5 Smith Chart

Total Page:16

File Type:pdf, Size:1020Kb

5 Smith Chart Smith Chart 5 Smith Chart After completing this section, students should be able to do the following. • Describe Smith chart as a polar plot of reflection coefficient. • Estimate the reflection coefficient from the Smith Chart. • Read the reflection coefficient off the Smith Chart • Mark the point on the Smith Chart given reflection coefficient. • Calculate load impedance if reflection coefficient and transmission-line impedance are given • Calculate reflection coefficient if load impedance and transmission-line impedance are given • Explain how was Smith Chart developed • Read normalized impedance and reflection coefficient on Smith Chart given a random point on the Smith Chart • Given impedance find the normalized position of the impedance on the Smith Chart. • Describe the reason for introducing admittance • Write impedance and admittance of an inductor and capacitor. • Explain why is the susceptance of an inductor negative and reactance is positive. • Explain why is the admittance Smith Chart rotated 180 degrees. • Distinguish between load impedance and normalized load impedance. De- scribe impedances on the Smith Chart as normalized impedances • Given impedance, read admittance on combo Y/Z chart • Given a random point on Y/Z chart, find admittance, impedance and the reflection coefficient. • Explain electrical length • Calculate the input impedance and input reflection coefficient • Describe input reflection coefficient in terms of load reflection coefficient. 88 Smith Chart 5.1 Smith Chart Smith Chart is a handy tool that we use to visualize impedances and reflection coefficients. Lumped element and transmission line impedance matching would be challenging to understand without Smith Charts. Simulation software such as ADS and measurement equipment, such as Network Analyzers, use Smith Chart to represent simulated or measured data. Smith Chart first looks like Black Magic, but it is a straightforward and useful tool that will help us better understand impedance/admittance transformations and transmission lines. Definition 16. Smith Chart is a polar plot of the reflection coefficient. An example of a Smith Chart is given in Figure 40 Figure 40: Smith Chart In essence, Smith Chart is a unit circle centered at the origin with a radius of 1. Smith Chart is used to represent the reflection coefficient graphically in polar coordinates. The reflection coefficient's real and imaginary axis (the Cartesian coordinates) is not shown on the actual Smith Chart. However, the center of the Smith Chart is where the origin of the coordinate system would be. We usually represent the reflection coefficient in polar coordinates, with a magnitude and an angle. Magnitude is the distance between the point and the origin, and the angle is measured from the x-axis. An example location of several reflection coefficients is given in Figure 41. If you do not see why the points are positioned as shown, review the polar representation of complex numbers. Figure 42, 43 circle and line represent all points on the Smith Chart that have constant magnitude or angle of the reflection coefficient. It is challenging to 89 Smith Chart Figure 41: Examples of location of reflection coefficient on the Smith Chart. measure impedances directly at high frequencies, as it is difficult to measure (or sometimes even define) voltage and current. To measure impedances, engineers use Network Analyzer shown in Figure 44. Example 18. We can estimate the reflection coefficient by looking at the posi- tion of a point on the Smith Chart. We know that the radius of the circle is 1. So, if the point is half-way between the center and the perimeter, we know the magnitude of the reflection coefficient is 0.5. We can also estimate the angle of the reflection coefficient. For example, if the magnitude is in the first quadrant, we know that the angle is between 00 and 900. If the point is on the positive y-axis, we know that the angle is equal to 900. Observe the simulation below and see if you can estimate the reflection coefficient’s magnitude and angle by looking at the point's position. The simulation below shows only positive angles. In practice, if the point is below the x-axis, we use negative angles to describe the angle of the reflection coefficient. For example, if the point is at the negative y-axis, we would say that the reflection coefficient’s angle is −900. Geogebra link: https: // tube. geogebra. org/ m/ u9ehhbaj 90 Smith Chart Figure 42: Points of constant magnitude of the reflection coefficient. jΓj=0.5, jΓj=1 Figure 43: Points of constant phase of the reflection coefficient. < Γ = 45◦, < Γ = 120◦ 91 Smith Chart Figure 44: HP8510 Network Analyzer in Microwave Laboratory measures impedances up to 26.5GHz. This piece of equipment is on permanent loan curtesy of Defense Micro Electronic Activity (DMEA), Sacramento 92 Impedance and admittance circles on the Smith Chart 5.2 Impedance and admittance circles on the Smith Chart Reflection Coefficient and Impedance Reflection coefficient and impedance are related through Equation 178. We can find an impedance that corresponds to the reflection coefficient, Equation 179. Every point on the Smith Chart represents one reflection coefficient Γ and one impedance ZL. Z − Z Γ = L ◦ (178) ZL + Z◦ 1 + Γ Z = Z (179) L 0 1 − Γ All impedances on the Smith Chart are normalized to the transmission line impedance Z0. The normalized impedance is denoted in Equation 180 with lowercase zL. ZL 1 + Γ zL = = (180) Z0 1 − Γ Derivation of Impedance and Admittance Circles on the Smith Chart Impedance and reflection coefficient are complex numbers. The normalized impedance has a real and imaginary part zL = rL + jxL, and the reflection coefficient can also be shown in Cartesian coordinates as Γ = Γr + jΓi. We can now substitute these equations into Equation 181. 1 + Γr + jΓi rL + jxL = (181) 1 − (Γr + jΓi) We can equate the real and imaginary parts on the left and right side of Equation 181 to get the equations of constant rL and xL. 93 Impedance and admittance circles on the Smith Chart 2 2 rL 2 1 Γr − + Γi = (182) 1 + rL 1 + rL 2 2 2 1 1 (Γr − 1) + Γi − = (183) xL xL These are equations of a circle, with the constant resistance circle's center at r 1 ( L ; 0) and radius ; and the constant reactance imaginary circle cen- 1 + rL 1 + rL 1 1 ter at (1; ) and radius of . xL xL Figures 45- 46 show circles on the Smith Chart that represent constant (nor- malized) reactances, and resistances. Figure 45: All points on the circle have the constant real part of the impedance (resistance). Normalized resistance circles. 1 Admittance circles can be similarly derived using the fact that YL = and ZL the Equation 180 94 Impedance and admittance circles on the Smith Chart Figure 46: All points on the circle have the constant imaginary part of the impedance (reactance). Normalized reactance circles. 95 Impedance and Admittance on Smith Chart 5.3 Impedance and Admittance on Smith Chart Brief review of impedance and admittance Impedance's Z = R + jXreal part is called resistance R, and the imaginary part is called reactance X. It is easier to add impedances when elements are in series; see Figure 47. To find the total impedance, we add resistances and reactances separately. The real part of an admittance Y = G + jB is called conductance G, and the imaginary part is called susceptance B. It is easier to add admittances when elements are in parallel; see Figure 47. When adding two admittances, we add conductances and susceptances separately. Figure 47: It is easier to use admittance when the circuit elements are in parallel and impedance when the circuit elements are in series. Smith Chart in Figure 48 has impedance circles, and impedance coordinates on it. We can use this Smith Chart to read off the values for the impedance, and reflection coefficient. In the next section, we will learn to use impedance/ad- mittance (Z/Y) Smith Chart, where both impedance and admittance circles are shown. We will use the Z/Y Smith Chart when we add impedances or admit- tances in parallel or series, which is useful in impedance matching that we will talk about in the next chapter. 96 Impedance and Admittance on Smith Chart Figure 48: On Smith Chart impedances are shown in red, and admittances in green. 97 Impedance and Admittance on Smith Chart Impedance on the Smith Chart Figure 49, shows how to find the location of normalized impedance zL = 1+j1 on the Smith Chart. zL = 1+j1 is at a point where the circle of constant resistance rL = 1 crosses the circle of constant reactance xL = 1. Figure 50 shows how to find the reflection coefficient if normalized load impedance zL = 1 + j1 is given. Measure the distance between the origin and the point using the scale ”Reflection Coefficient E or I" on the Smith Chart's bottom to find the reflection coefficient's magnitude. To find the reflection coefficient's angle, we read the scale "Angle of Reflection Coefficient" on the Smith Chart's perimeter, shown o in green. The reflection coefficient is therefore 0:5ej62 , which is close to the o actual value 0:5ej64 . If we use a ruler and compass, and a nicely sharpened pencil, we will get exactly the right answer. Try it out! Figure 49: Red circle that represents all points on Smith Chart with normalized resistance r = 1 and blue circle that represents all points on Smith Chart with normalized reactance x = 1 cross at point where ZL = 1 + j1. 98 Impedance and Admittance on Smith Chart Figure 50: To find the magnitude of the reflection coefficient from impedance ZL = 1 + j1, we measure the distance between the origin and the point using the scale ”Reflection Coefficient E or I" on the bottom of the Smith Chart.
Recommended publications
  • Smith Chart Tutorial
    Frank Lynch, W4FAL Smith Charts Frank A. Lynch W 4FA L Page 1 24 April 2008 “SCARS” http://smithchart.org Frank Lynch, W4FAL Smith Chart History • Invented by Phillip H. Smith in 1939 • Used to solve a variety of transmission line and waveguide problems Basic Uses For evaluating the rectangular components, or the magnitude and phase of an input impedance or admittance, voltage, current, and related transmission functions at all points along a transmission line, including: • Complex voltage and current reflections coefficients • Complex voltage and current transmission coefficents • Power reflection and transmission coefficients • Reflection Loss • Return Loss • Standing Wave Loss Factor • Maximum and minimum of voltage and current, and SWR • Shape, position, and phase distribution along voltage and current standing waves Page 2 24 April 2008 Frank Lynch, W4FAL Basic Uses (continued) For evaluating the effects of line attenuation on each of the previously mentioned parameters and on related transmission line functions at all positions along the line. For evaluating input-output transfer functions. Page 3 24 April 2008 Frank Lynch, W4FAL Specific Uses • Evaluating input reactance or susceptance of open and shorted stubs. • Evaluating effects of shunt and series impedances on the impedance of a transmission line. • For displaying and evaluating the input impedance characteristics of resonant and anti-resonant stubs including the bandwidth and Q. • Designing impedance matching networks using single or multiple open or shorted stubs. • Designing impedance matching networks using quarter wave line sections. • Designing impedance matching networks using lumped L-C components. • For displaying complex impedances verses frequency. • For displaying s-parameters of a network verses frequency.
    [Show full text]
  • A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers
    Review A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers Vivek T. Rathod Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; [email protected]; Tel.: +1-517-249-5207 Received: 29 December 2018; Accepted: 29 January 2019; Published: 1 February 2019 Abstract: Any electric transmission lines involving the transfer of power or electric signal requires the matching of electric parameters with the driver, source, cable, or the receiver electronics. Proceeding with the design of electric impedance matching circuit for piezoelectric sensors, actuators, and transducers require careful consideration of the frequencies of operation, transmitter or receiver impedance, power supply or driver impedance and the impedance of the receiver electronics. This paper reviews the techniques available for matching the electric impedance of piezoelectric sensors, actuators, and transducers with their accessories like amplifiers, cables, power supply, receiver electronics and power storage. The techniques related to the design of power supply, preamplifier, cable, matching circuits for electric impedance matching with sensors, actuators, and transducers have been presented. The paper begins with the common tools, models, and material properties used for the design of electric impedance matching. Common analytical and numerical methods used to develop electric impedance matching networks have been reviewed. The role and importance of electrical impedance matching on the overall performance of the transducer system have been emphasized throughout. The paper reviews the common methods and new methods reported for electrical impedance matching for specific applications. The paper concludes with special applications and future perspectives considering the recent advancements in materials and electronics.
    [Show full text]
  • Smith Chart Calculations
    The following material was extracted from earlier edi- tions. Figure and Equation sequence references are from the 21st edition of The ARRL Antenna Book Smith Chart Calculations The Smith Chart is a sophisticated graphic tool for specialized type of graph. Consider it as having curved, rather solving transmission line problems. One of the simpler ap- than rectangular, coordinate lines. The coordinate system plications is to determine the feed-point impedance of an consists simply of two families of circles—the resistance antenna, based on an impedance measurement at the input family, and the reactance family. The resistance circles, Fig of a random length of transmission line. By using the Smith 1, are centered on the resistance axis (the only straight line Chart, the impedance measurement can be made with the on the chart), and are tangent to the outer circle at the right antenna in place atop a tower or mast, and there is no need of the chart. Each circle is assigned a value of resistance, to cut the line to an exact multiple of half wavelengths. The which is indicated at the point where the circle crosses the Smith Chart may be used for other purposes, too, such as the resistance axis. All points along any one circle have the same design of impedance-matching networks. These matching resistance value. networks can take on any of several forms, such as L and pi The values assigned to these circles vary from zero at the networks, a stub matching system, a series-section match, and left of the chart to infinity at the right, and actually represent more.
    [Show full text]
  • Admittance, Conductance, Reactance and Susceptance of New Natural Fabric Grewia Tilifolia V
    Sensors & Transducers Volume 119, Issue 8, www.sensorsportal.com ISSN 1726-5479 August 2010 Editors-in-Chief: professor Sergey Y. Yurish, tel.: +34 696067716, fax: +34 93 4011989, e-mail: [email protected] Editors for Western Europe Editors for North America Meijer, Gerard C.M., Delft University of Technology, The Netherlands Datskos, Panos G., Oak Ridge National Laboratory, USA Ferrari, Vittorio, Universitá di Brescia, Italy Fabien, J. Josse, Marquette University, USA Katz, Evgeny, Clarkson University, USA Editor South America Costa-Felix, Rodrigo, Inmetro, Brazil Editor for Asia Ohyama, Shinji, Tokyo Institute of Technology, Japan Editor for Eastern Europe Editor for Asia-Pacific Sachenko, Anatoly, Ternopil State Economic University, Ukraine Mukhopadhyay, Subhas, Massey University, New Zealand Editorial Advisory Board Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia Djordjevich, Alexandar, City University of Hong Kong, Hong Kong Ahmad, Mohd Noor, Nothern University of Engineering, Malaysia Donato, Nicola, University of Messina, Italy Annamalai, Karthigeyan, National Institute of Advanced Industrial Science Donato, Patricio, Universidad de Mar del Plata, Argentina and Technology, Japan Dong, Feng, Tianjin University, China Arcega, Francisco, University of Zaragoza, Spain Drljaca, Predrag, Instersema Sensoric SA, Switzerland Arguel, Philippe, CNRS, France Dubey, Venketesh, Bournemouth University, UK Ahn, Jae-Pyoung, Korea Institute of Science and Technology, Korea Enderle, Stefan, Univ.of Ulm and KTB Mechatronics GmbH, Germany
    [Show full text]
  • Smith Chart Examples
    SMITH CHART EXAMPLES Dragica Vasileska ASU Smith Chart for the Impedance Plot It will be easier if we normalize the load impedance to the characteristic impedance of the transmission line attached to the load. Z z = = r + jx Zo 1+ Γ z = 1− Γ Since the impedance is a complex number, the reflection coefficient will be a complex number Γ = u + jv 2 2 2v 1− u − v x = r = 2 2 ()1− u 2 + v2 ()1− u + v Real Circles 1 Im {Γ} 0.5 r=0 r=1/3 r=1 r=2.5 1 0.5 0 0.5 1 Re {Γ} 0.5 1 Imaginary Circles Im 1 {Γ} x=1/3 x=1 x=2.5 0.5 Γ 1 0.5 0 0.5 1 Re { } x=-1/3 x=-1 x=-2.5 0.5 1 Normalized Admittance Y y = = YZ o = g + jb Yo 1− Γ y = 1+ Γ 2 1− u 2 − v2 g 1 u + + v2 = g = 2 ()1+ u 2 + v2 1+ g ()1+ g − 2v 2 b = 2 1 1 2 2 ()u +1 + v + = ()1+ u + v b b2 These are equations for circles on the (u,v) plane Real admittance 1 Im {Γ} 0.5 g=2.5 g=1 g=1/3 1 0.5 0 0.5Re {Γ} 1 0.5 1 Complex Admittance 1 Im {Γ} b=-1 b=-1/3 b=-2.5 0.5 1 0.5 0 0.5Re {Γ 1} b=2.5 b=1/3 0.5 b=1 1 Matching • For a matching network that contains elements connected in series and parallel, we will need two types of Smith charts – impedance Smith chart – admittance Smith Chart • The admittance Smith chart is the impedance Smith chart rotated 180 degrees.
    [Show full text]
  • Smith Chart • Smith Chart Was Developed by P
    Smith Chart • Smith Chart was developed by P. Smith at the Bell Lab in 1939 • Smith Chart provides an very useful way of visualizing the transmission line phenomenon and matching circuits. • In this slide, for convenience, we assume the normalized impedance is 50 Ohm. Smith Chart and Reflection coefficient Smith Chart is a polar plot of the voltage reflection coefficient, overlaid with impedance grid. So, you can covert the load impedance to reflection coefficient and vice versa. Smith Chart and impedance Examples: The upper half of the smith chart is for inductive impedance. The lower half of the is for capacitive impedance. Constant Resistance Circle This produces a circle where And the impedance on this circle r = 1 with different inductance (upper circle) and capacitance (lower circle) More on Constant Impedance Circle The circles for normalized rT = 0.2, 0.5, 1.0, 2.0 and 5.0 with Constant Inductance/Capacitance Circle Similarly, if xT is hold unchanged and vary the rT You will get the constant Inductance/capacitance circles. Constant Conductance and Susceptance Circle Reflection coefficient in term of admittance: And similarly, We can draw the constant conductance circle (red) and constant susceptance circles(blue). Example 1: Find the reflection coefficient from input impedance Example1: Find the reflection coefficient of the load impedance of: Step 1: In the impedance chart, find 1+2j. Step 2: Measure the distance from (1+2j) to the Origin w.r.t. radius = 1, which is read 0.7 Step 3: Find the angle, which is read 45° Now if we use the formula to verify the result.
    [Show full text]
  • Impedance Matching
    Impedance Matching Advanced Energy Industries, Inc. Introduction The plasma industry uses process power over a wide range of frequencies: from DC to several gigahertz. A variety of methods are used to couple the process power into the plasma load, that is, to transform the impedance of the plasma chamber to meet the requirements of the power supply. A plasma can be electrically represented as a diode, a resistor, Table of Contents and a capacitor in parallel, as shown in Figure 1. Transformers 3 Step Up or Step Down? 3 Forward Power, Reflected Power, Load Power 4 Impedance Matching Networks (Tuners) 4 Series Elements 5 Shunt Elements 5 Conversion Between Elements 5 Smith Charts 6 Using Smith Charts 11 Figure 1. Simplified electrical model of plasma ©2020 Advanced Energy Industries, Inc. IMPEDANCE MATCHING Although this is a very simple model, it represents the basic characteristics of a plasma. The diode effects arise from the fact that the electrons can move much faster than the ions (because the electrons are much lighter). The diode effects can cause a lot of harmonics (multiples of the input frequency) to be generated. These effects are dependent on the process and the chamber, and are of secondary concern when designing a matching network. Most AC generators are designed to operate into a 50 Ω load because that is the standard the industry has settled on for measuring and transferring high-frequency electrical power. The function of an impedance matching network, then, is to transform the resistive and capacitive characteristics of the plasma to 50 Ω, thus matching the load impedance to the AC generator’s impedance.
    [Show full text]
  • Beyond the Smith Chart
    IMAGE LICENSED BY GRAPHIC STOCK Beyond the Smith Chart Eli Bloch and Eran Socher he topic of impedance transformation and Since CMOS technology was primarily and ini- matching is one of the well-established tially developed for digital purposes, the lack of and essential aspects of microwave engi- high-quality passive components made it practically neering. A few decades ago, when discrete useless for RF design. The device speed was also radio-frequency (RF) design was domi- far inferior to established III-V technologies such as Tnant, impedance matching was mainly performed us- GaAs heterojunction bipolar transistors (HBTs) and ing transmission-lines techniques that were practical high-electron mobility transistors (HEMTs). The first due to the relatively large design size. As microwave RF CMOS receiver was constructed at 1989 [1], but design became possible using integrated on-chip com- it would take another several years for a fully inte- ponents, area constraints made LC- section match- grated CMOS RF receiver to be presented. The scal- ing (using lumped passive elements) more practical ing trend of CMOS in the past two decades improved than transmission line matching. Both techniques are the transistors’ speed exponentially, which provided conveniently visualized and accomplished using the more gain at RF frequencies and also enabled opera- well-known graphical tool, the Smith chart. tion at millimeter-wave (mm-wave) frequencies. The Eli Bloch ([email protected]) is with the Department of Electrical Engineering, Technion— Israel Institute of Technology, Haifa 32000, Israel. Eran Socher ([email protected]) is with the School of Electrical Engineering, Tel-Aviv University, 69978, Israel.
    [Show full text]
  • 36 Smith Chart and VSWR
    36 Smith Chart and VSWR Generator Transmission line I d ( ) Wire 2 + Load Z + g V d Zo • Consider the general phasor expressions - ( ) ZL F = Vg - Wire 1 l d V +ejβd(1 − Γ e−j2βd) 0 + jβd −j2βd L |V (d)|max V (d)=V e (1 + ΓLe ) and I(d)= |V (d)| Zo describing the voltage and current variations on TL’s in sinusoidal |V (d)|min dmax steady-state. dmin – Complex addition displayed Unless ΓL =0,thesephasorscontainreflectedcomponents,which graphically superposed on a means that voltage and current variations on the line “contain” Smith Chart standing waves. SmithChart 1 .5 2 In that case the phasors go through cycles of magnitude variations as a function of d,andinthevoltagemagnitudeinparticular(seemargin) .2 z(dmaxx!5) ( d) Γ(d) varying as 1+Γ =VSWR .2 .5 1 2 r!5 + −j2βd + 0 VSWR |V (d)| = |V ||1+ΓLe | = |V ||1+Γ(d)| 1 Γ(dmax)=|ΓL| takes maximum and minimum values of ".2 x!"5 + + |V (d)|max = |V |(1 + |ΓL|) and |V (d)|min = |V |(1 −|ΓL|) ".5 "2 "1 at locations d = dmax and dmin such that |1+Γ(d)| maximizes for d = dmax −j2βdmax −j2βdmin Γ(dmax)=ΓLe = |ΓL| and Γ(dmin)=ΓLe = −|ΓL|, |1+Γ(d)| minimizes for d = dmin and such that Γ(dmin)=−Γ(dmax) λ d − d is an odd multiple of . max min 4 1 Generator Transmission line I d – These results can be most easily understood and verified graphi- ( ) Wire 2 + Load cally on a SC as shown in the margin. + Zg Z - V (d) o ZL F = Vg - Wire 1 l d • We define a parameter known as voltage standing wave ratio,or 0 |V (d)|max VSWR for short, by |V (d)| |V (d)|min dmax |V (dmax)| 1+|ΓL| VSWR − 1 VSWR ≡ = ⇔|ΓL| = .
    [Show full text]
  • S-Parameter Simulation and Optimization
    S-parameter Simulation and Optimization ADS 2009 (version 1.0) Copyright Agilent Technologies 2009 Slide 5 - 1 S-parameters are Ratios Usually given in dB as 20 log of the voltage ratios of the waves at the ports: incident, reflected, or transmitted. S-parameter (ratios): out / in • S11 - Forward Reflection (input match - impedance) Best viewed on a • S22 - Reverse Reflection (output match - impedance) Smith chart. • S21 - Forward Transmission (gain or loss) These are easier • S12 - Reverse Transmission (leakage or isolation) to understand and simply plotted. Results of an S-Parameter Simulation in ADS • S-matrix with all complex values at each frequency point • Read the complex reflection coefficient (Gamma) • Change the marker readout for Zo • Smith chart plots for impedance matching • Results are similar to Network Analyzer measurements Next, ADS data ADS 2009 (version 1.0) Copyright Agilent Technologies 2009 Slide 5 - 2 Typical S-parameter data in ADS Transmission: S21 Reflection: S11 magnitude vs frequency Impedance on a Smith Chart Complete S-matrix with port impedance Note: Smith marker impedance readout is changed to Zo = 50 ohms. Smith chart basics... ADS 2009 (version 1.0) Copyright Agilent Technologies 2009 Slide 5 - 3 The Impedance Smith Chart simplified... This is an impedance chart transformed from rectangular Z. Normalized to 50 ohms, the center = R50+J0 or Zo (perfect match). For S11 or S22 (two-port), you get the complex impedance. Circles of constant Resistance 16.7 50 150 SHORT OPEN 25 50 100 Lines of constant Reactance (+jx above and -jx below) Zo (characteristic impedance) = 50 + j0 More Smith chart..
    [Show full text]
  • EEEE-816 Design and Characterization of Microwave Systems
    EEEE-816 Design and Characterization of Microwave Systems Dr. Jayanti Venkataraman Department of Electrical Engineering Rochester Institute of Technology Rochester, NY 14623 March 2008 EE816 Design and Characterization of Microwave Systems I. Course Structure - 4 credits II. Pre-requisites – Microwave Circuits (EE717) and Antenna Theory (EE729) III. Course level – Graduate IV. Course Objectives Electromagnetics education has been rejuvenated by three emerging technologies, namely mixed signal circuits, wireless communication and bio-electromagnetics. As hardware and software tools continue to get more sophisticated, there is a need to be able to perform specific tasks for characterization and validation of design, working within the capabilities of test equipment, and the ability to develop corresponding analytical formulations There are two primary course objectives. (i) Design of experiments to characterize or measure specific quantities, working with the constraints of measurable quantities using the vector network analyzer, and in conjunction with the development of closed form analytical expressions. (ii) Design, construction and characterization of microstrip circuitry and antennas for a specified set of criteria using analytical models, and software tools and measurement techniques. Microwave measurement will involve the use of network analyzers, and spectrum analyzers in conjunction with the probe station. Simulated results will be obtained using some popular commercial EM software for the design of microwave circuits and antennas.
    [Show full text]
  • S-Parameter Techniques – HP Application Note 95-1
    H Test & Measurement Application Note 95-1 S-Parameter Techniques Contents 1. Foreword and Introduction 2. Two-Port Network Theory 3. Using S-Parameters 4. Network Calculations with Scattering Parameters 5. Amplifier Design using Scattering Parameters 6. Measurement of S-Parameters 7. Narrow-Band Amplifier Design 8. Broadband Amplifier Design 9. Stability Considerations and the Design of Reflection Amplifiers and Oscillators Appendix A. Additional Reading on S-Parameters Appendix B. Scattering Parameter Relationships Appendix C. The Software Revolution Relevant Products, Education and Information Contacting Hewlett-Packard © Copyright Hewlett-Packard Company, 1997. 3000 Hanover Street, Palo Alto California, USA. H Test & Measurement Application Note 95-1 S-Parameter Techniques Foreword HEWLETT-PACKARD JOURNAL This application note is based on an article written for the February 1967 issue of the Hewlett-Packard Journal, yet its content remains important today. S-parameters are an Cover: A NEW MICROWAVE INSTRUMENT SWEEP essential part of high-frequency design, though much else MEASURES GAIN, PHASE IMPEDANCE WITH SCOPE OR METER READOUT; page 2 See Also:THE MICROWAVE ANALYZER IN THE has changed during the past 30 years. During that time, FUTURE; page 11 S-PARAMETERS THEORY AND HP has continuously forged ahead to help create today's APPLICATIONS; page 13 leading test and measurement environment. We continuously apply our capabilities in measurement, communication, and computation to produce innovations that help you to improve your business results. In wireless communications, for example, we estimate that 85 percent of the world’s GSM (Groupe Speciale Mobile) telephones are tested with HP instruments. Our accomplishments 30 years hence may exceed our boldest conjectures.
    [Show full text]