Methane and Hydrogen Sulfide Combustion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High-Resolution Infrared Spectroscopy: Jet-Cooled Halogenated Methyl Radicals and Reactive Scattering Dynamics in an Atom + Polyatom System
HIGH-RESOLUTION INFRARED SPECTROSCOPY: JET-COOLED HALOGENATED METHYL RADICALS AND REACTIVE SCATTERING DYNAMICS IN AN ATOM + POLYATOM SYSTEM by ERIN SUE WHITNEY B.A., Williams College, 1996 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry 2006 UMI Number: 3207681 Copyright 2006 by Whitney, Erin Sue All rights reserved. UMI Microform 3207681 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 This thesis for the Doctor of Philosophy degree entitled: High resolution infrared spectroscopy: Jet cooled halogenated methyl radicals and reactive scattering dynamics in an atom + polyatom system written by Erin Sue Whitney has been approved for the Department of Chemistry and Biochemistry by David J. Nesbitt Veronica M. Bierbaum Date ii Whitney, Erin S. (Ph.D., Chemistry) High-Resolution Infrared Spectroscopy: Jet-cooled halogenated methyl radicals and reactive scattering dynamics in an atom + polyatomic system Thesis directed by Professor David J. Nesbitt. This thesis describes a series of projects whose common theme comprises the structure and internal energy distribution of gas-phase radicals. In the first two projects, shot noise-limited direct absorption spectroscopy is combined with long path-length slit supersonic discharges to obtain first high-resolution infrared spectra for jet-cooled CH2F and CH2Cl in the symmetric and antisymmetric CH2 stretching modes. -
Hydrogen Transfer and Activation of Propane and Methane on ZSM5-Based Catalysts
Catalysis Letters 21 (1993) 55-70 55 Hydrogen transfer and activation of propane and methane on ZSM5-based catalysts Enrique Iglesia 1 and Joseph E. Baumgartner Corporate Research Laboratories, Exxon Research and Engineering, Route 22 East, Annandale, NJ08801, USA Received 12 April 1993; accepted 4 June 1993 Hydrogen exchange between undeuterated and perdeuterated light alkanes (CD4-C3Hs, C3Ds-C3Hs) occurs on H-ZSM5 and on Ga- and Zn-exchanged H-ZSM5 at 773 K. Alkane conversion to aromatics occurs much more slowly because it is limited by rate of disposal of H-atoms formed in C-H scission steps and not by C-H bond activation. Kinetic coupling of these C-H activation steps with hydrogen transfer to acceptor sites (Ga n+, Znm+) and ulti- mately to stoichiometric hydrogen acceptors (H+, CO2, 02, CO) often increases alkane activa- tion rates and the selectivity to unsaturated products. Reactions of 13CH4/C3H8 mixtures at 773 K lead only to unlabelled alkane, alkene, and aromatic products, even though exchange between CD4 and C3H8 occurs at these reaction conditions. This suggests that the non- oxidative conversion of CH4 to higher hydrocarbons on solid acids is limited by elementary steps that occur after the initial activation of C-H bonds. Keywords: Hydrogen transfer; light alkane reactions; deuterium cross-exchange reactions; alkane aromatization 1. Introduction Recent studies suggest that electrophilic activation of light alkanes occurs on superacid catalysts [1] and on Hg-based organometallic complexes [2] at low tem- peratures, and on weaker solid acids at higher temperatures [3-9], apparently via heterolytic cleavage of C-H bonds or intermediate partial oxidation of methane to methanol. -
Bimolecular Reaction Dynamics in the Phenyl - Silane System
Bimolecular Reaction Dynamics in the Phenyl - Silane System: Exploring the Prototype of a Radical Substitution Mechanism 1 1 1 1 2 Michael Lucas , Aaron M. Thomas , Tao Yang , Ralf I. Kaiser *, Alexander M. Mebel , Diptarka Hait3, Martin Head-Gordon3,4* 1 Department of Chemistry, University of Hawai’i at Manoa, Honolulu, HI 96822 2 Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 3 Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA 94720 4 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 *Email: [email protected] *Email: [email protected] Abstract We present a combined experimental and theoretical investigation of the bimolecular gas phase reaction of the phenyl radical (C6H5) with silane (SiH4) under single collision conditions to investigate the chemical dynamics of forming phenylsilane (C6H5SiH3) via a bimolecular radical substitution mechanism at a tetra-coordinated silicon atom. Verified by electronic structure and quasiclassical trajectory calculations, the replacement of a single carbon atom in methane by silicon lowers the barrier to substitution thus defying conventional wisdom that tetra-coordinated hydrides undergo preferentially hydrogen abstraction. This reaction mechanism provides funda- mental insights into the hitherto unexplored gas phase chemical dynamics of radical substitution reactions of mononuclear main group hydrides under single collision conditions and highlights -
Thermochemical Properties of Methyl and Chloro-Methyl Hyplochlorites and Ethers and Reaction of Methyl Radical with CLO
New Jersey Institute of Technology Digital Commons @ NJIT Theses Electronic Theses and Dissertations Spring 5-31-2000 Thermochemical properties of methyl and chloro-methyl hyplochlorites and ethers and reaction of methyl radical with CLO Dawoon Jung New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/theses Part of the Chemistry Commons Recommended Citation Jung, Dawoon, "Thermochemical properties of methyl and chloro-methyl hyplochlorites and ethers and reaction of methyl radical with CLO" (2000). Theses. 778. https://digitalcommons.njit.edu/theses/778 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves -
ITP Chemicals: from Natural Gas to Ethylene Via Methane
. INDUSTRIAL TECHNOLOGIES PROGRAM From Natural Gas to Ethylene via Methane Homologation and Ethane Oxidative Dehydrogenation New catalysts promise higher selectivity, Benefits for Our Industry and Our throughput, and economic competitiveness Nation As an alternative to thermal cracking, Ethylene is an important building block This technique has not yet been implemented oxydehydrogenation will save more than 640 in the production of many common and because of high capital investment in existing trillion British thermal units (Btu) per year commercially important materials, such as equipment and techniques. while reducing emissions of many pollutants. plastics and chemicals. Currently, ethylene is This project seeks to develop catalysts that New ethylene plants will save 50 percent in produced in a highly energy-intensive two-step will enable direct production of ethylene capital costs over plants installing cracking process. Ethane is firstrecovered from natural by the oxydehydrogenation of crude ethane furnaces. gas and refinery streams through catalytic found in natural gas. This exothermic process cracking and hydrocracking processes, and will offer high selectivity and throughput of then it is thermally cracked in the presence of ethylene from ethane-concentrated gas streams steam to produce ethylene. A more efficient in addition to saving energy and reducing Applications in Our Nation’s but not yet commercialized alternative to emissions. It will also lower capital costs this method is catalytic oxydehydrogenation, Industry through the use crude ethane, which is cheaper which directly produces ethylene from crude than ethane purified through other processes. Catalytic oxydehydrogenation will find ethane found in natural gas in a single step. immediate application in the petrochemicals industry, which uses ethylene as a primary O2 feedstock for manufacturing plastics and Ethane- Depleted C B chemicals. -
Gas-Phase Chemistry of Methyl-Substituted Silanes in a Hot-Wire Chemical Vapour Deposition Process
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-08-27 Gas-phase Chemistry of Methyl-Substituted Silanes in a Hot-wire Chemical Vapour Deposition Process Toukabri, Rim Toukabri, R. (2013). Gas-phase Chemistry of Methyl-Substituted Silanes in a Hot-wire Chemical Vapour Deposition Process (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26257 http://hdl.handle.net/11023/891 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Gas-phase Chemistry of Methyl-Substituted Silanes in a Hot-wire Chemical Vapour Deposition Process by Rim Toukabri A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY CALGARY, ALBERTA August, 2013 © Rim Toukabri 2013 Abstract The primary decomposition and secondary gas-phase reactions of methyl- substituted silane molecules, including monomethylsilane (MMS), dimethylsilane (DMS), trimethylsilane (TriMS) and tetramethylsilane (TMS), in hot-wire chemical vapour deposition (HWCVD) processes have been studied using laser ionization methods in combination with time of flight mass spectrometry (TOF-MS). For all four molecules, methyl radical formation and hydrogen molecule formation have been found to be the common decomposition steps on both tungsten (W) and tantalum (Ta) filaments. -
Environlmental ASSESSMENT METHYL CHLORIDE VIA
DOEEA-1157 ENVIRONlMENTAL ASSESSMENT METHYL CHLORIDE VIA OXYHYDROCHLOFUNATION OF METHANE: A BUILDING BLOCK FOR CHEMICALS AND FUELS FROM NATURAL GAS DOW CORNING CORPORATION CARROLLTON, KENTUCKY SEPTEMBER 1996 U.S. DEPARTMENT OF ENERGY PITTSBURGH ENERGY TECHNOLOGY CENTER CUM ~~~~~~~~ DOEEA-1157 ENVIRONlMENTAL ASSESSMENT METHYL CHLORIDE VIA OXYHYDROCHLORINATION OF METHANE: A BUILDING BLOCK FOR CHEMICALS AND FUELS FROM NATURAL GAS DOW CORNING CORPORATION CARROLLTON, KENTUCKY SEPTEMBER 1996 U.S. DEPARTMENT OF ENERGY PITTSBURGH ENERGY TECHNOLOGY CENTER Portions of this document may be illegible in electronic image products. Image are produced from the best available original document. &E/,Etq --,/s7 FINDING OF NO SIGNIFICANT IMPACT FOR THE PROPOSED METHYL CHLORIDE VIA OXYHYDROCHLORINATION OF METHANE PROJECT AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has prepared an Environmental Assessment (EA) (DOE/EA-1157) for a project proposed by Dow Corning Corporation to demonstrate a novel method for producing methyl chloride (CH,Cl). The project would involve design, construction, and operation of an engineering-scale oxyhydrochlorination (OHC) faci 1 i ty where methane, oxygen, and hydrogen chloride (HC1) would be reacted in a fixed-bed reactor in the presence of highly selective, stable catalysts. Unconverted methane, light hydrocarbons and HC1 would be recovered and recycled back to the OHC reactor. The methyl chloride would be absorbed in a solvent, treated by solvent stripping and then purified by distillation. Testing of the proposed OHC process would be conducted at Dow Corning's production plant in Carrollton, Carroll County, Kentucky, over a 23-month period. Based on the analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment as defined by the National Environmental Policy Act (NEPA) of 1969. -
A Variationally Computed IR Line List for the Methyl Radical CH3 Arxiv
A Variationally Computed IR Line List for the Methyl Radical CH3 Ahmad Y. Adam,y Andrey Yachmenev,z Sergei N. Yurchenko,{ and Per Jensen∗,y yFakult¨atf¨urMathematik und Naturwissenschaften, Physikalische und Theoretische Chemie, Bergische Universit¨atWuppertal, D{42097 Wuppertal, Germany zCenter for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany, The Hamburg Center for Ultrafast Imaging, Universit¨atHamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany {Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom E-mail: [email protected] arXiv:1905.05504v1 [physics.chem-ph] 14 May 2019 1 Abstract We present the first variational calculation of a hot temperature ab initio line list for the CH3 radical. It is based on a high level ab initio potential energy surface and dipole moment surface of CH3 in the ground electronic state. The ro-vibrational energy lev- els and Einstein A coefficients were calculated using the general-molecule variational approach implemented in the computer program TROVE. Vibrational energies and vibrational intensities are found to be in very good agreement with the available ex- perimental data. The line list comprises 9,127,123 ro-vibrational states (J ≤ 40) and 2,058,655,166 transitions covering the wavenumber range up to 10000 cm−1 and should be suitable for temperatures up to T = 1500 K. Introduction The methyl radical CH3 is a free radical of major importance in many areas of science such as hydrocarbon combustion processes,1 atmospheric chemistry,2 the chemistry of semiconductor production,3 the chemical vapor deposition of diamond,4 and many chemical processes of current industrial and environmental interest. -
Catalytic Reaction of Carbon Dioxide with Methane on Supported Noble Metal Catalysts
catalysts Review Catalytic Reaction of Carbon Dioxide with Methane on Supported Noble Metal Catalysts András Erd˝ohelyi Institute of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; [email protected]; Tel.: +36-62-343-638; Fax: +36-62-546-482 Abstract: The conversion of CO2 and CH4, the main components of the greenhouse gases, into synthesis gas are in the focus of academic and industrial research. In this review, the activity and stability of different supported noble metal catalysts were compared in the CO2 + CH4 reaction on. It was found that the efficiency of the catalysts depends not only on the metal and on the support but on the particle size, the metal support interface, the carbon deposition and the reactivity of carbon also influences the activity and stability of the catalysts. The possibility of the activation and dissociation of CO2 and CH4 on clean and on supported noble metals were discussed separately. CO2 could dissociate on metal surfaces, this reaction could proceed via the formation of carbonate on the support, or on the metal–support interface but in the reaction the hydrogen assisted dissociation of CO2 was also suggested. The decrease in the activity of the catalysts was generally attributed to carbon deposition, which can be formed from CH4 while others suggest that the source of the surface carbon is CO2. Carbon can occur in different forms on the surface, which can be transformed into each other depending on the temperature and the time elapsed since their formation. Basically, two reaction mechanisms was proposed, according to the mono-functional mechanism the activation of both CO2 and CH4 occurs on the metal sites, but in the bi-functional mechanism the CO2 is activated on the support or on the metal–support interface and the CH on the metal. -
United States Patent Office Patented Nov
3,702,769 United States Patent Office Patented Nov. 14, 1972 1. 2 turpentine, kerosine, mineral spirits, VM & P Naphtha METHOD of PoLIS.iiNGifeATHER3,702,769 wiTH COM and various of the aliphatic petroleum solvents such as POSITIONS CONTAINING REACTION PRODUCT those sold under the trademarks of Varsol and Skelly L. OF HYDROXY ENDBLOCKED SILOXANES AND solvent. When the term solvent is used herein, it should AMNOFUNCTIONAL SILANES be recognized by those skilled in the art that it is meant James R. Vaughn, Greensboro, N.C., assignor to Dow to include not only a single solvent but mixtures thereof. Corning Corporation, Midland, Mich. For example, in the preferred embodiment of the instant No Drawing. Continuation of abandoned application Ser. invention, it is preferred that the solvent be a mixture No. 703,533, Feb. 7, 1968. This application Jan. 4, of turpentine and Varsol in an approximate weight ratio 1971, Ser. No. 103,835 of 2.5:1. From 25 to 100 parts of solvent per 100 parts Int. C. C08h 9/06; C09f; CO9g 1/08 of water is employed. Preferably the amount of solvent U.S. C. 106-10 1. Claims is in the range of 45 to 65 parts. Various of the commercially available and commonly ABSTRACT OF THE DISCLOSURE used polish waxes can be employed in the instant compo 5 sition. Illustrative examples of suitable waxes include A leather polish is disclosed which not only polishes carnauba, beeswax, ozokerite and paraffin. Carnauba wax but cleans and preserves the leather. In addition, the polish is preferred at this time. -
Hydrogen Sulfide Public Health Statement
PUBLIC HEALTH STATEMENT Hydrogen Sulfide Division of Toxicology and Human Health Sciences December 2016 This Public Health Statement summarizes what is known about hydrogen sulfide such as possible health effects from exposure and what you can do to limit exposure. The U.S. Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites make up the National Priorities List (NPL) and are sites targeted for long-term federal clean-up activities. U.S. EPA has found hydrogen sulfide in at least 34 of the 1,832 current or former NPL sites. The total number of NPL sites evaluated for hydrogen sulfide is not known. But the possibility remains that as more sites are evaluated, the sites at which hydrogen sulfide is found may increase. This information is important because these future sites may be sources of exposure, and exposure to hydrogen sulfide may be harmful. If you are exposed to hydrogen sulfide, many factors determine whether you’ll be harmed. These include how much you are exposed to (dose), how long you are exposed (duration), and how you are exposed (route of exposure). You must also consider the other chemicals you are exposed to and your age, sex, diet, family traits, lifestyle, and state of health. WHAT IS HYDROGEN SULFIDE? Hydrogen sulfide (H2S) is a flammable, colorless gas that smells like rotten eggs. People usually can smell hydrogen sulfide at low concentrations in air, ranging from 0.0005 to 0.3 parts hydrogen sulfide per million parts of air (ppm). At high concentrations, a person might lose their ability to smell it. -
H2CS) and Its Thiohydroxycarbene Isomer (HCSH
A chemical dynamics study on the gas phase formation of thioformaldehyde (H2CS) and its thiohydroxycarbene isomer (HCSH) Srinivas Doddipatlaa, Chao Hea, Ralf I. Kaisera,1, Yuheng Luoa, Rui Suna,1, Galiya R. Galimovab, Alexander M. Mebelb,1, and Tom J. Millarc,1 aDepartment of Chemistry, University of Hawai’iatManoa, Honolulu, HI 96822; bDepartment of Chemistry and Biochemistry, Florida International University, Miami, FL 33199; and cSchool of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom Edited by Stephen J. Benkovic, The Pennsylvania State University, University Park, PA, and approved August 4, 2020 (received for review March 13, 2020) Complex organosulfur molecules are ubiquitous in interstellar molecular sulfur dioxide (SO2) (21) and sulfur (S8) (22). The second phase clouds, but their fundamental formation mechanisms have remained commences with the formation of the central protostars. Tempera- largely elusive. These processes are of critical importance in initiating a tures increase up to 300 K, and sublimation of the (sulfur-bearing) series of elementary chemical reactions, leading eventually to organo- molecules from the grains takes over (20). The subsequent gas-phase sulfur molecules—among them potential precursors to iron-sulfide chemistry exploits complex reaction networks of ion–molecule and grains and to astrobiologically important molecules, such as the amino neutral–neutral reactions (17) with models postulating that the very acid cysteine. Here, we reveal through laboratory experiments, first sulfur–carbon bonds are formed via reactions involving methyl electronic-structure theory, quasi-classical trajectory studies, and astro- radicals (CH3)andcarbene(CH2) with atomic sulfur (S) leading to chemical modeling that the organosulfur chemistry can be initiated in carbonyl monosulfide and thioformaldehyde, respectively (18).