The Dehydrogenatiqn Op Ethane to Produce Ethylene and Acetylene, Using Sulfur As a Dehydrogenatiq N Agent

Total Page:16

File Type:pdf, Size:1020Kb

The Dehydrogenatiqn Op Ethane to Produce Ethylene and Acetylene, Using Sulfur As a Dehydrogenatiq N Agent THE DEHYDROGENATIQN OP ETHANE TO PRODUCE ETHYLENE AND ACETYLENE, USING SULFUR AS A DEHYDROGENATIQ N AGENT DISSERTATION Presented in partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Ralph Eugsene Morningstar, B.S* !\ The Ohio State University 1952 Approved by ACKNOWLEDGEMENT Tlae author expresses h.is sincere appreciation for the advice and counsel of Dr. L. K. Herndon, not only in con­ nection with, this thesis, hut also for his guidance and personal interest in other phases of the author's profess­ ional training. t S&OS 9 8 TABLE OF CONTENTS Indications page i Introduction 1 Related Literature 3 Discussion of the Literature 53 Thermodynamic Calculations 55 Construction and Operation of Equipment 68 Operation of Vaporiser 71 Calibrations 79 Analytical Methods 89 Experimental 110 Effect of Temperature and Sulfur Concentration 111 Dehydrogenation of Ethylene by Sulfur 128 Effect of Space Velocity on Reaction of Ethane and Sulfur 133 XTse of Catalysts for the Reaction of Ethane and Sulfur 137 Temperature Gradient through Reactor 146 Discussion of the Data 149 Conclusions 163 Autobiography 168 • • • \ ■■// ■■ ^ THE. DEHYDRO DERATION OF ETHANE TO PRODUCE ETHYLENE AMD ACETYLENE, USING SULFUR AS A DEHYDROGENATION AGENT Indications: . - 1 . Apparatus was cona truciied for the purpose of studying the reaction of ethane and sulfur vapor. This apparatus consisted of two parts: a, A vaporizer for the generation of sulfur vapor. Ethane was bubbled through a hath of molten sulfur at a high temperature in order to obtain the desired mixture, \ b, A reactor furnace consisting of a porcelain tube in. a high temperature combustion fuf- nace. This furnace was capable of tempera­ tures up to 20G 0°F, 2 . No appreciable dehydrogenation of ethane occurr­ ed in passage through the sulfur vaporizer. Such reaction as did occur led to the formation of acetylene, with no evidence of ethylene formation, ^ 3* The conversion of ethane to ethylene was found to be a function of temperature, with a maximum conver­ sion of 50^ being obtained, at l600°F. in the absence of sulfur vapor, VI '■ 14^ 14-. The conversion of ethane to ethylene decreased with the addition of sulfur vapor to the reaction mix­ ture* Thus at 1565°F. and a ratio of sulfur:ethane of l.ij., a conversion of 357° was obtaihe d, compared to ij.6.57° in the absence of sulfur. This was due to further de­ hydrogenation of the ethylen e. 5 * The conversion of ethane to acetylene increased with an increase in the sulfur vapor content over the range studied. A maximum conversion of ^0% was obtained at a sulfur-ethane ratio of 1.14. and a temperature of 1565°F. 6. The conversion of ethane to acetylene was found to be independent of temperature except at high tempera­ tures and high sulfhr:ethane ratios. Under these con­ ditions the conversion decreased with increasing tem­ po rature. This effect was attributed to dehydrogenation to c arbon• 7. The conversion of ethylene to acetylene was found to be less efficient than conversion of ethane to acetylene. At 1560°F. and a sulfur :e thane ratio of 1 .1+, a conversion of 30% was observed. 8. In the range of contact times in the reactor of 1 to 6 seconds, no significant trent in the dehydrogena- tion of ethane by sulfur was observed. s . ; . i 9. Lump pumice, Porocel, and chromium oxide on activated alumina were investigated as catalysts for tlie reaction of ethane and sulfur. No significant increase in conversion occurred except in the case of lump pumice at lIj_50oP. The conversion obtained in this case was no "better than that obtained in the absence of catalyst at l600°P. 10 . In general, the trends observed in this study corresponded to those predicted by thermodynamic cal­ culations. No significance was attributed to the rela­ tion between actual and calculated conversions because of uncertainties in the thermodynamic data used. , I XNTRQDUGTIOH: .. The importance of both ethylene and acetylene as raw materials for chemical manufacture cannot he overemphasized. Both these gases are obtainable from natural gas* both methane and higher hydrocarbon gases, by known means. In the case of acetylene, however, the familiar carbide route is still gen­ erally employed. For a number of reasons the carbide process is preferred, most particularly because of the greater safety and relative ease of transportation of solid calcium carbide. With the increasing trend to locate chemical manufactur­ ing plants near natural gas sources or on supply lines, the transportation factor is less important, and the use of nat­ ural gas as a raw material is rapidly expanding. In general, two methods of manufacture are employed. The first and most widely described, usually for the manu­ facture of acetylene, involves the cracking and reforming of hydrocarbons ranging from methane to light oils. Electric discharge is often used to supply the required energy. In the second method, controlled oxidation is used to form unsaturates, usually from an ethane rich feed gas. Various means of con­ trolling the reaction are used. o \ : ^=9 It is the object of the present investigation to study a different type of oxidation process, the oxidation, or de- hydrogenation, of ethane by means of sulfur* With this milder oxidizing agent, the f o m tion of unsaturates in good yield and In a readily recoverable form should he obtained. By­ product hydrogen sulfide will be oxidized to sulfur and re­ turned to the system* RELATED LITERATURE ?. Both ethylene and acetylene are finding increasingly wide -use as chemical raw materials. Smith and Holliman Harold M. Smith and W, C. Holliman, ’'Utilization of Natural Gas for Chemical Products", 1*0 , 7547* S. Bureau of Mines, (19470, chart 7. summarize some of the uses for ethylene: ’’Ethylene is used as a fuel for cutting and welding, as an anesthetic, as a refrigerant and as an accelerator for plant growth sod food ripening. In addition, it is an Intermediate in the manufacture of the following items with uses as indi­ cated: acenaphthene (dyestuff intermediate), acetic acid and anhydride, acetylene, alkylates (motor and aviation gasoline), anthracene, benzene, butadiene, butylene, diisopropyl (high aa ti-knock motor fuel), ethyl alcohol, ethylbenzene, ethyl ether (anesthetic, solvent), ethyl halides and polyhalides, ethyl mercaptan, ethylsulfhric acid and diethylsulfate (ethyl alcohol Intermediate) ethyl and ethylene nitro compounds, ethylene chlorohydrin (disinfectant, insecticide, solvent), ethylene halides, ethylene oxide, ethylene glycol, ethanol- amines, formaldehyde, Intermediates for plastics and resins, mustard gas, naphthalene, neohexane (high anti-knock motor fuel), oxalic acid, polymers of ethylene (synthetic rubbers and plastics, lubricants and additives), styrene, toluene, vinyl and vinylidene chloride (textiles and plastics), and a host of others”. Smith and Holliman ~ Ibid, chart 1+ also present a comprehensive summary of the general methods of the preparation of hydro­ carbon materials. nl. Decomposition ( thermal, catalytic, electric).; The splitting of the hydrocarbon molecule into smaller molecules or into carbon and. hydrogen by heat alone (pyrolysis), with the aid of catalysts, or by electric discharge, generally accompanied, especially in pyrolysis, by recombination, of some of the. products into new compounds. 2 . Oxidation (thermal, catalytic); reaction of the hydrocarbon molecule with oxygen, air , or oxygen-containing compounds, activated by heat or catalyst, whereby oxygen is introduced into the hydrocarbon molecule, or the molecule is changed to carbon monoxide and hydrogen, carbon dioxide and hydrogen, ca? finally to carbon dioxide and water. £!?. {3 3. Halogenation (thermal, catalytic, pfeotolytic): Reaction of the hydrocarbon molecule with a halogen (fluorine, chlorine, bromine, iodine) activated by heat, light or cata­ lyst, whereby one or more halogen atoms replace an; equivalent number of hydrogen atoms in the hydrocarbon molecule. Ij.. Nitration (thermal, vapor phase): Reaction of the hydrocarbon molecule with nitric acid, accelerated by heat and pressure, whereby a nitro group, NOg, is introduced into the hydrocarbon by replacing a hydrogen atom. Rs Sulfurisafelon : Reaction o f th© hydrocarbon molecule with sulfur or hydrogen sulfide to form sulfur-containing compounds such as organic sulfides, mercaptans, disulfides, thiophenee. * 6. Desulfurization (catalytic): Removal of the sulfur atom from a sulfur-carbon-hydrogen molecule to-f&rs-e-sulfur- free molecule. Activated by catalyst. 7. Hydrogenation (Catalytic, thermal catalytic): Ad­ dition of hydrogen atoms to an unsaturated hydrocarbon mole­ cule to produce one or more saturated molecules. Activated by catalyst or heat and catalyst. Known as destructive hydro­ genation when original unsaturated molecule is "cracked" to form more than one subsequently hydrogenated smaller molecule, or non-destructive when no cracking occurs. 8* Dehydrogenation (catalytic, thermal): A farm of con­ trolled decomposition whereby hydrogen atoms are removed from hydrocarbon molecules to form less highly saturated molecules. Known as destructive dehydrogenation when original' molecule is "cracked" to form more than one smaller molecule, or non-dest­ ructive when no breaking <Sf carbon-carbon bonds occurs. 9. Alkyla tion ( the rrnal , catalytic): Chemical union of an alkyl radical to a hydrocarbon molecule. Used particularly to designate combination of olefin and isoparaffin or aromatic under conditions
Recommended publications
  • Conversion of Carbon Dioxide to Acetylene on a Micro Scale
    810 NATURE June 14, 1947 Vol. 159 orbitale of the ethmoid is reduced". In the orang Stainless steel was found to be the most satis­ and the gibbon a large planum orbitale articulates factory furnace material tried. From mild steel in front with the lacrimal, as in man. The figure relatively large amounts of acetylene were produced we give of the orbital wall in Pleaianthropus shows in blank experiments, and a fused silica envelope a condition almost exactly as in man. fitted with a nickel thimble was found, after it had We are here not at present concerned with the been used with calcium and barium metals, to absorb question of whether man and the Australopithecinre carbon dioxide when hot even when no calcium or have arisen from an early anthropoid, or a pre­ barium was present. In carrying out the absorption anthropoid, or an Old World monkey or a tarsioid ; of carbon dioxide by barium metal in the stainless but we think the evidence afforded by this new skull steel furnace it was found that when the pressure of Plesianthropus shows that the Australopithecinre at which the gas was admitted was less than about and man are very closely allied, and that these small­ 10·1 mm. of mercury, the yield of acetylene was brained man-like beings were very nearly human. variable and only about 45 per cent. Good yields R. BROOM were obtained when the carbon dioxide at its full J. T. RoBINSON pressure was admitted to the furnace before raising Transvaal Museum, Pretoria. the temperature above 400° C.
    [Show full text]
  • Cylinder Valve Selection Quick Reference for Valve Abbreviations
    SHERWOOD VALVE COMPRESSED GAS PRODUCTS Appendix Cylinder Valve Selection Quick Reference for Valve Abbreviations Use the Sherwood Cylinder Valve Series Abbreviation Chart on this page with the Sherwood Cylinder Valve Selection Charts found on pages 73–80. The Sherwood Cylinder Valve Selection Chart are for reference only and list: • The most commonly used gases • The Compressed Gas Association primary outlet to be used with each gas • The Sherwood valves designated for use with this gas • The Pressure Relief Device styles that are authorized by the DOT for use with these gases PLEASE NOTE: The Sherwood Cylinder Valve Selection Charts are partial lists extracted from the CGA V-1 and S-1.1 pamphlets. They can change without notice as the CGA V-1 and S-1.1 pamphlets are amended. Sherwood will issue periodic changes to the catalog. If there is any discrepancy or question between these lists and the CGA V-1 and S-1.1 pamphlets, the CGA V-1 and S-1.1 pamphlets take precedence. Sherwood Cylinder Valve Series Abbreviation Chart Abbreviation Sherwood Valve Series AVB Small Cylinder Acetylene Wrench-Operated Valves AVBHW Small Cylinder Acetylene Handwheel-Operated Valves AVMC Small Cylinder Acetylene Wrench-Operated Valves AVMCHW Small Cylinder Acetylene Handwheel-Operated Valves AVWB Small Cylinder Acetylene Wrench-Operated Valves — WB Style BV Hi/Lo Valves with Built-in Regulator DF* Alternative Energy Valves GRPV Residual Pressure Valves GV Large Cylinder Acetylene Valves GVT** Vertical Outlet Acetylene Valves KVAB Post Medical Valves KVMB Post Medical Valves NGV Industrial and Chrome-Plated Valves YVB† Vertical Outlet Oxygen Valves 1 * DF Valves can be used with all gases; however, the outlet will always be ⁄4"–18 NPT female.
    [Show full text]
  • Hydrogen Sulfide Public Health Statement
    PUBLIC HEALTH STATEMENT Hydrogen Sulfide Division of Toxicology and Human Health Sciences December 2016 This Public Health Statement summarizes what is known about hydrogen sulfide such as possible health effects from exposure and what you can do to limit exposure. The U.S. Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites make up the National Priorities List (NPL) and are sites targeted for long-term federal clean-up activities. U.S. EPA has found hydrogen sulfide in at least 34 of the 1,832 current or former NPL sites. The total number of NPL sites evaluated for hydrogen sulfide is not known. But the possibility remains that as more sites are evaluated, the sites at which hydrogen sulfide is found may increase. This information is important because these future sites may be sources of exposure, and exposure to hydrogen sulfide may be harmful. If you are exposed to hydrogen sulfide, many factors determine whether you’ll be harmed. These include how much you are exposed to (dose), how long you are exposed (duration), and how you are exposed (route of exposure). You must also consider the other chemicals you are exposed to and your age, sex, diet, family traits, lifestyle, and state of health. WHAT IS HYDROGEN SULFIDE? Hydrogen sulfide (H2S) is a flammable, colorless gas that smells like rotten eggs. People usually can smell hydrogen sulfide at low concentrations in air, ranging from 0.0005 to 0.3 parts hydrogen sulfide per million parts of air (ppm). At high concentrations, a person might lose their ability to smell it.
    [Show full text]
  • H2CS) and Its Thiohydroxycarbene Isomer (HCSH
    A chemical dynamics study on the gas phase formation of thioformaldehyde (H2CS) and its thiohydroxycarbene isomer (HCSH) Srinivas Doddipatlaa, Chao Hea, Ralf I. Kaisera,1, Yuheng Luoa, Rui Suna,1, Galiya R. Galimovab, Alexander M. Mebelb,1, and Tom J. Millarc,1 aDepartment of Chemistry, University of Hawai’iatManoa, Honolulu, HI 96822; bDepartment of Chemistry and Biochemistry, Florida International University, Miami, FL 33199; and cSchool of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom Edited by Stephen J. Benkovic, The Pennsylvania State University, University Park, PA, and approved August 4, 2020 (received for review March 13, 2020) Complex organosulfur molecules are ubiquitous in interstellar molecular sulfur dioxide (SO2) (21) and sulfur (S8) (22). The second phase clouds, but their fundamental formation mechanisms have remained commences with the formation of the central protostars. Tempera- largely elusive. These processes are of critical importance in initiating a tures increase up to 300 K, and sublimation of the (sulfur-bearing) series of elementary chemical reactions, leading eventually to organo- molecules from the grains takes over (20). The subsequent gas-phase sulfur molecules—among them potential precursors to iron-sulfide chemistry exploits complex reaction networks of ion–molecule and grains and to astrobiologically important molecules, such as the amino neutral–neutral reactions (17) with models postulating that the very acid cysteine. Here, we reveal through laboratory experiments, first sulfur–carbon bonds are formed via reactions involving methyl electronic-structure theory, quasi-classical trajectory studies, and astro- radicals (CH3)andcarbene(CH2) with atomic sulfur (S) leading to chemical modeling that the organosulfur chemistry can be initiated in carbonyl monosulfide and thioformaldehyde, respectively (18).
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET 1. Identification Product identifier Light Cycle Oil Other means of identification SDS number 106-GHS Synonyms Middle Distillate See section 16 for complete information. Recommended use Refinery feedstock. Recommended restrictions None known. Manufacturer/Importer/Supplier/Distributor information Manufacturer/Supplier Valero Marketing & Supply Company and Affiliates One Valero Way San Antonio, TX 78269-6000 General Assistance 210-345-4593 E-Mail [email protected] Contact Person Industrial Hygienist Emergency Telephone 24 Hour Emergency 866-565-5220 1-800-424-9300 (CHEMTREC USA) 2. Hazard(s) identification Physical hazards Flammable liquids Category 3 Health hazards Acute toxicity, inhalation Category 4 Skin corrosion/irritation Category 2 Carcinogenicity Category 1B Specific target organ toxicity, repeated Category 2 exposure Aspiration hazard Category 1 Environmental hazards Hazardous to the aquatic environment, Category 1 long-term hazard OSHA defined hazards Not classified. Label elements Signal word Danger Hazard statement Flammable liquid and vapor. Harmful if inhaled. Causes skin irritation. May cause cancer. May cause damage to organs (Blood, Liver, Kidney) through prolonged or repeated exposure. May be fatal if swallowed and enters airways. Precautionary statement Prevention Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Keep container tightly closed. Ground/bond container and receiving equipment. Use only non-sparking tools. Take precautionary measures against static discharges. Wear protective gloves/protective clothing/eye protection/face protection. Avoid breathing dust/fume/gas/mist/vapors/spray. Use only outdoors or in a well-ventilated area. Wash thoroughly after handling. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood.
    [Show full text]
  • Exploring the Potential of Nitric Oxide and Hydrogen Sulfide (NOSH)
    City University of New York (CUNY) CUNY Academic Works Publications and Research City College of New York 2020 Exploring the Potential of Nitric Oxide and Hydrogen Sulfide (NOSH)-Releasing Synthetic Compounds as Novel Priming Agents against Drought Stress in Medicago sativa Plants Chrystalla Antoniou Cyprus University of Technology Rafaella Xenofontos Cyprus University of Technology Giannis Chatzimichail Cyprus University of Technology Anastasis Christou Agricultural Research Institute Khosrow Kashfi CUNY City College See next page for additional authors How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/cc_pubs/777 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Authors Chrystalla Antoniou, Rafaella Xenofontos, Giannis Chatzimichail, Anastasis Christou, Khosrow Kashfi, and Vasileios Fotopoulos This article is available at CUNY Academic Works: https://academicworks.cuny.edu/cc_pubs/777 biomolecules Article Exploring the Potential of Nitric Oxide and Hydrogen Sulfide (NOSH)-Releasing Synthetic Compounds as Novel Priming Agents against Drought Stress in Medicago sativa Plants Chrystalla Antoniou 1, Rafaella Xenofontos 1, Giannis Chatzimichail 1, Anastasis Christou 2, Khosrow Kashfi 3,4 and Vasileios Fotopoulos 1,* 1 Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; [email protected]
    [Show full text]
  • Hydrogen Sulfide Fact Sheet
    Hydrogen Sulfide Fact Sheet What is hydrogen sulfide? Hydrogen sulfide (H 2S) occurs naturally in crude petroleum, natural gas, volcanic gases, and hot springs. It can also result from bacterial breakdown of organic matter. It is also produced by human and animal wastes. Bacteria found in your mouth and gastrointestinal tract produce hydrogen sulfide from bacteria decomposing materials that contain vegetable or animal proteins. Hydrogen sulfide can also result from industrial activities, such as food processing, coke ovens, kraft paper mills, tanneries, and petroleum refineries. Hydrogen sulfide is a flammable, colorless gas with a characteristic odor of rotten eggs. It is commonly known as hydrosulfuric acid, sewer gas, and stink damp. People can smell it at low levels. What happens to hydrogen sulfide when it enters the environment? • Hydrogen sulfide is released primarily as a gas and spreads in the air. • Hydrogen sulfide remains in the atmosphere for about 18 hours. • When released as a gas, it will change into sulfur dioxide and sulfuric acid. • In some instances, it may be released as a liquid waste from an industrial facility. How might I be exposed to hydrogen sulfide? • You may be exposed to hydrogen sulfide from breathing contaminated air or drinking contaminated water. • Individuals living near a wastewater treatment plant, a gas and oil drilling operation, a farm with manure storage or livestock confinement facilities, or a landfill may be exposed to higher levels of hydrogen sulfide. • You can be exposed at work if you work in the rayon textiles, petroleum and natural gas drilling and refining, or wastewater treatment industries.
    [Show full text]
  • Hydrogen Sulfide and Nitric Oxide Are Mutually Dependent in The
    Hydrogen sulfide and nitric oxide are mutually SEE COMMENTARY dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation Ciro Colettaa, Andreas Papapetropoulosa,b, Katalin Erdelyia, Gabor Olaha, Katalin Módisa, Panagiotis Panopoulosb, Antonia Asimakopouloub, Domokos Geröa, Iraida Sharinac, Emil Martinc, and Csaba Szaboa,1 aDepartment of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX 77555; bLaboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; and cDivision of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030 Edited by Solomon H. Snyder, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved April 10, 2012 (received for review February 17, 2012) fi Hydrogen sulfide (H2S) is a unique gasotransmitter, with regula- of vascular tone and have signi cant implications for the patho- tory roles in the cardiovascular, nervous, and immune systems. genetic and therapeutic roles of both NO and H2S. Some of the vascular actions of H2S (stimulation of angiogenesis, relaxation of vascular smooth muscle) resemble those of nitric Results oxide (NO). Although it was generally assumed that H2S and NO H2S-Induced Angiogenesis Requires NO Biosynthesis. H2S resulted in exert their effects via separate pathways, the results of the current a concentration-dependent increase in bEnd3 microvascular en- A B study show that H2S and NO are mutually required to elicit angio- dothelial cell proliferation (Fig. S1 ) and migration (Fig. S1 and C), as well as microvessel sprouting from rat aortic rings (Fig. genesis and vasodilatation. Exposure of endothelial cells to H2S D increases intracellular cyclic guanosine 5′-monophosphate (cGMP) S1 ).
    [Show full text]
  • Kinetic Study of the Selective Hydrogenation of Acetylene Over Supported Palladium Under Tail-End Conditions
    catalysts Article Kinetic Study of the Selective Hydrogenation of Acetylene over Supported Palladium under Tail-End Conditions Caroline Urmès 1,2, Jean-Marc Schweitzer 2, Amandine Cabiac 2 and Yves Schuurman 1,* 1 IRCELYON CNRS, UMR 5256, Univ Lyon, Université Claude Bernard Lyon 1, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex, France; [email protected] 2 IFP Energies nouvelles, Etablissement de Lyon, Rond-point de l’échangeur de Solaize, BP3, 69360 Solaize, France; [email protected] (J.-M.S.); [email protected] (A.C.) * Correspondence: [email protected]; Tel.: +33-472445482 Received: 9 January 2019; Accepted: 31 January 2019; Published: 14 February 2019 Abstract: The kinetics of the selective hydrogenation of acetylene in the presence of an excess of ethylene has been studied over a 0.05 wt. % Pd/α-Al2O3 catalyst. The experimental reaction conditions were chosen to operate under intrinsic kinetic conditions, free from heat and mass transfer limitations. The data could be described adequately by a Langmuir–Hinshelwood rate-equation based on a series of sequential hydrogen additions according to the Horiuti–Polanyi mechanism. The mechanism involves a single active site on which both the conversion of acetylene and ethylene take place. Keywords: power-law; Langmuir–Hinshelwood; kinetic modeling; Pd/α-Al2O3 1. Introduction Ethylene is the largest of the basic chemical building blocks with a global market estimated at more than 140 million tons per year with an increasing growth rate. It is used mainly as precursor for polymers production, for instance polyethylene, vinyl chloride, ethylbenzene, or even ethylene oxide synthesis.
    [Show full text]
  • Hydrogen Sulfide Capture: from Absorption in Polar Liquids to Oxide
    Review pubs.acs.org/CR Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal−Organic Framework Adsorbents and Membranes Mansi S. Shah,† Michael Tsapatsis,† and J. Ilja Siepmann*,†,‡ † Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States ‡ Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States ABSTRACT: Hydrogen sulfide removal is a long-standing economic and environ- mental challenge faced by the oil and gas industries. H2S separation processes using reactive and non-reactive absorption and adsorption, membranes, and cryogenic distillation are reviewed. A detailed discussion is presented on new developments in adsorbents, such as ionic liquids, metal oxides, metals, metal−organic frameworks, zeolites, carbon-based materials, and composite materials; and membrane technologies for H2S removal. This Review attempts to exhaustively compile the existing literature on sour gas sweetening and to identify promising areas for future developments in the field. CONTENTS 4.1. Polymeric Membranes 9785 4.2. Membranes for Gas−Liquid Contact 9786 1. Introduction 9755 4.3. Ceramic Membranes 9789 2. Absorption 9758 4.4. Carbon-Based Membranes 9789 2.1. Alkanolamines 9758 4.5. Composite Membranes 9790 2.2. Methanol 9758 N 5. Cryogenic Distillation 9790 2.3. -Methyl-2-pyrrolidone 9758 6. Outlook and Perspectives 9791 2.4. Poly(ethylene glycol) Dimethyl Ether 9759 Author Information 9792 2.5. Sulfolane and Diisopropanolamine 9759 Corresponding Author 9792 2.6. Ionic Liquids 9759 ORCID 9792 3. Adsorption 9762 Notes 9792 3.1.
    [Show full text]
  • Fact Sheet: Hydrogen Sulfide from Landfills
    Fact Sheet: Hydrogen Sulfide from Landfills How might I be exposed to hydrogen sulfide from a landfill? Hydrogen sulfide is a flammable, colorless gas with a characteristic odor of rotten eggs. It is heavier than air and is commonly known as hydrosulfuric acid, sewer gas, and stink damp. Hydrogen sulfide occurs both naturally and from industrial processes. Hydrogen sulfide can be released from landfills and people living near landfills may be exposed to it by breathing it in. How can hydrogen sulfide affect my health? Exposure to low concentrations within the range of 30 parts of hydrogen sulfide in one billion parts of air (ppb) may cause irritation to the eyes, nose, or throat. It may also cause difficulty breathing for some individuals with respiratory problems, such as asthmatics. DOH uses the Minimal Risk Levels (MRLs) developed by the federal Agency for Toxic Substances and Disease Registry (ATSDR) to assess the possibility of non-cancer health effects. An MRL is an estimate of the daily human exposure to a hazardous substance, at or below which, that substance is unlikely to pose a measurable risk of adverse, non-cancer health effects. These particular values have many safety factors built in and the actual levels where health effects would be observed are much higher. The acute MRL, which represents short time periods of exposure (less than 15 days), is 70 ppb. Per the study that established this acute MRL, it should be noted that the actual level where health effects (respiratory problems and headaches) were observed was 2,000 ppb. The intermediate MRL is defined for exposure periods of 15 to 365 days.
    [Show full text]
  • Common Name: METHYL ACETYLENE HAZARD SUMMARY
    Common Name: METHYL ACETYLENE CAS Number: 74-99-7 RTK Substance number: 1218 DOT Number: UN 1954 Date: May 1999 ----------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY * Methyl Acetylene can affect you when breathed in. * Exposure to hazardous substances should be routinely * Breathing Methyl Acetylene can irritate the nose and evaluated. This may include collecting personal and area throat. air samples. You can obtain copies of sampling results * Breathing Methyl Acetylene can irritate the lungs causing from your employer. You have a legal right to this coughing and/or shortness of breath. Higher exposures information under OSHA 1910.1020. can cause a build-up of fluid in the lungs (pulmonary * If you think you are experiencing any work-related health edema), a medical emergency, with severe shortness of problems, see a doctor trained to recognize occupational breath. diseases. Take this Fact Sheet with you. * Exposure to Methyl Acetylene can cause headache, dizziness, convulsions (fits) and unconsciousness. WORKPLACE EXPOSURE LIMITS * Liquified Methyl Acetylene can cause frostbite. OSHA: The legal airborne permissible exposure limit * Methyl Acetylene is a HIGHLY FLAMMABLE and (PEL) is 1,000 ppm averaged over an 8-hour REACTIVE chemical and is a DANGEROUS FIRE and workshift. EXPLOSION HAZARD. NIOSH: The recommended airborne exposure limit is IDENTIFICATION 1,000 ppm averaged over a 10-hour workshift. Methyl Acetylene is a colorless gas, which is shipped as a liquid, with a sweet odor. It is used as a simple anesthetic and ACGIH: The recommended airborne exposure limit is in the manufacture of other chemicals, and as a welding torch 1,000 ppm averaged over an 8-hour workshift.
    [Show full text]