Inhibition of Glucose-Stimulated Insulin Secretion by KCNJ15, a Newly Identified Susceptibility Gene for Type 2 Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

Inhibition of Glucose-Stimulated Insulin Secretion by KCNJ15, a Newly Identified Susceptibility Gene for Type 2 Diabetes ORIGINAL ARTICLE Inhibition of Glucose-Stimulated Insulin Secretion by KCNJ15, a Newly Identified Susceptibility Gene for Type 2 Diabetes Koji Okamoto,1,2 Naoko Iwasaki,3,4,5 Kent Doi,2 Eisei Noiri,2 Yasuhiko Iwamoto,3 Yasuko Uchigata,3 Toshiro Fujita,2 and Katsushi Tokunaga1 Potassium inwardly rectifying channel, subfamily J, member 15 also called IRKK, KIR1.3, and KIR4.2 (8), as a suscepti- (KCNJ15) is a type 2 diabetes–associated risk gene, and Kcnj15 bility gene for type 2 diabetes (9) in subjects with a mean 2 overexpression suppresses insulin secretion in rat insulinoma BMI of ;23.0 kg/m (10). The synonymous single nucleo- (INS1) cells. The aim of the current study was to characterize tide polymorphism of KCNJ15 (C566T at rs3746876 in the role of Kcnj15 by knockdown of this gene in vitro and in vivo. exon 4) increases the risk of type 2 diabetes in Japanese, Human islet cells were used to determine the expression of and the risk allele (T) is associated with increased levels of KCNJ15. Expression of KCNJ15 mRNA in islets was higher in KCNJ15 mRNA in the peripheral blood of healthy volun- subjects with type 2 diabetes. In INS1 cells, Kcnj15 expression teers (9). Clinical observations reveal that subjects with was induced by high glucose–containing medium. Regulation of Kcnj15 by glucose and its effect on insulin secretion were ana- type 2 diabetes carrying the risk allele are more likely to lyzed in INS1 cells and in normal mice and diabetic mice by the require insulin, indicating that insulin secretion is low in inactivation of Kcnj15 using small interfering RNA. Knockdown this group. Moreover, Kcnj15 overexpression decreases of Kcnj15 increased the insulin secretion in vitro and in vivo. the insulin response to glucose in rat insulinoma (INS1) KCNJ15 and Ca2+-sensing receptor (CsR) interact in the kidney. cells (9). Binding of Kcnj15 with CsR was also detected in INS1 cells. In In the current study, we examined KCNJ15 expression conclusion, downregulation of Kcnj15 leads to increased insulin in human pancreatic islets from normal and type 2 diabetic secretion in vitro and in vivo. The mechanism to regulate insulin patients and investigated the effects of Kcnj15 on insulin se- secretion involves KCNJ15 and CsR. cretioninvitroandinvivo.Kcnj15 was upregulated by glucose and had a significant inhibitory effect on insulin secretion. We also confirmed that Kcnj15 interacts with Ca2+-sensing receptor (SCARA3, CsR) in INS1 cells, suggesting that ype 2 diabetes is a leading health problem in KCNJ15 is involved in regulating insulin secretion. the developed world, and the disease is becom- ing increasingly common in developing countries Tas well (1,2). Clinical studies indicate that type 2 RESEARCH DESIGN AND METHODS diabetes comprises heterogeneous phenotypes among Immunofluorescence staining of KCNJ15 protein in islets of Langerhans. various ethnic groups. The prevalence of type 2 diabetes in Immunofluorescence double staining for KCNJ15 and insulin was performed Japan has dramatically increased in the past 40 years, and using frozen sections of pancreas derived from humans (Human Tissues & the same trend was recently reported in other Asian Biofluids Bank, Asterand, Detroit, MI), C57BL/6 mice (10-week-old male), and countries, due primarily to genetic factors in combination Sprague-Dawley rats (10-week-old male). When possible, the human tissues with behavioral changes, such as high-calorie diets and obtained from Asterand are obtained with written informed consent and – institutional review board approval; see the following web site for details on sedentary lifestyles (3 6). Despite the rise in type 2 diabetes, Asterand’s policies regarding responsible research and informed consent (http:// Asian patients are still characterized as having lower body www.asterand.com/Asterand/about/ethics.htm). Human pancreatic tissue was mass indices and insulin levels compared with European, prepared from diabetic patients and nondiabetic control subjects during sur- Mexican American, or African American type 2 diabetic gery. Tissue sections (5-mm thick) were cut with a cryotome and mounted on patients (7). slides. The sections were then dried at room temperature and fixed with ace- fi tone for 10 min. The slides were washed three times with PBS and incubated We recently identi ed potassium inwardly rectifying overnight with anti-KCNJ15 goat antibody (Santa Cruz Biotechnology, Santa channel, subfamily J, member 15 (KCNJ15), a member of Cruz, CA) and then anti-insulin rabbit antibody (Santa Cruz Biotechnology) for the potassium inwardly rectifying channel (KIR) family, 1 h. After washing with PBS, the slides were incubated for 40 min with either Alexa-488– or Alexa-633–conjugated secondary antibody (Invitrogen, Carlsbad, CA). After washing with PBS, sections were visualized using a confocal laser From the 1Department of Human Genetics, Graduate School of Tokyo Univer- scanning microscope (LSM 510 Meta NLO Imaging System; Carl Zeiss, sity, Tokyo, Japan; the 2Department of Nephrology and Endocrinology, Grad- Oberkochen, Germany). uate School of Medicine, University of Tokyo, Tokyo, Japan; the 3Diabetes KCNJ15 mRNA expression in the islets of human subjects. Optimal Center, Tokyo Women’s Medical University, Tokyo, Japan; the 4Institute of cutting temperature compound (Sakura Finetechnical, Tokyo, Japan) was added Integrated Medical Science, Tokyo Women’s Medical University, Tokyo, to fresh-frozen human pancreatic tissues (Human Tissues & Biofluids Bank), and 5 ’ Japan; and the Institute of Medical Genetics, Tokyo Women s Medical Uni- the tissue was sectioned at a thickness of 10 mm. The sections were mounted on versity, Tokyo, Japan. membrane-coated slides, and the optimal cutting temperature compound was Corresponding authors: Katsushi Tokunaga, [email protected], and Naoko Iwasaki, [email protected]. removed by dipping the slides six times in ice-cold RNase-free water. The Received 5 September 2011 and accepted 27 February 2012. sections were then dehydrated in ice-cold 70% ethanol for 3 min. Laser micro- DOI: 10.2337/db11-1201 dissection and pressure catapulting were performed on the caps of microtubes Ó 2012 by the American Diabetes Association. Readers may use this article as filled with 20 mL lysis buffer (PALM MicroLaser System; Carl Zeiss). Total RNA long as the work is properly cited, the use is educational and not for profit, was extracted from microdissected cells from both nondiabetic control subjects and the work is not altered. See http://creativecommons.org/licenses/by and patients with type 2 diabetes. First-strand cDNA synthesis was performed -nc-nd/3.0/ for details. using a MessageBOOSTER cDNA synthesis kit (Epicentre Biotechnologies, See accompanying editorial, p. XXX. Madison, WI). Relative mRNA expression was compared as described below. diabetes.diabetesjournals.org DIABETES 1 Diabetes Publish Ahead of Print, published online May 7, 2012 Kcnj15 REGULATES INSULIN SECRETION TABLE 1 siRNA sequences Target gene Sequence Rat Kcnj15 siRNA Sense 59-GCAGGCGCUUAAUCUGGGCAUUGAA-39 Antisense 59-UUCAAUGCCCAGAUUAAGCGCCUGC-39 Rat CsR siRNA Sense 1 59-CAGGGAUGUACUGUGUGUCACUGAA-39 Antisense 1 59-UUCAGUGACACACAGUACAUCCCUG-39 Sense 2 59-GAGAUGGGCACUUGUUGGUUCUCCA-39 Antisense 2 59-UGGAGAACCAACAAGUGCCCAUCUC-39 Sense 3 59-CAGCUACAACUGGACAAUAUCUCUU-39 Antisense 3 59-AAGAGAUAUUGUCCAGUUGUAGCUG-39 Mouse Kcnj15 siRNA Sense 59-CCUGCUACAGCAGAGCAAUGUCUGA-39 Antisense 59-UCAGACAUUGCUCUGCUGUAGCAGG-39 Regulation of Kcnj15 expression by glucose in INS1 cells and HEK293 59-ATGTCAGAAGACAAGATCACCGGA-39, reverse: 59-CCCGAGCCACCCAC- cells. Changes in the expression of Kcnj15 mRNA in INS1 cells induced by CAAAGAAT-39;forratIns1&2,forward:59-TGCCCGGGCTTTTGTCAAAC-39,re- 5 and 25 mmol/L glucose were compared with changes in the expression of verse: 59-CTCCAGTGCCAAGGTCTGAA-39; and for human & rat & mouse B-actin, Kcnj11, Glut2,andinsulin genes. Changes in the expression of KCNJ15 mRNA in forward: 59-CGCACCACTGGCATTGTCAT-39,reverse:59-TTCTCCTTGATGT- HEK293 cells induced by 5, 25, 45, and 65 mmol/L glucose were also compared. CACGCAC-39. All were obtained from Invitrogen. Kcnj15 and actin protein levels Total RNA was isolated from cultured cells and tissues using TRIzol (Invitrogen). in cultured INS1 cell lysates were detected by Western blotting. INS1 cells were After DNase I treatment (Roche, Lewes, East Sussex, U.K.), cDNA was synthesized incubated for 48 h and harvested. using oligo (dT) primers and ImProm-II reverse transcriptase (Promega, Madison, Inactivation of Kcnj15 and CsR in INS1 cells by small interfering RNA. WI). Quantitative real-time PCR was performed using SYBR green (Applied Bio- To clarify the role of Kcnj15, we knocked down Kcnj15 in INS1 cells using systems, Foster City, CA). The relative expression of those genes was normalized small interfering (si)RNA. A control siRNA (Stealth RNAi Negative Control to b-actin. All samples were analyzed in duplicate. The primers are as follows: Med GC), predesigned siRNA against Kcnj15 (NM_001107285.1_stealth_1056), for human KCNJ15,forward:59-GGAATGTCCTCATGCCATCT-39, reverse: 59- and CsR (NM_001108870.1) were obtained from Invitrogen (Table 1). Cultured TTCTGCTTGGTGATGACTGC-39;forratKcnj15,forward:59-CCGTTCCATCACA- INS1 cells were transfected with either control siRNA, Kcnj15 siRNA, and/or GAGGAGT-39, reverse: 59-GCTTTTTGGGTCTTGCAATC-39; for mouse Kcnj15, CsR siRNA using Lipofectamine 2000 (Invitrogen). Cells were incubated for forward: 59-GTGCCAGCTCTCTGGAAAAC-39, reverse: 59-AGGGACTCTCGGAA- 72 h to
Recommended publications
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • Contribution of the Potassium / Chloride Cotransporter KCC2 to Hippocampal Rhythmopathy Marie Goutierre
    Contribution of the potassium / chloride cotransporter KCC2 to hippocampal rhythmopathy Marie Goutierre To cite this version: Marie Goutierre. Contribution of the potassium / chloride cotransporter KCC2 to hippocampal rhythmopathy. Neurobiology. Sorbonne Université, 2018. English. NNT : 2018SORUS600. tel- 02613734 HAL Id: tel-02613734 https://tel.archives-ouvertes.fr/tel-02613734 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale n°158 - Cerveau Cognition Comportement - Institut du Fer à Moulin Equipe « Plasticité des réseaux corticaux et épilepsie » Contribution of the potassium / chloride cotransporter KCC2 to hippocampal rhythmopathy. Implication du transporteur potassium / chlore KCC2 dans la rythmopathie hippocampique. Par Marie GOUTIERRE Thèse de doctorat de Neurosciences Dirigée par Dr Jean-Christophe PONCER Présentée et soutenue publiquement le 28 juin 2018 Devant un jury composé de : Pr Ann LOHOF Présidente du jury Pr Claudio RIVERA Rapporteur Pr Andrew TREVELYAN Rapporteur Dr Lisa ROUX Examinateur Dr Corentin LE MAGUERESSE Examinateur Dr Jean-Christophe PONCER Directeur de thèse ABSTRACT In the CNS, synaptic release of the neurotransmitter GABA is responsible for fast inhibitory transmission. This is predominatly mediated by chloride flow through GABAA receptors.
    [Show full text]
  • Potassium Channels in Epilepsy
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Potassium Channels in Epilepsy Ru¨diger Ko¨hling and Jakob Wolfart Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany Correspondence: [email protected] This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dy- namic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With 80 potassium channel types, of which 10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. INTRODUCTION TO POTASSIUM evolutionary appearance of voltage-gated so- CHANNELS dium (Nav)andcalcium (Cav)channels, Kchan- nels are further diversified in relation to their otassium (K) channels are related to epilepsy newer function, namely, keeping neuronal exci- Psyndromes on many different levels, ranging tation within limits (Anderson and Greenberg from direct control of neuronal excitability and 2001; Hille 2001).
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Renal Physiology
    Renal Physiology Distal Convoluted Tubule | Arohan R. Subramanya*†‡ and David H. Ellison§ ¶ Abstract The distal convoluted tubule is the nephron segment that lies immediately downstream of the macula densa. Although short in length, the distal convoluted tubule plays a critical role in sodium, potassium, and divalent cation homeostasis. Recent genetic and physiologic studies have greatly expanded our understanding of how the distal convoluted tubule regulates these processes at the molecular level. This article provides an update on the distal convoluted tubule, highlighting concepts and pathophysiology relevant to clinical Departments of *Medicine and †Cell practice. Biology, University of Clin J Am Soc Nephrol 9: 2147–2163, 2014. doi: 10.2215/CJN.05920613 Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; ‡Veterans Affairs Introduction structure to glucocorticoids, such as cortisol, and both Pittsburgh Healthcare The distal convoluted tubule (DCT) is the portion aldosterone and cortisol bind to the mineralocorticoid System, Pittsburgh, of the nephron that is immediately downstream of receptor with nearly equal affinity (3). Although min- Pennsylvania; the macula densa. Although the DCT is the shortest eralocorticoid receptors are expressed throughout the Departments of §Medicine and | segment of the nephron, spanning only about 5 mm entire DCT, the DCT2 is sensitive to the actions of Physiology and in length in humans (1), it plays a critical role in a va- aldosterone, because it expresses an enzyme called Pharmacology, riety of homeostatic processes, including sodium chlo- 11-b hydroxysteroid dehydrogenase 2 (11-bHSD2). Oregon Health and ride reabsorption, potassium secretion, and calcium 11-bHSD2 metabolizes cortisol to the inactive metab- Science University, Portland, Oregon; and and magnesium handling.
    [Show full text]
  • Concerted Action of KCNJ15/Kir4.2 and Intracellular Polyamines in Sensing Physiological Electric Fields for Galvanotaxis
    Concerted action of KCNJ15/Kir4.2 and intracellular polyamines in sensing physiological electric fields for galvanotaxis Ken-ichi Nakajima1, Min Zhao1,2 1Department of Dermatology, 2Department of Ophthalmology, School of Medicine, University of California Davis Correspondence to: Min Zhao; Email: [email protected] Keywords: inwardly rectifying K+ channel, polyamine, galvanotaxis, cell migration, electric field Autocommentary to: Nakajima K, Zhu K, Sun YH, Hegyi B, Zeng Q, Murphy CJ, Small JV, Chen-Izu Y, Izumiya Y, Penninger JM, Zhao M. KCNJ15/Kir4.2 couples with polyamines to sense weak extracellular electric fields in galvanotaxis. Nat Commun. 2015;6:8532. doi: 10.1038/ncomms9532. PubMed PMID: 26449415; PMCID: PMC4603535 Many motile cells, including epithelial cells, keratinocytes, leukocytes and cancer cells, can sense extracellular weak electric fields (EFs), and migrate directionally, a phenomenon termed electrotaxis/galvanotaxis (1). Direct current EFs have been detected at wounds, tissue lesions and during development in many organisms, including human. The molecular mechanisms by which cell senses extracellular EFs, however, remain largely unknown (1). "Taxis" is the directional movement of a cell (or a free-moving organism) in response to environmental stimuli, and plays fundamental roles at both cellular and tissue levels (2). Many types of taxis have been identified, and some of them are well characterized (2). For example, directional migration of cells toward or away from a soluble chemical compound is known as chemotaxis, and many receptors that are necessary for sensing the chemical compound and transduce its signals to intracellular downstream pathways have been identified and well characterized (3). Previous research demonstrated that galvanotaxis shares some similar signaling pathways with chemotaxis (4).
    [Show full text]
  • Ion Channels 3 1
    r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia.
    [Show full text]
  • Stem Cells and Ion Channels
    Stem Cells International Stem Cells and Ion Channels Guest Editors: Stefan Liebau, Alexander Kleger, Michael Levin, and Shan Ping Yu Stem Cells and Ion Channels Stem Cells International Stem Cells and Ion Channels Guest Editors: Stefan Liebau, Alexander Kleger, Michael Levin, and Shan Ping Yu Copyright © 2013 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Stem Cells International.” All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Nadire N. Ali, UK Joseph Itskovitz-Eldor, Israel Pranela Rameshwar, USA Anthony Atala, USA Pavla Jendelova, Czech Republic Hannele T. Ruohola-Baker, USA Nissim Benvenisty, Israel Arne Jensen, Germany D. S. Sakaguchi, USA Kenneth Boheler, USA Sue Kimber, UK Paul R. Sanberg, USA Dominique Bonnet, UK Mark D. Kirk, USA Paul T. Sharpe, UK B. Bunnell, USA Gary E. Lyons, USA Ashok Shetty, USA Kevin D. Bunting, USA Athanasios Mantalaris, UK Igor Slukvin, USA Richard K. Burt, USA Pilar Martin-Duque, Spain Ann Steele, USA Gerald A. Colvin, USA EvaMezey,USA Alexander Storch, Germany Stephen Dalton, USA Karim Nayernia, UK Marc Turner, UK Leonard M. Eisenberg, USA K. Sue O’Shea, USA Su-Chun Zhang, USA Marina Emborg, USA J. Parent, USA Weian Zhao, USA Josef Fulka, Czech Republic Bruno Peault, USA Joel C. Glover, Norway Stefan Przyborski, UK Contents Stem Cells and Ion Channels, Stefan Liebau,
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Altered Physiological Functions and Ion Currents in Atrial Fibroblasts From
    Physiological Reports ISSN 2051-817X ORIGINAL RESEARCH Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation Claire Poulet1, Stephan Kunzel€ 1, Edgar Buttner€ 1, Diana Lindner2, Dirk Westermann2 & Ursula Ravens1 1 Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany 2 Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany Keywords Abstract Atrial fibrillation, electrophysiology, fibroblasts. The contribution of human atrial fibroblasts to cardiac physiology and patho- physiology is poorly understood. Fibroblasts may contribute to arrhythmogen- Correspondence esis through fibrosis, or by directly altering electrical activity in Claire Poulet, Imperial College London, Imperial cardiomyocytes. The objective of our study was to uncover phenotypic differ- Centre for Translational and Experimental ences between cells from patients in sinus rhythm (SR) and chronic atrial fib- Medicine, Hammersmith Campus, Du Cane rillation (AF), with special emphasis on electrophysiological properties. We Road, London W12 0NN, UK isolated fibroblasts from human right atrial tissue for patch-clamp experi- Tel: +44 207 594 2738 Fax: +44 207 594 3653 ments, proliferation, migration, and differentiation assays, and gene expression E-mail: [email protected] profiling. In culture, proliferation and migration of AF fibroblasts were strongly impaired but differentiation into myofibroblasts was increased. This Present Addresses was associated with a higher number of AF fibroblasts expressing functional Claire Poulet, Imperial College London, Nav1.5 channels. Strikingly Na+ currents were considerably larger in AF cells. National Heart and Lung Institute, London, UK Blocking Na+ channels in culture with tetrodotoxin did not affect prolifera- tion, migration, or differentiation in neither SR nor AF cells.
    [Show full text]
  • Pflugers Final
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Serveur académique lausannois A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Sylvain Pradervand2, Annie Mercier Zuber1, Gabriel Centeno1, Olivier Bonny1,3,4 and Dmitri Firsov1,4 1 - Department of Pharmacology and Toxicology, University of Lausanne, 1005 Lausanne, Switzerland 2 - DNA Array Facility, University of Lausanne, 1015 Lausanne, Switzerland 3 - Service of Nephrology, Lausanne University Hospital, 1005 Lausanne, Switzerland 4 – these two authors have equally contributed to the study to whom correspondence should be addressed: Dmitri FIRSOV Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925406 Fax: ++ 41-216925355 e-mail: [email protected] and Olivier BONNY Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925417 Fax: ++ 41-216925355 e-mail: [email protected] 1 Abstract The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD) (Zuber et al., 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining of salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G protein-coupled receptors (GPCR) or serine-threonine kinases exhibit high expression levels but remain unassigned to a specific renal function.
    [Show full text]