Formation and Evolution of the Two 4/3 Resonant Giants Planets in HD 200964 M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Ghost Imaging of Space Objects
Ghost Imaging of Space Objects Dmitry V. Strekalov, Baris I. Erkmen, Igor Kulikov, and Nan Yu Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 USA NIAC Final Report September 2014 Contents I. The proposed research 1 A. Origins and motivation of this research 1 B. Proposed approach in a nutshell 3 C. Proposed approach in the context of modern astronomy 7 D. Perceived benefits and perspectives 12 II. Phase I goals and accomplishments 18 A. Introducing the theoretical model 19 B. A Gaussian absorber 28 C. Unbalanced arms configuration 32 D. Phase I summary 34 III. Phase II goals and accomplishments 37 A. Advanced theoretical analysis 38 B. On observability of a shadow gradient 47 C. Signal-to-noise ratio 49 D. From detection to imaging 59 E. Experimental demonstration 72 F. On observation of phase objects 86 IV. Dissemination and outreach 90 V. Conclusion 92 References 95 1 I. THE PROPOSED RESEARCH The NIAC Ghost Imaging of Space Objects research program has been carried out at the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011 to September 2012) and Phase II (October 2012 to September 2014). The research team consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul Nu˜nez of Coll`ege de France & Observatoire de la Cˆote d’Azur; and technical support from Victor White and Pierre Echternach of JPL. -
Two Jovian Planets Around the Giant Star HD 202696: a Growing Population of Packed Massive Planetary Pairs Around Massive Stars?
The Astronomical Journal, 157:93 (13pp), 2019 March https://doi.org/10.3847/1538-3881/aafa11 © 2019. The American Astronomical Society. All rights reserved. Two Jovian Planets around the Giant Star HD 202696: A Growing Population of Packed Massive Planetary Pairs around Massive Stars? Trifon Trifonov1 , Stephan Stock2 , Thomas Henning1 , Sabine Reffert2 , Martin Kürster1 , Man Hoi Lee3,4 , Bertram Bitsch1 , R. Paul Butler5 , and Steven S. Vogt6 1 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany; [email protected] 2 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, D-69117 Heidelberg, Germany 3 Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 4 Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong 5 Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA 6 UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA Received 2018 September 24; revised 2018 December 18; accepted 2018 December 18; published 2019 February 4 Abstract We present evidence for a new two-planet system around the giant star HD 202696 (=HIP 105056, BD +26 4118). The discovery is based on public HIRES radial velocity (RV) measurements taken at Keck Observatory between +0.09 2007 July and 2014 September. We estimate a stellar mass of 1.91-0.14 M for HD 202696, which is located close to the base of the red giant branch. A two-planet self-consistent dynamical modeling MCMC scheme of the RV = +8.9 = +20.7 data followed by a long-term stability test suggests planetary orbital periods of Pb 517.8-3.9 and Pc 946.6-20.9 = +0.078 = +0.065 = +0.22 days, eccentricities of eb 0.011-0.011 and ec 0.028-0.012, and minimum dynamical masses of mb 2.00-0.10 = +0.18 fi and mc 1.86-0.23 MJup, respectively. -
Pdfs) for Each Orbital Parameter Used in and (3) in Cumming Et Al
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors The Astrophysical Journal, 709:396–410, 2010 January 20 doi:10.1088/0004-637X/709/1/396 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. RETIRED A STARS AND THEIR COMPANIONS. III. COMPARING THE MASS–PERIOD DISTRIBUTIONS OF PLANETS AROUND A-TYPE STARS AND SUN-LIKE STARS∗ Brendan P. Bowler1, John Asher Johnson1,7, Geoffrey W. Marcy2, Gregory W. Henry3, Kathryn M. G. Peek2, Debra A. Fischer4, Kelsey I. Clubb4, Michael C. Liu1, Sabine Reffert5, Christian Schwab5, and Thomas B. Lowe6 1 Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA; [email protected] 2 Department of Astronomy, University of California, MS 3411, Berkeley, CA 94720-3411, USA 3 Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209, USA 4 Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132, USA 5 ZAH-Landessternwarte, Konigstuhl¨ 12, 69117 Heidelberg, Germany 6 UCO/Lick Observatory, Santa Cruz, CA 95064, USA Received 2009 June 10; accepted 2009 December 3; published 2009 December 31 ABSTRACT We present an analysis of ∼5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass (IM) subgiants (1.5 M∗/M 2.0) with the goal of measuring the occurrence rate of Jovian planets around (evolved) A-type stars and comparing the distributions of their orbital and physical characteristics to those of planets around Sun-like stars. -
AMD-Stability and the Classification of Planetary Systems
A&A 605, A72 (2017) DOI: 10.1051/0004-6361/201630022 Astronomy c ESO 2017 Astrophysics& AMD-stability and the classification of planetary systems? J. Laskar and A. C. Petit ASD/IMCCE, CNRS-UMR 8028, Observatoire de Paris, PSL, UPMC, 77 Avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] Received 7 November 2016 / Accepted 23 January 2017 ABSTRACT We present here in full detail the evolution of the angular momentum deficit (AMD) during collisions as it was described in Laskar (2000, Phys. Rev. Lett., 84, 3240). Since then, the AMD has been revealed to be a key parameter for the understanding of the outcome of planetary formation models. We define here the AMD-stability criterion that can be easily verified on a newly discovered planetary system. We show how AMD-stability can be used to establish a classification of the multiplanet systems in order to exhibit the planetary systems that are long-term stable because they are AMD-stable, and those that are AMD-unstable which then require some additional dynamical studies to conclude on their stability. The AMD-stability classification is applied to the 131 multiplanet systems from The Extrasolar Planet Encyclopaedia database for which the orbital elements are sufficiently well known. Key words. chaos – celestial mechanics – planets and satellites: dynamical evolution and stability – planets and satellites: formation – planets and satellites: general 1. Introduction motion resonances (MMR, Wisdom 1980; Deck et al. 2013; Ramos et al. 2015) could justify the Hill-type criteria, but the The increasing number of planetary systems has made it nec- results on the overlap of the MMR island are valid only for close essary to search for a possible classification of these planetary orbits and for short-term stability. -
Arxiv:1901.01935V2 [Astro-Ph.EP] 30 Jan 2019
Draft version January 31, 2019 Preprint typeset using LATEX style AASTeX6 v. 1.0 TWO JOVIAN PLANETS AROUND THE GIANT STAR HD 202696. A GROWING POPULATION OF PACKED MASSIVE PLANETARY PAIRS AROUND MASSIVE STARS? Trifon Trifonov1, Stephan Stock2, Thomas Henning1, Sabine Reffert2, Martin Kurster¨ 1, Man Hoi Lee3,4, Bertram Bitsch1, R. Paul Butler5, Steven S. Vogt6 1 Max-Planck-Institut f¨urAstronomie, K¨onigstuhl17, D-69117 Heidelberg, Germany 2 Landessternwarte, Zentrum f¨urAstronomie der Universit¨atHeidelberg, K¨onigstuhl12, D-69117 Heidelberg, Germany 3 Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 4 Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong 5 Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA and 6 UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA ABSTRACT We present evidence for a new two-planet system around the giant star HD 202696 (= HIP 105056, BD +26 4118). The discovery is based on public HIRES radial velocity (RV) measurements taken at +0:09 Keck Observatory between 2007 July and 2014 September. We estimate a stellar mass of 1.91−0:14M for HD 202696, which is located close to the base of the red giant branch. A two-planet self-consistent dynamical modeling MCMC scheme of the RV data followed by a long-term stability test suggests +8:9 +20:7 +0:078 planetary orbital periods of Pb = 517.8−3:9 and Pc = 946.6−20:9 days, eccentricities of eb = 0.011−0:011 +0:065 +0:22 +0:18 and ec = 0.028−0:012 , and minimum dynamical masses of mb = 2.00−0:10 MJup and mc = 1.86−0:23 MJup, respectively. -
JOHN MICHAEL BREWER Yale Astronomy 52 Hillhouse Avenue Room 219 New Haven CT 06511
JOHN MICHAEL BREWER Yale Astronomy 52 Hillhouse Avenue Room 219 New Haven CT 06511 C (510) 847-9676 [email protected] REFEREED PUBLICATIONS [42] The Mass of the White Dwarf Companion in the Self-Lensing Binary KOI-3278: Einstein vs. Newton Yahalomi, Daniel A., Shvartzvald, Yossi, Agol, Eric et al. [incl. Brewer] (2019). ApJ (Submitted), arxiv.org/abs/1904.11063 [41] Modeling the Echelle Spectra Continuum with Alpha Shapes and Local Regression Fitting Xu, Xin, Cisewski-Kehe, Jessi, Davis, Allen B., Fischer, Debra A., Brewer, John M. (2019). AJ (Accepted), arxiv.org/abs/1904.10065 [40] Benchmarking Substellar Evolutionary Models Using New Age Estimates for HD 4747 B and HD 19467 B Wood, Charlotte M., Boyajian, Tabetha, von Braun, Kaspar, Brewer, John M., et al. (2019), ApJ (Accepted), arxiv.org/abs/1901.03687 [39] HD 202772A b: A Transiting Hot Jupiter around a Bright, Mildly Evolved Star in a Visual Binary Discovered by TESS Songhu Wang, Matias Jones, Avi Shporer, et al. [incl. Brewer] (2019), AJ, 157, 2, iopscience.iop.org/article/10.3847/1538-3881/aaf1b7/meta [38] Compact Multi-planet Systems More Common Around Metal Poor Hosts Brewer, John M., Wang, Songhu, Fischer, Debra A., Foreman-Mackey, Dan (2018). ApJL, 867(1), doi.org/10.3847/2041-8213/aae710. [37] Spectral Properties of Cool Stars: Extended Abundance Analysis of Kepler Objects of Interest Brewer, John M., Fischer, Debra A. (2018). ApJS, 237(2) doi.org/10.3847/1538-4365/ aad501 [36] Stellar Spin–Orbit Alignment for Kepler-9, a Multi-transiting Planetary System with Two Outer Planets Near 2:1 Resonance Wang, Songhu, Addison, Brett, Fischer, Debra A., Brewer, John M. -
CONSTELLATION EQUULEUS the Little Horse Or the Foal Equuleus Is the Head of a Horse with a Flowing Mane Which the Arabs Called A
CONSTELLATION EQUULEUS The Little Horse or The Foal Equuleus is the head of a horse with a flowing mane which the Arabs called Al Faras al Awwal, 'the First Horse', in reference to its rising before Pegasus. Equuleus is the second smallest of the modern constellations (after Crux), spanning only 72 square degrees. It is tucked between the head of Pegasus and the dolphin, Delphinus. It is also very faint, having no stars brighter than the fourth magnitude. Its name is Latin for 'little horse', a foal. It was one of the 48 constellations listed by the 2nd century astronomer Ptolemy, and remains one of the 88 modern constellations. The actual inventor is unknown; it may have been Ptolemy himself, or one of his predecessors, such as Hipparchus, the Greek astronomer who lived around 190-120 B.C. Hipparchus mapped the position of 850 stars in the earliest known star chart. His observations of the heavens form the basis of Ptolemy's geocentric cosmology. Ptolemy called the constellation Protomé Hippou, the forepart of a horse, perhaps Ptolemy had in mind the story of Hippe and her daughter Melanippe: Hippe, daughter of Chiron the centaur, one day was seduced by Aeolus, grandson of Deucalion. To hide the secret of her pregnancy from Chiron she fled into the mountains, where she gave birth to Melanippe. When her father came looking for her, Hippe appealed to the gods who changed her into a mare. Artemis placed the image of Hippe among the stars, where she still hides from Chiron (represented by the constellation Centaurus), with only her head showing THE STARS Equuleus consists merely of a few stars of fourth magnitude and fainter, forming the head of a horse, next to the head of the much better-known horse Pegasus. -
Orbital Dynamics of Exoplanetary Systems Kepler-62, HD 200964 and Kepler-11 3
Mon. Not. R. Astron. Soc. 457, 1089–1100 (2016) Printed 15 February 2016 (MN LATEX style file v2.2) Orbital Dynamics of Exoplanetary Systems Kepler-62, HD 200964 and Kepler-11 Rajib Mia⋆ and Badam Singh Kushvah⋆ Department of Applied Mathematics, Indian School of Mines, Dhanbad 826004, Jharkhand, India ABSTRACT The presence of mean-motion resonances (MMRs) in exoplanetary systems is a new exciting field of celestial mechanics which motivates us to consider this work to study the dynamical behaviour of exoplanetary systems by time evolution of the orbital elements of the planets. Mainly, we study the influence of planetary perturbations on semimajor axis and eccentricity. We identify (r + 1) : r MMR terms in the expression of disturbing function and obtain the perturbations from the truncated disturbing function. Using the expansion of the disturbing function of three-body problem and an analytical approach, we solve the equations of motion. The solution which is obtained analytically is compared with that of obtained by numerical method to validate our analytical result. In this work, we consider three exoplanetary systems namely Kepler- 62, HD 200964 and Kepler-11. We have plotted the evolution of the resonant angles and found that they librate around constant value. In view of this, our opinion is that two planets of each system Kepler-62, HD 200964 and Kepler-11 are in 2:1, 4:3 and 5:4 mean motion resonances, respectively. Key words: astrometry - celestial mechanics - planetary systems. 1 INTRODUCTION a pair of planet in MMRs. The majority of which are in 2:1 MMR (Beaug´eet al. -
Resonances Required: Dynamical Analysis of the 24 Sex and HD
Resonances Required: Dynamical Analysis of the 24 Sex and HD 200964 Planetary Systems Robert A. Wittenmyer1, Jonathan Horner1, C.G. Tinney1 [email protected] ABSTRACT We perform several suites of highly detailed dynamical simulations to investigate the architectures of the 24 Sextantis and HD 200964 planetary systems. The best fit orbital solution for the two planets in the 24 Sex system places them on orbits with periods that lie very close to 2:1 commensurability, while that for the HD 200964 system places the two planets therein in orbits whose periods lie close to a 4:3 commensurability. In both cases, the proposed best-fit orbits are mutually crossing - a scenario that is only dynamically feasible if the planets are protected from close encounters by the effects of mutual mean motion resonance. Our simulations reveal that the best fit orbits for both systems lie within narrow islands of dynamical stability, and are surrounded by much larger regions of extreme instability. As such, we show that the planets are only feasible if they are currently trapped in mutual mean-motion resonance - the 2:1 resonance in the case of 24 Sex b and c, and the 4:3 resonance in the case of HD 200964 b and c. In both cases, the region of stability is strongest and most pronounced when the planetary orbits are mutually coplanar. As the inclination of planet c with respect to planet b is increased, the stability of both systems rapidly collapses. Subject headings: planetary systems – methods: numerical – planets and satel- lites: individual (24 Sex b, 24 Sex c, HD 200964b, HD 200964c – stars: individual (24 Sextantis, HD 200964 arXiv:1211.1078v1 [astro-ph.EP] 5 Nov 2012 1. -
Evidence for Enhanced Chromospheric Ca II H and K Emission in Stars with Close-In Extrasolar Planets
A&A 540, A82 (2012) Astronomy DOI: 10.1051/0004-6361/201118247 & c ESO 2012 Astrophysics Evidence for enhanced chromospheric Ca II H and K emission in stars with close-in extrasolar planets T. Krejcovᡠ1 and J. Budaj2 1 Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlárskᡠ2, 61137 Brno, Czech Republic e-mail: [email protected] 2 Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranská Lomnica, Slovak Republic e-mail: [email protected] Received 11 October 2011 / Accepted 13 February 2012 ABSTRACT Context. The planet-star interaction is manifested in many ways. It has been found that a close-in exoplanet causes small but mea- surable variability in the cores of a few lines in the spectra of several stars, which corresponds to the orbital period of the exoplanet. Stars with and without exoplanets may have different properties. Aims. The main goal of our study is to search for the influence that exoplanets might have on atmospheres of their host stars. Unlike the previous studies, we do not study changes in the spectrum of a host star or differences between stars with and without exoplanets. We aim to study a large number of stars with exoplanets and the current level of their chromospheric activity and to look for a possible correlation with the exoplanetary properties. Methods. To analyse the chromospheric activity of stars, we exploited our own and publicly available archival spectra, measured the equivalent widths of the cores of Ca II H and K lines, and used them to trace their activity. Subsequently, we searched for their dependence on the orbital parameters and the mass of the exoplanet. -
Log-Normal Distribution and Planetary–Solar Resonance
This is a repository copy of The Hum: log-normal distribution and planetary–solar resonance. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/77481/ Article: Tattersall, R (2013) The Hum: log-normal distribution and planetary–solar resonance. Pattern Recognition in Physics, 1 (1). 185 - 198. ISSN 2195-9250 https://doi.org/10.5194/prp-1-185-2013 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Pattern Recogn. Phys., 1, 185–198, 2013 Pattern Recognition www.pattern-recogn-phys.net/1/185/2013/ doi:10.5194/prp-1-185-2013 in Physics © Author(s) 2013. CC Attribution 3.0 License. Open Access The Hum: log-normal distribution and planetary–solar resonance R. Tattersall University of Leeds, Leeds, UK Correspondence to: R.