First Ten Years of Active Metamaterial Structures with “Negative” Elements

Total Page:16

File Type:pdf, Size:1020Kb

First Ten Years of Active Metamaterial Structures with “Negative” Elements EPJ Appl. Metamat. 5, 9 (2018) © S. Hrabar, published by EDP Sciences, 2018 https://doi.org/10.1051/epjam/2018005 Available online at: Metamaterials’2017 epjam.edp-open.org Metamaterials and Novel Wave Phenomena: Theory, Design and Applications REVIEW First ten years of active metamaterial structures with “negative” elements Silvio Hrabar* University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, HR-10000, Croatia Received: 18 September 2017 / Accepted: 27 June 2018 Abstract. Almost ten years have passed since the first experimental attempts of enhancing functionality of radiofrequency metamaterials by embedding active circuits that mimic behavior of hypothetical negative capacitors, negative inductors and negative resistors. While negative capacitors and negative inductors can compensate for dispersive behavior of ordinary passive metamaterials and provide wide operational bandwidth, negative resistors can compensate for inherent losses. Here, the evolution of aforementioned research field, together with the most important theoretical and experimental results, is reviewed. In addition, some very recent efforts that go beyond idealistic impedance negation and make use of inherent non-ideality, instability, and non-linearity of realistic devices are highlighted. Finally, a very fundamental, but still unsolved issue of common theoretical framework that connects causality, stability, and non-linearity of networks with negative elements is stressed. Keywords: Active metamaterial / Non-Foster / Causality / Stability / Non-linearity 1 Introduction dispersion becomes significant. The same behavior applies for metamaterials, in which above effects occur to the All materials (except vacuum) are dispersive [1,2] due to resonant energy redistribution in some kind of an inevitable resonant behavior of electric/magnetic polari- electromagnetic structure [2]. Thus, every passive material zation. The simplest physical picture deals with mechanical (or metamaterial) with negative or less-than-unity effec- inertia of polarized particles, caused by their finite mass. tive parameters is inevitably narrowband. This fact is Due to inertia, the particles cannot respond instantaneous- mathematically expressed in the form of well-known ly to an external electromagnetic field. Thus, there will be a energy-dispersion constraints [1,2]: phase lag/lead between particle movement and applied ∂½eðvÞ ∂½mvðÞ oscillating field. Clearly, this effect causes a change of > 0; > 0: ð1Þ relative permittivity and permeability with frequency (i.e. ∂v ∂v the dispersion). An electrical engineering model of this Very similar equations apply for any reactive element in phenomenon comprises an RLC resonant circuit (Lorentz circuit-theory (Foster’s reactance theorem) [3,4]: dispersion model with “parallel” (fp) and “series” (fs) resonant frequency [1,2], Fig. 1). ∂½XðvÞ ∂½BðÞv > 0; > 0: ð2Þ Here, the resonant energy re-distribution between ∂v ∂v electric and magnetic fields describes the mechanical inertia. Inspection of the Lorentz curve (Fig. 1) shows Here e and m stand for permittivity and permeability that the dispersion is negligible if a material is used far while X and B are reactance and susceptance, respectively, below its parallel resonant frequency (fp). Actually, this is symbol v represents angular frequency. the case of most of ordinary dielectrics in radiofrequency Obviously, ordinary reactive circuit elements (capaci- and microwave regime. tors and inductors) obey Foster’s theorem. However, one However, if one wants to make use of phase lead effect might (hypothetically) define new “negative” (or “non- (i.e. of the occurrence of negative or less-than-unity Foster”) elements: negative capacitor (Cn < 0) and negative effective constitutive parameters: EpsilonNeGative, inductor (Ln < 0) (Fig. 2). MuNeGative, EpsilonNearZero, and MuNearZero), the Due to negative capacitance/inductance, the terminal current of these elements is negative (it flows outward from * e-mail: [email protected] the positive terminal). Thus, a negative capacitor and a This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 2 S. Hrabar: EPJ Appl. Metamat. 5, 9 (2018) Fig. 1. Lorentz dispersion model. Solid: real part of relative Fig. 2. Solid: reactance of positive (Foster) reactive elements, permittivity/permeability, dashed: imaginary part of relative dashed: reactance of negative (non-Foster) reactive elements [20]. permittivity/permeability. Fig. 3. Linear dispersion-free models of ideal negative elements. (a) Negative capacitor, (b) negative inductor, and (c) negative resistor. positive feedback is needed in other to assure impedance sign flipping in the case of NICs (Zin ∼ ÀZload) or impedance sign flipping accompanied with the impedance inversion in the case of NIIs (Zin ∼ À1/Zload), Zin and Zload being the input and load impedance, respectively. In order to get acquainted with the aforementioned principle, it is instructive to briefly explain the simplest voltage-conversion NIC (Fig. 4). The (grounded) load impedance that should be inverted (Z)is shown in the left part of Figure 4. The load can be a lumped element of any type (a capacitor, an inductor, or a resistor). In order to invert the load impedance, one swaps the sign of Fig. 4. Simplified explanation of the generation of negative the input current (I). This is done by inserting an additional impedance by a voltage-converting NIC [2]. “dependent” voltage source of amplitude 2V in series with impedance Z (the middle part of Fig. 4). This dependent source is actually a voltage amplifier with gain equal to +2 negative inductor behave as (reactive) sources, i.e. they are (the right part of Fig. 4). The voltage drop across the inevitably active devices [2]. impedance is now equal to ÀV (the left electrode has It is important to notice that energy-dispersion potential of V and the right one has potential of 2 V). This constraints (and Foster’s theorem) have been derived causes the inversion of the impedance Zin (as seen from the assuming that there are no losses present [1,3–5]. So, input terminals): strictly speaking, hypothetical negative resistor (an active V V V element that delivers real power [4]) should not be termed Z ¼ ¼ ¼ ¼Z: ð3Þ “ ” in I V À2V V as a non-Foster element . However, one might say that a Z À Z negative capacitor, a negative inductor, together with a negative resistor form a complete group of (hypothetical) A more general equation that allows use of complex gain “negative circuit elements”. These ideal elements are function of realistic active element can be found in postulated to be linear and dispersionless (Fig. 3). [2,6,7,10]. In practice, “negative” elements are mimicked by There are also some electronic elements (such as tunnel appropriate electronic circuitry, so called “Negative Imped- diodes and Gunn diodes [4]) that show negative resistance ance Converters”,[6,7] and “Negative Impedance Inverters”, effects (but not negative capacitance or negative induc- [8,9], proposed more than 60 years ago. In essence, these are tance!) per se. They again contain some kind of positive specially designed amplifiers with positive feedback. A feedback, which occurs at a microscopic level due to S. Hrabar: EPJ Appl. Metamat. 5, 9 (2018) 3 Fig. 5. Transmission-line models of different metamaterials (a) passive metamaterial, (b) active non-Foster-based metamaterial, and (c) active gain-based metamaterial. background semiconductor physics. Traditionally, these by the bandwidth of the realized non-Foster element itself. elements have been used for construction of amplifiers and Thus, the inherent energy-dispersion constraints (1) would oscillators in the microwave community [4]. be bypassed. The first potential application of negative capacitors Theoretical analysis from [15] initiated a new way of and inductors (that has been investigating for many thinking and encouraged researchers all around the world years and it is still active nowadays) is broadband to try to bring this interesting idea to reality. The field of matching of small antennas [10]. Briefly, this matching active “negative” metamaterials has been growing rapidly. relies on the compensation of frequency dispersion of an Nowadays it goes beyond broadband (almost dispersion- ordinary reactive network with the “inverse” dispersion of less) operation, and includes power-flow reversal, non- a “negative” non-Foster network. This compensation linear, and oscillatory behavior. This paper points out some yields (theoretically) infinite bandwidth. Apart from of the most important (in Author’s personal opinion) matching, several (mostly theoretical) studies, that theoretical and experimental results obtained so far. On the investigated the use of active elements in periodic other hand, it also tries to stress the “bottlenecks” of this structures for various microwave applications such as technology, related to some very fundamental but still manipulation of bianisotropy [11]andemulationof unclear issues. perfectly matched layers (ideal absorbers) [12,13], were published in the past. Particularly interesting is an idea of “artificial atoms” 2 Evolvement of the research field and that comprise circuits based on OPerational AMPlifiers current state of the art (even including NIC circuits) [14]. Those “atoms” were proposed for construction
Recommended publications
  • Smith Chart Tutorial
    Frank Lynch, W4FAL Smith Charts Frank A. Lynch W 4FA L Page 1 24 April 2008 “SCARS” http://smithchart.org Frank Lynch, W4FAL Smith Chart History • Invented by Phillip H. Smith in 1939 • Used to solve a variety of transmission line and waveguide problems Basic Uses For evaluating the rectangular components, or the magnitude and phase of an input impedance or admittance, voltage, current, and related transmission functions at all points along a transmission line, including: • Complex voltage and current reflections coefficients • Complex voltage and current transmission coefficents • Power reflection and transmission coefficients • Reflection Loss • Return Loss • Standing Wave Loss Factor • Maximum and minimum of voltage and current, and SWR • Shape, position, and phase distribution along voltage and current standing waves Page 2 24 April 2008 Frank Lynch, W4FAL Basic Uses (continued) For evaluating the effects of line attenuation on each of the previously mentioned parameters and on related transmission line functions at all positions along the line. For evaluating input-output transfer functions. Page 3 24 April 2008 Frank Lynch, W4FAL Specific Uses • Evaluating input reactance or susceptance of open and shorted stubs. • Evaluating effects of shunt and series impedances on the impedance of a transmission line. • For displaying and evaluating the input impedance characteristics of resonant and anti-resonant stubs including the bandwidth and Q. • Designing impedance matching networks using single or multiple open or shorted stubs. • Designing impedance matching networks using quarter wave line sections. • Designing impedance matching networks using lumped L-C components. • For displaying complex impedances verses frequency. • For displaying s-parameters of a network verses frequency.
    [Show full text]
  • Gold Nanoarray Deposited Using Alternating Current for Emission Rate
    Xue et al. Nanoscale Research Letters 2013, 8:295 http://www.nanoscalereslett.com/content/8/1/295 NANO EXPRESS Open Access Gold nanoarray deposited using alternating current for emission rate-manipulating nanoantenna Jiancai Xue1, Qiangzhong Zhu1, Jiaming Liu1, Yinyin Li2, Zhang-Kai Zhou1*, Zhaoyong Lin1, Jiahao Yan1, Juntao Li1 and Xue-Hua Wang1* Abstract We have proposed an easy and controllable method to prepare highly ordered Au nanoarray by pulse alternating current deposition in anodic aluminum oxide template. Using the ultraviolet–visible-near-infrared region spectrophotometer, finite difference time domain, and Green function method, we experimentally and theoretically investigated the surface plasmon resonance, electric field distribution, and local density of states enhancement of the uniform Au nanoarray system. The time-resolved photoluminescence spectra of quantum dots show that the emission rate increased from 0.0429 to 0.5 ns−1 (10.7 times larger) by the existence of the Au nanoarray. Our findings not only suggest a convenient method for ordered nanoarray growth but also prove the utilization of the Au nanoarray for light emission-manipulating antennas, which can help build various functional plasmonic nanodevices. Keywords: Anodic aluminum oxide template, Au nanoarray, Emission rate, Nanoantenna, Surface plasmon PACS: 82.45.Yz, 78.47.jd, 62.23.Pq Background Owing to the self-organized hexagonal arrays of Excited by an incident photon beam and provoking a uniform parallel nanochannels, anodic aluminum oxide collective oscillation of free electron gas, plasmonic (AAO) film has been widely used as the template for materials gain the ability to manipulate electromagnetic nanoarray growth [26-29]. Many distinctive discoveries field at a deep-subwavelength scale, making them play a have been made in the nanosystems fabricated in AAO major role in current nanoscience [1-5].
    [Show full text]
  • A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers
    Review A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers Vivek T. Rathod Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; [email protected]; Tel.: +1-517-249-5207 Received: 29 December 2018; Accepted: 29 January 2019; Published: 1 February 2019 Abstract: Any electric transmission lines involving the transfer of power or electric signal requires the matching of electric parameters with the driver, source, cable, or the receiver electronics. Proceeding with the design of electric impedance matching circuit for piezoelectric sensors, actuators, and transducers require careful consideration of the frequencies of operation, transmitter or receiver impedance, power supply or driver impedance and the impedance of the receiver electronics. This paper reviews the techniques available for matching the electric impedance of piezoelectric sensors, actuators, and transducers with their accessories like amplifiers, cables, power supply, receiver electronics and power storage. The techniques related to the design of power supply, preamplifier, cable, matching circuits for electric impedance matching with sensors, actuators, and transducers have been presented. The paper begins with the common tools, models, and material properties used for the design of electric impedance matching. Common analytical and numerical methods used to develop electric impedance matching networks have been reviewed. The role and importance of electrical impedance matching on the overall performance of the transducer system have been emphasized throughout. The paper reviews the common methods and new methods reported for electrical impedance matching for specific applications. The paper concludes with special applications and future perspectives considering the recent advancements in materials and electronics.
    [Show full text]
  • Bringing Optical Metamaterials to Reality
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Bringing Optical Metamaterials to Reality Permalink https://escholarship.org/uc/item/5d37803w Author Valentine, Jason Gage Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Bringing Optical Metamaterials to Reality By Jason Gage Valentine A dissertation in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Xiang Zhang, Chair Professor Costas Grigoropoulos Professor Liwei Lin Professor Ming Wu Fall 2010 Bringing Optical Metamaterials to Reality © 2010 By Jason Gage Valentine Abstract Bringing Optical Metamaterials to Reality by Jason Gage Valentine Doctor of Philosophy in Mechanical Engineering University of California, Berkeley Professor Xiang Zhang, Chair Metamaterials, which are artificially engineered composites, have been shown to exhibit electromagnetic properties not attainable with naturally occurring materials. The use of such materials has been proposed for numerous applications including sub-diffraction limit imaging and electromagnetic cloaking. While these materials were first developed to work at microwave frequencies, scaling them to optical wavelengths has involved both fundamental and engineering challenges. Among these challenges, optical metamaterials tend to absorb a large amount of the incident light and furthermore, achieving devices with such materials has been difficult due to fabrication constraints associated with their nanoscale architectures. The objective of this dissertation is to describe the progress that I have made in overcoming these challenges in achieving low loss optical metamaterials and associated devices. The first part of the dissertation details the development of the first bulk optical metamaterial with a negative index of refraction.
    [Show full text]
  • Admittance, Conductance, Reactance and Susceptance of New Natural Fabric Grewia Tilifolia V
    Sensors & Transducers Volume 119, Issue 8, www.sensorsportal.com ISSN 1726-5479 August 2010 Editors-in-Chief: professor Sergey Y. Yurish, tel.: +34 696067716, fax: +34 93 4011989, e-mail: [email protected] Editors for Western Europe Editors for North America Meijer, Gerard C.M., Delft University of Technology, The Netherlands Datskos, Panos G., Oak Ridge National Laboratory, USA Ferrari, Vittorio, Universitá di Brescia, Italy Fabien, J. Josse, Marquette University, USA Katz, Evgeny, Clarkson University, USA Editor South America Costa-Felix, Rodrigo, Inmetro, Brazil Editor for Asia Ohyama, Shinji, Tokyo Institute of Technology, Japan Editor for Eastern Europe Editor for Asia-Pacific Sachenko, Anatoly, Ternopil State Economic University, Ukraine Mukhopadhyay, Subhas, Massey University, New Zealand Editorial Advisory Board Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia Djordjevich, Alexandar, City University of Hong Kong, Hong Kong Ahmad, Mohd Noor, Nothern University of Engineering, Malaysia Donato, Nicola, University of Messina, Italy Annamalai, Karthigeyan, National Institute of Advanced Industrial Science Donato, Patricio, Universidad de Mar del Plata, Argentina and Technology, Japan Dong, Feng, Tianjin University, China Arcega, Francisco, University of Zaragoza, Spain Drljaca, Predrag, Instersema Sensoric SA, Switzerland Arguel, Philippe, CNRS, France Dubey, Venketesh, Bournemouth University, UK Ahn, Jae-Pyoung, Korea Institute of Science and Technology, Korea Enderle, Stefan, Univ.of Ulm and KTB Mechatronics GmbH, Germany
    [Show full text]
  • Series Impedance and Shunt Admittance Matrices of an Underground Cable System
    SERIES IMPEDANCE AND SHUNT ADMITTANCE MATRICES OF AN UNDERGROUND CABLE SYSTEM by Navaratnam Srivallipuranandan B.E.(Hons.), University of Madras, India, 1983 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Electrical Engineering) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA, 1986 C Navaratnam Srivallipuranandan, 1986 November 1986 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date 6 n/8'i} SERIES IMPEDANCE AND SHUNT ADMITTANCE MATRICES OF AN UNDERGROUND CABLE ABSTRACT This thesis describes numerical methods for the: evaluation of the series impedance matrix and shunt admittance matrix of underground cable systems. In the series impedance matrix, the terms most difficult to compute are the internal impedances of tubular conductors and the earth return impedance. The various form u hit- for the interim!' impedance of tubular conductors and for th.: earth return impedance are, therefore, investigated in detail. Also, a more accurate way of evaluating the elements of the admittance matrix with frequency dependence of the complex permittivity is proposed.
    [Show full text]
  • Impedance Matching
    Impedance Matching Advanced Energy Industries, Inc. Introduction The plasma industry uses process power over a wide range of frequencies: from DC to several gigahertz. A variety of methods are used to couple the process power into the plasma load, that is, to transform the impedance of the plasma chamber to meet the requirements of the power supply. A plasma can be electrically represented as a diode, a resistor, Table of Contents and a capacitor in parallel, as shown in Figure 1. Transformers 3 Step Up or Step Down? 3 Forward Power, Reflected Power, Load Power 4 Impedance Matching Networks (Tuners) 4 Series Elements 5 Shunt Elements 5 Conversion Between Elements 5 Smith Charts 6 Using Smith Charts 11 Figure 1. Simplified electrical model of plasma ©2020 Advanced Energy Industries, Inc. IMPEDANCE MATCHING Although this is a very simple model, it represents the basic characteristics of a plasma. The diode effects arise from the fact that the electrons can move much faster than the ions (because the electrons are much lighter). The diode effects can cause a lot of harmonics (multiples of the input frequency) to be generated. These effects are dependent on the process and the chamber, and are of secondary concern when designing a matching network. Most AC generators are designed to operate into a 50 Ω load because that is the standard the industry has settled on for measuring and transferring high-frequency electrical power. The function of an impedance matching network, then, is to transform the resistive and capacitive characteristics of the plasma to 50 Ω, thus matching the load impedance to the AC generator’s impedance.
    [Show full text]
  • Oct. 30, 1923. 1,472,583 W
    Oct. 30, 1923. 1,472,583 W. G. CADY . METHOD OF MAINTAINING ELECTRIC CURRENTS OF CONSTANT FREQUENCY Filed May 28. 1921 Patented Oct. 30, 1923. 1,472,583 UNITED STATES PATENT OFFICE, WALTER GUYTON CADY, OF MIDDLETowN, connECTICUT. METHOD OF MAINTAINING ELECTRIC CURRENTS OF CONSTANT FREQUENCY, To all whom it may concern:Application filed May 28, 1921. Serial No. 473,434. REISSUED Be it known that I, WALTER G. CADY, a tric resonator that I take advantage of for citizen of the United States of America, my present purpose are-first: that prop residing at Middletown, in the county of erty by virtue of which such a resonator, 5 Middlesex, State of Connecticut, have in whose vibrations are maintained by im vented certain new and useful Improve pulses; received from one electric circuit, ments in Method of Maintaining Electric may be used to transmit energy in the form B) Currents of Constant Frequency, of which of an alternating current into another cir the following is a full, clear, and exact de cuit; second, that property which it posses 0 scription. ses of modifying by its reactions the alter The invention which forms the subject nating current of a particular frequency or of my present application for Letters Patent frequencies flowing to it; and third, the fact that the effective capacity of the resonator andis an maintainingimprovement alternatingin the art ofcurrents producing of depends, in a manner which will more fully 5 constant frequency. It is well known that hereinafter appear, upon the frequency of heretofore the development of such currents the current in the circuit with which it may to any very high degree of precision has be connected.
    [Show full text]
  • Alternating Current Principles
    Basic Electrical Theory Power Principles and Phase Angle PJM State & Member Training Dept. PJM©2014 10/24/2013 Objectives • At the end of this presentation the learner will be able to; • Identify the characteristics of Sine Waves • Discuss the principles of AC Voltage, Current, and Phase Relations • Compute the Energy and Power on AC Systems • Identify Three-Phase Power and its configurations PJM©2014 10/24/2013 Sine Waves PJM©2014 10/24/2013 Sine Waves • Generator operation is based on the principles of electromagnetic induction which states: When a conductor moves, cuts, or passes through a magnetic field, or vice versa, a voltage is induced in the conductor • When a generator shaft rotates, a conductor loop is forced through a magnetic field inducing a voltage PJM©2014 10/24/2013 Sine Waves • The magnitude of the induced voltage is dependant upon: • Strength of the magnetic field • Position of the conductor loop in reference to the magnetic lines of force • As the conductor rotates through the magnetic field, the shape produced by the changing magnitude of the voltage is a sine wave • http://micro.magnet.fsu.edu/electromag/java/generator/ac.html PJM©2014 10/24/2013 Sine Waves PJM©2014 10/24/2013 Sine Waves RMS PJM©2014 10/24/2013 Sine Waves • A cycle is the part of a sine wave that does not repeat or duplicate itself • A period (T) is the time required to complete one cycle • Frequency (f) is the rate at which cycles are produced • Frequency is measured in hertz (Hz), One hertz equals one cycle per second PJM©2014 10/24/2013 Sine Waves
    [Show full text]
  • Unit I Microwave Transmission Lines
    UNIT I MICROWAVE TRANSMISSION LINES INTRODUCTION Microwaves are electromagnetic waves with wavelengths ranging from 1 mm to 1 m, or frequencies between 300 MHz and 300 GHz. Apparatus and techniques may be described qualitatively as "microwave" when the wavelengths of signals are roughly the same as the dimensions of the equipment, so that lumped-element circuit theory is inaccurate. As a consequence, practical microwave technique tends to move away from the discrete resistors, capacitors, and inductors used with lower frequency radio waves. Instead, distributed circuit elements and transmission-line theory are more useful methods for design, analysis. Open-wire and coaxial transmission lines give way to waveguides, and lumped-element tuned circuits are replaced by cavity resonators or resonant lines. Effects of reflection, polarization, scattering, diffraction, and atmospheric absorption usually associated with visible light are of practical significance in the study of microwave propagation. The same equations of electromagnetic theory apply at all frequencies. While the name may suggest a micrometer wavelength, it is better understood as indicating wavelengths very much smaller than those used in radio broadcasting. The boundaries between far infrared light, terahertz radiation, microwaves, and ultra-high-frequency radio waves are fairly arbitrary and are used variously between different fields of study. The term microwave generally refers to "alternating current signals with frequencies between 300 MHz (3×108 Hz) and 300 GHz (3×1011 Hz)."[1] Both IEC standard 60050 and IEEE standard 100 define "microwave" frequencies starting at 1 GHz (30 cm wavelength). Electromagnetic waves longer (lower frequency) than microwaves are called "radio waves". Electromagnetic radiation with shorter wavelengths may be called "millimeter waves", terahertz radiation or even T-rays.
    [Show full text]
  • Experiment 12: AC Circuits - RLC Circuit
    Experiment 12: AC Circuits - RLC Circuit Introduction An inductor (L) is an important component of circuits, on the same level as resistors (R) and capacitors (C). The inductor is based on the principle of inductance - that moving charges create a magnetic field (the reverse is also true - a moving magnetic field creates an electric field). Inductors can be used to produce a desired magnetic field and store energy in its magnetic field, similar to capacitors being used to produce electric fields and storing energy in their electric field. At its simplest level, an inductor consists of a coil of wire in a circuit. The circuit symbol for an inductor is shown in Figure 1a. So far we observed that in an RC circuit the charge, current, and potential difference grew and decayed exponentially described by a time constant τ. If an inductor and a capacitor are connected in series in a circuit, the charge, current and potential difference do not grow/decay exponentially, but instead oscillate sinusoidally. In an ideal setting (no internal resistance) these oscillations will continue indefinitely with a period (T) and an angular frequency ! given by 1 ! = p (1) LC This is referred to as the circuit's natural angular frequency. A circuit containing a resistor, a capacitor, and an inductor is called an RLC circuit (or LCR), as shown in Figure 1b. With a resistor present, the total electromagnetic energy is no longer constant since energy is lost via Joule heating in the resistor. The oscillations of charge, current and potential are now continuously decreasing with amplitude.
    [Show full text]
  • MEMS Cantilever Resonators Under Soft AC
    Microelectromechanical Systems Cantilever Resonators Dumitru I. Caruntu1 Mem. ASME Under Soft Alternating Current Mechanical Engineering Department, University of Texas Pan American, 1201 W University Drive, Voltage of Frequency Near Edinburg, TX 78539 e-mail: [email protected] Natural Frequency Martin W. Knecht This paper deals with nonlinear-parametric frequency response of alternating current Engineering Department, (AC) near natural frequency electrostatically actuated microelectromechanical systems South Texas College, (MEMS) cantilever resonators. The model includes fringe and Casimir effects, and damp- McAllen, TX 78501 ing. Method of multiple scales (MMS) and reduced order model (ROM) method are used e-mail: [email protected] to investigate the case of weak nonlinearities. It is reported for uniform resonators: (1) an excellent agreement between the two methods for amplitudes less than half of the gap, (2) a significant influence of fringe effect and damping on bifurcation frequencies and phase–frequency response, respectively, (3) an increase of nonzero amplitudes’ fre- quency range with voltage increase and damping decrease, and (4) a negligible Casimir effect at microscale. [DOI: 10.1115/1.4028887] Introduction linear Mathieu’s equation as the governing equation of motion. Yet, the parametric coefficient was only in the linear terms. Non- Microelectromechanicals systems (MEMS) find their use in linear behavior of electrostatically actuated cantilever beam micro biomedical, automotive, and aerospace. MEMS beams are com- resonators, including fringe effect, has been investigated [11] mon and successfully used as chemical sensors [1], biosensors [2], using MMS and ROM. Yet, the nonlinear behavior was due to AC pressure sensors [3], switches [4], and energy harvesters [5]. voltage of frequency near a system’s half natural frequency of the MEMS systems are nonlinear due to actuation forces, damping resonator, which resulted in primary resonance.
    [Show full text]