value in classroom Nicholas Oppong teaching, how we engage in and write about research on or with teachers, and what features of a PhD program can inform teacher education.
    [Show full text]
  • Spatial Accessibility to Amenities in Fractal and Non Fractal Urban Patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser
    Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser To cite this version: Cécile Tannier, Gilles Vuidel, Hélène Houot, Pierre Frankhauser. Spatial accessibility to amenities in fractal and non fractal urban patterns. Environment and Planning B: Planning and Design, SAGE Publications, 2012, 39 (5), pp.801-819. 10.1068/b37132. hal-00804263 HAL Id: hal-00804263 https://hal.archives-ouvertes.fr/hal-00804263 Submitted on 14 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TANNIER C., VUIDEL G., HOUOT H., FRANKHAUSER P. (2012), Spatial accessibility to amenities in fractal and non fractal urban patterns, Environment and Planning B: Planning and Design, vol. 39, n°5, pp. 801-819. EPB 137-132: Spatial accessibility to amenities in fractal and non fractal urban patterns Cécile TANNIER* ([email protected]) - corresponding author Gilles VUIDEL* ([email protected]) Hélène HOUOT* ([email protected]) Pierre FRANKHAUSER* ([email protected]) * ThéMA, CNRS - University of Franche-Comté 32 rue Mégevand F-25 030 Besançon Cedex, France Tel: +33 381 66 54 81 Fax: +33 381 66 53 55 1 Spatial accessibility to amenities in fractal and non fractal urban patterns Abstract One of the challenges of urban planning and design is to come up with an optimal urban form that meets all of the environmental, social and economic expectations of sustainable urban development.
    [Show full text]
  • Science • Art • Technology
    SCIENCE • ART • TECHNOLOGY 24 JULY THROUGH 10 AUGUST 2008 < Rinus Roelofs, PROGRAMME OF EVENTS new design for artwork consisting of a single 24 JULY – 10 AUGUST, 2008 continuous surface! (Location: Boer) BRIDGES, an annual conference founded in 1998 and serving since then 4 metres long, 2.5 metres high, as an international platform for artists, scientists and scholars working on corten steel the interface of science, art and technology will be held this year in Leeuwarden, The Netherlands from 24 - 29 July 2008. The approximately 200 visitors to the conference from 25 different countries will be coming to Leeuwarden to participate in a broad program of mathematical connections in art, music, architecture and science. Associated with the conference is a highly varied programme Gerard Caris > Polyhedral Net of cultural activities open to the general public that will run through Structure # 1, 10 August 2008. During the Open Day held on 29 July 2008, you can 160 x 95 x 95 cm become acquainted with a number of scientists and artists whilst young and old can participate in various workshops on Grote Kerkstraat in Exhibitions in churches Leeuwarden. The winners of the Gateways to Fryslân Competition will be announced during the conference. The artists exhibiting their work have come from abstract mathematical backgrounds to create many different visual products. Some artists, such as Gerard Caris (1925), limit their oeuvre to a single theme. In his case, this is the pentagon. In the village of Zweins, this artist will be showing a selection of his work including his ‘Polyhedral Net Structure # 1’.
    [Show full text]
  • Redalyc.Self-Similarity of Space Filling Curves
    Ingeniería y Competitividad ISSN: 0123-3033 [email protected] Universidad del Valle Colombia Cardona, Luis F.; Múnera, Luis E. Self-Similarity of Space Filling Curves Ingeniería y Competitividad, vol. 18, núm. 2, 2016, pp. 113-124 Universidad del Valle Cali, Colombia Available in: http://www.redalyc.org/articulo.oa?id=291346311010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ingeniería y Competitividad, Volumen 18, No. 2, p. 113 - 124 (2016) COMPUTATIONAL SCIENCE AND ENGINEERING Self-Similarity of Space Filling Curves INGENIERÍA DE SISTEMAS Y COMPUTACIÓN Auto-similaridad de las Space Filling Curves Luis F. Cardona*, Luis E. Múnera** *Industrial Engineering, University of Louisville. KY, USA. ** ICT Department, School of Engineering, Department of Information and Telecommunication Technologies, Faculty of Engineering, Universidad Icesi. Cali, Colombia. [email protected]*, [email protected]** (Recibido: Noviembre 04 de 2015 – Aceptado: Abril 05 de 2016) Abstract We define exact self-similarity of Space Filling Curves on the plane. For that purpose, we adapt the general definition of exact self-similarity on sets, a typical property of fractals, to the specific characteristics of discrete approximations of Space Filling Curves. We also develop an algorithm to test exact self- similarity of discrete approximations of Space Filling Curves on the plane. In addition, we use our algorithm to determine exact self-similarity of discrete approximations of four of the most representative Space Filling Curves.
    [Show full text]
  • Report on Bridges 2016—In Memory of Our Founder, Reza Sarhangi (1952–2016)
    COMMUNICATION Report on Bridges 2016—In Memory of Our Founder, Reza Sarhangi (1952–2016) Carlo H. Séquin For the last decade, the international Bridges conference has showcased mathematical connections in art, ar- chitecture, music, and many other cultural domains. It regularly attracts a few hundred participants—artists, mathematicians, computer scientists, teachers, etc.—from dozens of coun- tries. Sample Annual Bridges Conference Sites 2014 Seoul, South Korea 2011 Coimbra, Portugal 2010 Pécs, Hungary 2009 Banff, Canada 2008 Leeuwarden, Netherlands 2006 London, United Kingdom 2003 Granada, Spain Founder Reza Sarhangi at the CrossBorderScience 2012 Conference in Kaposvár. (The photo was first published in an article by Dirk This year the annual Bridges conference Huylebrouck, “Is mathematics ‘halal’?” in the Dutch popular science was held at the beautiful University of magazine Eos, www.kennislink.nl/publicaties/is-wiskunde-halal.) Jyväskylä in Finland. The conference comprised four days of talks and in- teractions plus an optional excursion day. The formal, refereed part of the conference entailed ten plenary pre- sentations, forty regular papers, six- ty-one short papers, and seventeen “hands-on” workshops. There was also a curated art exhibition, a festi- val of short mathematical movies, a session of mathematical poetry, and an informal theatre event performed by conference participants. More- Carlo H. Séquin is a professor in the grad- uate school, EECS Computer Science, UC Berkeley. His e-mail address is sequin@ berkeley.edu. For permission to reprint this article, please Henry Segerman and his Prizewinner Judy Holdener contact: 4π camera. discussing “Immersion.” [email protected]. DOI: http://dx.doi.org/10.1090/noti1471 152 NOTICES OF THE AMS VOLUME 64, NUMBER 2 COMMUNICATION about the role of this college in the the front, from one side, and from hills above Asheville, North Caro- the bottom with two suitably placed lina, promoting a spirit and interac- mirrors.
    [Show full text]
  • Current Practices in Quantitative Literacy © 2006 by the Mathematical Association of America (Incorporated)
    Current Practices in Quantitative Literacy © 2006 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2005937262 Print edition ISBN: 978-0-88385-180-7 Electronic edition ISBN: 978-0-88385-978-0 Printed in the United States of America Current Printing (last digit): 10 9 8 7 6 5 4 3 2 1 Current Practices in Quantitative Literacy edited by Rick Gillman Valparaiso University Published and Distributed by The Mathematical Association of America The MAA Notes Series, started in 1982, addresses a broad range of topics and themes of interest to all who are in- volved with undergraduate mathematics. The volumes in this series are readable, informative, and useful, and help the mathematical community keep up with developments of importance to mathematics. Council on Publications Roger Nelsen, Chair Notes Editorial Board Sr. Barbara E. Reynolds, Editor Stephen B Maurer, Editor-Elect Paul E. Fishback, Associate Editor Jack Bookman Annalisa Crannell Rosalie Dance William E. Fenton Michael K. May Mark Parker Susan F. Pustejovsky Sharon C. Ross David J. Sprows Andrius Tamulis MAA Notes 14. Mathematical Writing, by Donald E. Knuth, Tracy Larrabee, and Paul M. Roberts. 16. Using Writing to Teach Mathematics, Andrew Sterrett, Editor. 17. Priming the Calculus Pump: Innovations and Resources, Committee on Calculus Reform and the First Two Years, a subcomit- tee of the Committee on the Undergraduate Program in Mathematics, Thomas W. Tucker, Editor. 18. Models for Undergraduate Research in Mathematics, Lester Senechal, Editor. 19. Visualization in Teaching and Learning Mathematics, Committee on Computers in Mathematics Education, Steve Cunningham and Walter S.
    [Show full text]
  • Fractal Image Compression, AK Peters, Wellesley, 1992
    FRACTAL STRUCTURES: IMAGE ENCODING AND COMPRESSION TECHNIQUES V. Drakopoulos Department of Computer Science and Biomedical Informatics 2 Applications • Biology • Botany • Chemistry • Computer Science (Graphics, Vision, Image Processing and Synthesis) • Geology • Mathematics • Medicine • Physics 3 Bibliography • Barnsley M. F., Fractals everywhere, 2nd ed., Academic Press Professional, San Diego, CA, 1993. • Barnsley M. F., SuperFractals, Cambridge University Press, New York, 2006. • Barnsley M. F. and Anson, L. F., The fractal transform, Jones and Bartlett Publishers, Inc, 1993. • Barnsley M. F. and Hurd L. P., Fractal image compression, AK Peters, Wellesley, 1992. • Barnsley M. F., Saupe D. and Vrscay E. R. (eds.), Fractals in multimedia, Springer- Verlag, New York, 2002. • Falconer K. J., Fractal geometry: Mathematical foundations and applications, Wiley, Chichester, 1990. • Fisher Y., Fractal image compression (ed.), Springer-Verlag, New York, 1995. • Hoggar S. G., Mathematics for computer graphics, Cambridge University Press, Cambridge, 1992. • Lu N., Fractal imaging, Academic Press, San Diego, CA, 1997. • Mandelbrot B. B., Fractals: Form, chance and dimension, W. H. Freeman, San Francisco, 1977. • Mandelbrot B. B., The fractal geometry of nature, W. H. Freeman, New York, 1982. • Massopust P. R., Fractal functions, fractal surfaces and wavelets, Academic Press, San Diego, CA, 1994. • Nikiel S., Iterated function systems for real-time image synthesis, Springer-Verlag, London, 2007. • Peitgen H.--O. and Saupe D. (eds.), The science
    [Show full text]
  • Bridges 2021 Mathematics・Art・Music・Architecture・Culture Conference Proceedings
    Bridges 2021 Mathematics・Art・Music・Architecture・Culture Conference Proceedings Editors Program Chair David Swart Miovision, Inc. Waterloo, Ontario, Canada Short Papers Chair Workshop Papers Chair Frank Farris Eve Torrence Santa Clara University Mathematics Department Santa Clara, California, USA Randolph-Macon College Ashland, Virginia, USA Production Chair Craig S. Kaplan Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, Canada Bridges 2021 Conference Proceedings (www.bridgesmathart.org). All rights reserved. General permission is granted to the public for non-commercial reproduction, in limited quantities, of individual articles, provided authorization is obtained from individual authors and a complete reference is given for the source. All copyrights and responsibilities for individual articles in the 2021 Conference Proceedings remain under the control of the original authors. ISBN: 978-1-938664-39-7 ISSN: 1099-6702 Published by Tessellations Publishing, Phoenix, Arizona, USA (© 2021 Tessellations) Distributed by MathArtFun.com (mathartfun.com). Cover design: Uyen Nguyen, New York City, New York, USA. Image credits: David Swart; H. A. Verrill; Anduriel Widmark; Jin Yamauchi and Chamberlain Fong; Robert Bosch and Zejian Huang; Loe Feijs; Carlo H. Séquin; Roger Antonsen and Laura Taalman; Stefan Pautze; Chirag Mehta; Ulrich Reitenbuch, Martin Skrodzki, and Konrad Polthier; Frank A. Farris; John Berglund and Craig S. Kaplan. Bridges Board of Directors Susan Goldstine George Hart Department of Mathematics and
    [Show full text]