Axiro3 (A = Li, Na Or H) for the Electrochemical Storage and Conversion of Energy Paul-Emile Pearce
Total Page:16
File Type:pdf, Size:1020Kb
AxIrO3 (A = Li, Na or H) for the electrochemical storage and conversion of energy Paul-Emile Pearce To cite this version: Paul-Emile Pearce. AxIrO3 (A = Li, Na or H) for the electrochemical storage and conversion of energy. Chemical Physics [physics.chem-ph]. Sorbonne Université, 2019. English. NNT : 2019SORUS313. tel-02862134 HAL Id: tel-02862134 https://tel.archives-ouvertes.fr/tel-02862134 Submitted on 9 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale 397 Collège de France : Chaire de Chimie du Solide et Energie AxIrO3 (A = Li, Na ou H) pour le stockage et la conversion électrochimique de l’énergie Par Paul-Emile Pearce Thèse de doctorat de Physique et Chimie des Matériaux Dirigée par Jean-Marie Tarascon et Gwenaëlle Rousse Présentée et soutenue publiquement le 8 octobre 2019 Devant un jury composé de : Dr. Alain Demourgues Directeur de recherche, ICMCB, Bordeaux Rapporteur Prof. Lorenzo Stievano Professeur, ICGM, Montpellier Rapporteur Dr. Valérie Pralong Directrice de recherche, CRISMAT, Caen Examinatrice Dr. David Portehault Chargé de recherche, LCMCP, Paris Examinateur Prof. Dominique Larcher Professeur, LRCS, Amiens Examinateur Prof. Jean-Marie Tarascon Professeur, Collège de France, Paris Directeur Dr. Gwenaëlle Rousse Enseignante-Chercheuse, Sorbonne Université Directrice Dr. Alexis Grimaud Chargé de recherche, Collège de France, Paris Invité du jury Sorbonne Université Doctoral School 397 Collège de France : Chaire de Chimie du Solide et Energie AxIrO3 (A = Li, Na or H) for the electrochemical storage and conversion of energy By Paul-Emile Pearce PhD thesis of Physics and Chemistry of Materials Supervised by Jean-Marie Tarascon and Gwenaëlle Rousse Presented and defended publicly on October the 8th 2019 In front of the following jury : Dr. Alain Demourgues Research Director, ICMCB, Bordeaux Referee Prof. Lorenzo Stievano Professor, ICGM, Montpellier Referee Dr. Valérie Pralong Research Director, CRISMAT, Caen Examiner Dr. David Portehault Research Scientist, LCMCP, Paris Examiner Prof. Dominique Larcher Professor, LRCS, Amiens Examiner Prof. Jean-Marie Tarascon Professor, Collège de France, Paris Supervisor Dr. Gwenaëlle Rousse Associate Professor, Sorbonne University Supervisor Dr. Alexis Grimaud Research Scientist, Collège de France, Paris Invited member Acknowledgements I am immensely grateful to Jean-Marie Tarascon for giving me the opportunity to be a part of this amazing lab in such a prestigious place as the Collège de France. His fierce dedication to science, to his students and to the exploration of fundamental questions is truly awesome. I have learned tremendously from working with and around him. I have been lucky to share an office with Gwenaëlle Rousse whose joyfulness knows no end and whose laughter is so contagious and uplifting. She has been a great teacher and helped further my understanding of crystallography and diffraction techniques which compose a great deal of my work. I would like to acknowledge the great help of Alexis Grimaud and his mentorship. You are just as impressive as Jean-Marie in your dedication to science and your students and I feel fortunate to have worked with you during such an exciting time for catalysis. This work could not have been carried out without the Collège de France and the funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. I would like to express my sincere appreciation and gratitude to Chunzhen Yang and Gaurav Assat for their collaborations, their valuable input and their help during the past two years. This thesis would not be the same without you. When I first arrived in this lab, Arnaud Perez really took the time and had the patience to show me around, give me tips and tricks for making batteries, plotting data efficiently and so much more and for this I am grateful. I have had the great pleasure of spending these few years working with Daniel Alves Dalla Corte who has truly inspired me. He has the special ability of being unconditionally kind and patient with everyone in addition to being creative, iii resourceful, organized and willing. He has been greatly supportive and has become a true friend. Thanks for everything Dani. There are of course others which have contributed to the good mood and sound scientific discussions such as Sujoy Saha, Pierre Lemaire, Nicolas Dubouis, Antonella Iadecola, Boris Mirvaux, Ignacio Blázquez Alcover, Quentin Jacquet, Romain Dugas, Florent Lepoivre, Sathiya Mariyappan and Jessica Duvoisin. I am grateful to Lorenzo Stievano and Alain Demourgues for accepting the role of referee of this thesis and of course to Valérie Pralong, Dominique Larcher and David Portehault for agreeing to be part of the jury. I thank all of them for taking the time out of their summers to read my thesis and can only hope they found it worthy of their efforts. Finally, I cannot begin to express my gratitude to my family, my friends and my amazing companion Julie who supported me during these three years. Thank you so much for being there in both joyful and difficult times. iv Summary Acknowledgements ............................................................................................................... iii Summary ................................................................................................................................ v General introduction .............................................................................................................. 1 Chapter I. Introduction to battery technologies ................................................................ 4 Prequel to the Li based energy storage technologies ................................................. 5 I-1 Lithium batteries .................................................................................................. 6 I-2 Li-ion batteries (LIBs) .......................................................................................... 9 I-3 Improving the capacity of LIBs.......................................................................... 11 I-4 Outgrowing classical cationic redox .................................................................. 13 I-5 Origin of performance decay in Li-rich layered oxides ..................................... 18 I-6 Origin of anionic redox ...................................................................................... 19 I-7 Na-ion batteries (NIBs) ...................................................................................... 22 Conclusion ............................................................................................................... 24 Chapter II. Structural and electronic implications of delithiation for the β-Li2IrO3 ........ 26 II-1 Introduction ....................................................................................................... 27 II-2 Synthesis and structure ..................................................................................... 28 II-2-a Synthesis ............................................................................................ 28 II-2-b Structural characterization ................................................................. 30 v II-3 Electrochemical performances .......................................................................... 33 II-4 Determining anionic and cationic participation during delithiation ................. 38 II-4-a X-ray Absorption Near Edge Structure (XANES) ............................. 38 II-4-b Hard X-ray Photoelectron Spectroscopy (HAXPES) ........................ 42 II-5 Structural evolution during cycling ................................................................... 46 II-5-a Synchrotron X-ray diffraction (SXRD) ............................................. 46 II-5-b Neutron powder diffraction ............................................................... 48 II-5-c Extended X-ray absorption fine structure (EXAFS) .......................... 55 Conclusion ............................................................................................................... 59 + Chapter III. IrO3 as a Na host with an active oxygen network ........................................ 61 Introduction .............................................................................................................. 62 III-1 Synthesis .......................................................................................................... 63 III-2 Structural Characterization .............................................................................. 64 III-3 Electrochemical behavior ................................................................................ 67 III-4 Anionic redox activity ..................................................................................... 69 III-5 Operando XRD ................................................................................................ 70 III-6 Long term cycling ............................................................................................ 76 III-7 Thermal stability