A Proteome-Wide Genetic Investigation Identifies Several SARS-Cov-2

Total Page:16

File Type:pdf, Size:1020Kb

A Proteome-Wide Genetic Investigation Identifies Several SARS-Cov-2 RESEARCH ARTICLE A proteome- wide genetic investigation identifies several SARS- CoV-2- exploited host targets of clinical relevance Mohd Anisul1,2*, Jarrod Shilts1, Jeremy Schwartzentruber1,2, James Hayhurst2,3, Annalisa Buniello2,3, Elmutaz Shaikho Elhaj Mohammed4, Jie Zheng5, Michael Holmes6,7, David Ochoa2,3, Miguel Carmona2,3, Joseph Maranville4, Tom R Gaunt5, Valur Emilsson8,9, Vilmundur Gudnason8,9, Ellen M McDonagh2,3, Gavin J Wright1,10, Maya Ghoussaini1,2*†, Ian Dunham1,2,3*† 1Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom; 2Open Targets, Wellcome Genome Campus, Hinxton, United Kingdom; 3European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, United Kingdom; 4Bristol- Myers Squibb, Cambridge, United States; 5Medical Research Council (MRC) Integrative Epidemiology Unit, Department of Population Health Sciences, University of Bristol, Bristol, United Kingdom; 6Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; 7Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; 8Icelandic Heart Association, Kopavogur, Iceland; 9Faculty of Medicine, University of Iceland, Reykjavik, Iceland; 10Department of Biology, York *For correspondence: Biomedical Research Institute, Hull York Medical School, University of York, York, mk31@ sanger. ac. uk (MA); United Kingdom mg29@ sanger. ac. uk (MG); dunham@ ebi. ac. uk (ID) †These authors are Joint Senior Authors to this work Abstract Competing interest: See page Background: The virus SARS- CoV-2 can exploit biological vulnerabilities (e.g. host proteins) in 17 susceptible hosts that predispose to the development of severe COVID-19. Funding: See page 17 Methods: To identify host proteins that may contribute to the risk of severe COVID-19, we under- took proteome- wide genetic colocalisation tests, and polygenic (pan) and cis- Mendelian randomisa- Preprinted: 17 March 2021 tion analyses leveraging publicly available protein and COVID-19 datasets. Received: 23 April 2021 Accepted: 07 August 2021 Results: Our analytic approach identified several known targets (e.g. ABO, OAS1), but also nomi- -4 Published: 17 August 2021 nated new proteins such as soluble Fas (colocalisation probability >0.9, p=1 10 ), implicating Fas- mediated apoptosis as a potential target for COVID-19 risk. The polygenic (pan) and cis- Mendelian Reviewing Editor: John W randomisation analyses showed consistent associations of genetically predicted ABO protein with Schoggins, University of Texas several COVID-19 phenotypes. The ABO signal is highly pleiotropic, and a look- up of proteins asso- Southwestern Medical Center, United States ciated with the ABO signal revealed that the strongest association was with soluble CD209. We demonstrated experimentally that CD209 directly interacts with the spike protein of SARS- CoV-2, Copyright Anisul . This et al suggesting a mechanism that could explain the ABO association with COVID-19. article is distributed under the Conclusions: Our work provides a prioritised list of host targets potentially exploited by SARS- CoV-2 terms of the Creative Commons Attribution License, which and is a precursor for further research on CD209 and FAS as therapeutically tractable targets for permits unrestricted use and COVID-19. redistribution provided that the Funding: MAK, JSc, JH, AB, DO, MC, EMM, MG, ID were funded by Open Targets. J.Z. and T.R.G original author and source are were funded by the UK Medical Research Council Integrative Epidemiology Unit (MC_UU_00011/4). credited. JSh and GJW were funded by the Wellcome Trust Grant 206194. This research was funded in part by Anisul et al. eLife 2021;10:e69719. DOI: https:// doi. org/ 10. 7554/ eLife. 69719 1 of 22 Research article Epidemiology and Global Health | Genetics and Genomics the Wellcome Trust [Grant 206194]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. Introduction At the current time, the coronavirus disease 2019 (COVID-19) pandemic is implicated in the deaths of more than 4 million people worldwide (Dong et al., 2020). Although effective vaccines have been developed to substantially reduce mortality and morbidity due to severe COVID-19, the emergence of mutated strains of the SARS- CoV-2 virus has challenged the effectiveness of existing vaccines and raised the urgency of identifying alternate therapeutic pathways to target the virus (Tegally, 2020; Erik et al., 2020 ; Collier et al., 2021). Nevertheless, it is likely that the mutated strains of SARS- CoV-2 will continue to exploit the same vulnerable host biology to bind onto and infect cells and, in suscep- tible individuals, evade immune defences and promote the excessive host inflammatory response that is characteristic of severe COVID-19 (Gordon et al., 2020a). Therefore, the identification of host proteins that play roles in COVID-19 susceptibility and severity remains crucial to the development of therapeutics as host protein mechanisms are independent of genomic mutations in the virus. An improved understanding of these therapeutically relevant virus- host pathways may also be important in combating viruses beyond SARS- CoV-2 (Perrin- Cocon et al., 2020). Several large- scale systematic experimental efforts have identified key host proteins that interact with viral proteins in the pathogenesis of severe COVID-19 (Gordon et al., 2020a; Gordon et al., 2020b; Bouhaddou et al., 2020). These notably include efforts to identify direct interactions with the spike protein of SARS-CoV-2, which mediates virus attachment onto receptors to infect host cells and is also the basis of most vaccines (Shang et al., 2020; Harvey et al., 2021). To complement in vitro host protein characterisation efforts, several groups have leveraged genetic datasets of human proteins and COVID-19 disease to identify therapeutically actionable candidate host proteins that are likely to play roles in enhancing COVID-19 susceptibility or to be involved in the pathogenesis of severe COVID-19 (Pairo- Castineira et al., 2021; Zhou et al., 2021). One of the approaches used was Mendelian randomisation (MR). MR simulates the design of randomised trials, with the underlying principle that randomisation of alleles at conception offers the opportunity to examine approximate differences in average risk of disease between comparable groups in a population that differ only in the distribution of the risk factor of interest (Davies et al., 2018), for example, protein abundance (Zheng et al., 2020). This allows the use of alleles as genetic instruments representing genetically predicted protein levels to proxy effects of pharmacological modulation of the protein. Some of the clinically actionable proteins identified by the MR approach are part of type I interferon signalling (encoded by genes: IFNAR2, TYK2, OAS1) and interleukin-6 (IL-6) signalling pathways (IL6R). Only one of these proteins (encoded by OAS1) had any evidence of genetic colocalisation, that is, evidence that genetic associations of the protein and COVID outcomes shared the same causal genetic signal (Zhou et al., 2021). An additional protein that was supported by both MR and genetic colocalisation tests was ABO (Zhou et al., 2021), reported in several published genome- wide association studies (GWAS) of COVID-19 (Pairo- Castineira et al., 2021; Ellinghaus et al., 2020). In response to the first published GWAS of COVID-19, we reported findings that link theABO signal with a number of clinically action- able targets including coagulation factors (von Willebrand factor [vWF], and Factor VIII [F8]), IL-6, and CD209/DC- SIGN (Karim et al., 2020). However, in most of the previous MR studies (Pairo- Castineira et al., 2021; Zhou et al., 2021), investigators only used curated cis- acting variants (genetic variants near or in the gene encoding the relevant protein) as genetic instruments to represent effects of genetically predicted protein concen- trations, rather than genome-wide instruments. While the use of cis-acting variants can minimise the risk of horizontal pleiotropic effects (i.e. associations driven by other proteins not on the causal pathway for the disease), it can suffer from lower power than a genome- wide analysis due to fewer available instruments (Zheng et al., 2020). Furthermore, in previous protein-COVID-19 MR studies, genetic colocalisation tests were carried out only for protein- phenotype associations that were signifi- cant in the MR analysis, potentially excluding many protein- phenotype associations that may share the same causal genetic signal but are underpowered in a proteome- wide MR approach. In the present study, we expanded on these previous reports by undertaking a proteome- wide two- sample pan- and cis-MR analysis using the Sun et al. GWAS (Sun et al., 2018) of plasma protein Anisul et al. eLife 2021;10:e69719. DOI: https:// doi. org/ 10. 7554/ eLife. 69719 2 of 22 Research article Epidemiology and Global Health | Genetics and Genomics eLife digest Individuals who become infected with the virus that causes COVID-19 can experi- ence a wide variety of symptoms. These can range from no symptoms or minor symptoms to severe illness and death. Key demographic factors, such as age, gender and race, are known to affect how susceptible
Recommended publications
  • Uniprot at EMBL-EBI's Role in CTTV
    Barbara P. Palka, Daniel Gonzalez, Edd Turner, Xavier Watkins, Maria J. Martin, Claire O’Donovan European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK UniProt at EMBL-EBI’s role in CTTV: contributing to improved disease knowledge Introduction The mission of UniProt is to provide the scientific community with a The Centre for Therapeutic Target Validation (CTTV) comprehensive, high quality and freely accessible resource of launched in Dec 2015 a new web platform for life- protein sequence and functional information. science researchers that helps them identify The UniProt Knowledgebase (UniProtKB) is the central hub for the collection of therapeutic targets for new and repurposed medicines. functional information on proteins, with accurate, consistent and rich CTTV is a public-private initiative to generate evidence on the annotation. As much annotation information as possible is added to each validity of therapeutic targets based on genome-scale experiments UniProtKB record and this includes widely accepted biological ontologies, and analysis. CTTV is working to create an R&D framework that classifications and cross-references, and clear indications of the quality of applies to a wide range of human diseases, and is committed to annotation in the form of evidence attribution of experimental and sharing its data openly with the scientific community. CTTV brings computational data. together expertise from four complementary institutions: GSK, Biogen, EMBL-EBI and Wellcome Trust Sanger Institute. UniProt’s disease expert curation Q5VWK5 (IL23R_HUMAN) This section provides information on the disease(s) associated with genetic variations in a given protein. The information is extracted from the scientific literature and diseases that are also described in the OMIM database are represented with a controlled vocabulary.
    [Show full text]
  • Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins
    International Journal of Molecular Sciences Article Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins M. Quadir Siddiqui 1,† , Maulik D. Badmalia 1,† and Trushar R. Patel 1,2,3,* 1 Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; [email protected] (M.Q.S.); [email protected] (M.D.B.) 2 Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada 3 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada * Correspondence: [email protected] † These authors contributed equally to the work. Abstract: Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and func- tions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share Citation: Siddiqui, M.Q.; Badmalia, similarities with transcriptional regulators and have positively charged electrostatic patches, which M.D.; Patel, T.R.
    [Show full text]
  • Phylogenomic Analysis of the Chlamydomonas Genome Unmasks Proteins Potentially Involved in Photosynthetic Function and Regulation
    Photosynth Res DOI 10.1007/s11120-010-9555-7 REVIEW Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation Arthur R. Grossman • Steven J. Karpowicz • Mark Heinnickel • David Dewez • Blaise Hamel • Rachel Dent • Krishna K. Niyogi • Xenie Johnson • Jean Alric • Francis-Andre´ Wollman • Huiying Li • Sabeeha S. Merchant Received: 11 February 2010 / Accepted: 16 April 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Chlamydomonas reinhardtii, a unicellular green performed to identify proteins encoded on the Chlamydo- alga, has been exploited as a reference organism for iden- monas genome which were likely involved in chloroplast tifying proteins and activities associated with the photo- functions (or specifically associated with the green algal synthetic apparatus and the functioning of chloroplasts. lineage); this set of proteins has been designated the Recently, the full genome sequence of Chlamydomonas GreenCut. Further analyses of those GreenCut proteins with was generated and a set of gene models, representing all uncharacterized functions and the generation of mutant genes on the genome, was developed. Using these gene strains aberrant for these proteins are beginning to unmask models, and gene models developed for the genomes of new layers of functionality/regulation that are integrated other organisms, a phylogenomic, comparative analysis was into the workings of the photosynthetic apparatus. Keywords Chlamydomonas Á GreenCut Á Chloroplast Á Phylogenomics Á Regulation A. R. Grossman (&) Á M. Heinnickel Á D. Dewez Á B. Hamel Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA Introduction e-mail: [email protected] Chlamydomonas reinhardtii as a reference organism S.
    [Show full text]
  • An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale † ‡ ‡ ‡ § ‡ ∥ Upneet Kaur, He Meng, Fang Lui, Renze Ma, Ryenne N
    Perspective Cite This: J. Proteome Res. 2018, 17, 3614−3627 pubs.acs.org/jpr Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale † ‡ ‡ ‡ § ‡ ∥ Upneet Kaur, He Meng, Fang Lui, Renze Ma, Ryenne N. Ogburn, , Julia H. R. Johnson, , ‡ † Michael C. Fitzgerald,*, and Lisa M. Jones*, ‡ Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States † Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States ABSTRACT: Over the past decade, a suite of new mass- spectrometry-based proteomics methods has been developed that now enables the conformational properties of proteins and protein− ligand complexes to be studied in complex biological mixtures, from cell lysates to intact cells. Highlighted here are seven of the techniques in this new toolbox. These techniques include chemical cross-linking (XL−MS), hydroxyl radical footprinting (HRF), Drug Affinity Responsive Target Stability (DARTS), Limited Proteolysis (LiP), Pulse Proteolysis (PP), Stability of Proteins from Rates of Oxidation (SPROX), and Thermal Proteome Profiling (TPP). The above techniques all rely on conventional bottom-up proteomics strategies for peptide sequencing and protein identification. However, they have required the development of unconventional proteomic data analysis strategies. Discussed here are the current technical challenges associated with these different data analysis strategies as well as the relative analytical capabilities of the different techniques. The new biophysical capabilities that the above techniques bring to bear on proteomic research are also highlighted in the context of several different application areas in which these techniques have been used, including the study of protein ligand binding interactions (e.g., protein target discovery studies and protein interaction network analyses) and the characterization of biological states.
    [Show full text]
  • Static Retention of the Lumenal Monotopic Membrane Protein Torsina in the Endoplasmic Reticulum
    The EMBO Journal (2011) 30, 3217–3231 | & 2011 European Molecular Biology Organization | All Rights Reserved 0261-4189/11 www.embojournal.org TTHEH E EEMBOMBO JJOURNALOURN AL Static retention of the lumenal monotopic membrane protein torsinA in the endoplasmic reticulum Abigail B Vander Heyden1, despite the fact that it has been a decade since the protein was Teresa V Naismith1, Erik L Snapp2 and first described and linked to dystonia (Breakefield et al, Phyllis I Hanson1,* 2008). Based on its membership in the AAA þ family of ATPases (Ozelius et al, 1997; Hanson and Whiteheart, 2005), 1Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA and 2Department of Anatomy it is likely that torsinA disassembles or changes the confor- and Structural Biology, Albert Einstein College of Medicine, Bronx, mation of a protein or protein complex in the ER or NE. The NY, USA DE mutation is thought to compromise this function (Dang et al, 2005; Goodchild et al, 2005). TorsinA is a membrane-associated enzyme in the endo- TorsinA is targeted to the ER lumen by an N-terminal plasmic reticulum (ER) lumen that is mutated in DYT1 signal peptide. Analyses of torsinA’s subcellular localization, dystonia. How it remains in the ER has been unclear. We processing, and glycosylation show that the signal peptide is report that a hydrophobic N-terminal domain (NTD) di- cleaved and the mature protein resides in the lumen of the ER rects static retention of torsinA within the ER by excluding (Kustedjo et al, 2000; Hewett et al, 2003; Liu et al, 2003), it from ER exit sites, as has been previously reported for where it is a stable protein (Gordon and Gonzalez-Alegre, short transmembrane domains (TMDs).
    [Show full text]
  • PDF of Connecting Science's 2017
    Connecting Science Wellcome Genome Campus Hinxton, Cambridgeshire CB10 1RQ wellcomegenomecampus.org/connectingscience Annual Review 2017/18 2 02 Contents DIRECTO R’S INTRODUCTION Connecting Science in twelve months 04 – 05 Global ambitions Have you had your say on your DNA? 10 – 1 1 Increasing global impact by tailoring training needs 12 – 13 Worm hunting in Colombia 14 – 16 Catalysing collaboration Bringing together scientific partners 20 – 21 First global event for genetic counsellors 22 – 23 Decoding genomes together 24 – 26 Snapshot: May 2017 to April 2018 27 – 32 Democratising genomics CONNECTING SCIENCE Blood, sweat and success – Implementing a gender balance policy 36 – 37 2017/18 ANNUAL REVIEW Science communication: remembering to listen 38 – 39 Exploring our world in the Genome Gallery 40 – 41 The mission of Connecting Science is simple: to enable team, the commitment and support of our many partners and everyone to explore genomic science and its impact on collaborators, and the financial support and encouragement research, health and society. Behind those simple words is of Wellcome. I am personally very thankful for all of those Wellcome Genome Campus: considerable complexity. The science itself is complex and things, and know that this support and energy often translates ever-changing, with new technologies being continually into life- or career-changing experiences for the tens of A hub of knowledge, learning, developed and put into practice in both research and thousands of people we engage with directly every year. healthcare. The work that we do is also deceptively and engagement complex, reaching audiences from primary schools to I hope that some of the stories highlighted in this Annual research scientists, NHS staff to patients and their families; Review give you a sense of the excitement we have in all Creating spaces for thinking 46 – 47 it spans the globe, and everything we do involves constant that we do.
    [Show full text]
  • The Metagenomic Data Life-Cycle: Standards and Best Practices Petra Ten Hoopen1, Robert D
    GigaScience, 6, 2017, 1–11 doi: 10.1093/gigascience/gix047 Advance Access Publication Date: 16 June 2017 Review REVIEW Downloaded from https://academic.oup.com/gigascience/article-abstract/6/8/gix047/3869082 by guest on 01 October 2019 The metagenomic data life-cycle: standards and best practices Petra ten Hoopen1, Robert D. Finn1, Lars Ailo Bongo2, Erwan Corre3, Bruno Fosso4, Folker Meyer5, Alex Mitchell1, Eric Pelletier6,7,8, Graziano Pesole4,9, Monica Santamaria4, Nils Peder Willassen2 and Guy Cochrane1,∗ 1European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom, 2UiT The Arctic University of Norway, Tromsø N-9037, Norway, 3CNRS-UPMC, FR 2424, Station Biologique, Roscoff 29680, France, 4Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Bari 70126, Italy, 5Argonne National Laboratory, Argonne IL 60439, USA, 6Genoscope, CEA, Evry´ 91000, France, 7CNRS/UMR-8030, Evry´ 91000, France, 8Universite´ Evry´ val d’Essonne, Evry´ 91000, France and 9Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “A. Moro,” Bari 70126, Italy ∗Correspondence address. Guy Cochrane, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Tel: +44(0)1223-494444; E-mail: [email protected] Abstract Metagenomics data analyses from independent studies can only be compared if the analysis workflows are described ina harmonized way. In this overview, we have mapped the landscape of data standards available for the description of essential steps in metagenomics: (i) material sampling, (ii) material sequencing, (iii) data analysis, and (iv) data archiving and publishing. Taking examples from marine research, we summarize essential variables used to describe material sampling processes and sequencing procedures in a metagenomics experiment.
    [Show full text]
  • PROTEOMICS the Human Proteome Takes the Spotlight
    RESEARCH HIGHLIGHTS PROTEOMICS The human proteome takes the spotlight Two papers report mass spectrometry– big data. “We then thought, include some surpris- based draft maps of the human proteome ‘What is a potentially good ing findings. For example, and provide broadly accessible resources. illustration for the utility Kuster’s team found protein For years, members of the proteomics of such a database?’” says evidence for 430 long inter- community have been trying to garner sup- Kuster. “We very quickly genic noncoding RNAs, port for a large-scale project to exhaustively got to the idea, ‘Why don’t which have been thought map the normal human proteome, including we try to put together the not to be translated into pro- identifying all post-translational modifica- human proteome?’” tein. Pandey’s team refined tions and protein-protein interactions and The two groups took the annotations of 808 genes providing targeted mass spectrometry assays slightly different strategies and also found evidence and antibodies for all human proteins. But a towards this common goal. for the translation of many Nik Spencer/Nature Publishing Group Publishing Nik Spencer/Nature lack of consensus on how to exactly define Pandey’s lab examined 30 noncoding RNAs and pseu- Two groups provide mass the proteome, how to carry out such a mis- normal tissues, including spectrometry evidence for dogenes. sion and whether the technology is ready has adult and fetal tissues, as ~90% of the human proteome. Obtaining evidence for not so far convinced any funding agencies to well as primary hematopoi- the last roughly 10% of pro- fund on such an ambitious project.
    [Show full text]
  • A New Census of Protein Tandem Repeats and Their Relationship with Intrinsic Disorder
    G C A T T A C G G C A T genes Article A New Census of Protein Tandem Repeats and Their Relationship with Intrinsic Disorder Matteo Delucchi 1,2 , Elke Schaper 1,2,† , Oxana Sachenkova 3,‡, Arne Elofsson 3 and Maria Anisimova 1,2,* 1 ZHAW Life Sciences und Facility Management, Applied Computational Genomics, 8820 Wädenswil, Switzerland; [email protected] 2 Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland 3 Science of Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden * Correspondence: [email protected]; Tel.: +41-(0)58-934-5882 † Present address: Carbon Delta AG, 8002 Zürich, Switzerland. ‡ Present address: Vildly AB, 385 31 Kalmar, Sweden. Received: 9 March 2020; Accepted: 1 April 2020; Published: 9 April 2020 Abstract: Protein tandem repeats (TRs) are often associated with immunity-related functions and diseases. Since that last census of protein TRs in 1999, the number of curated proteins increased more than seven-fold and new TR prediction methods were published. TRs appear to be enriched with intrinsic disorder and vice versa. The significance and the biological reasons for this association are unknown. Here, we characterize protein TRs across all kingdoms of life and their overlap with intrinsic disorder in unprecedented detail. Using state-of-the-art prediction methods, we estimate that 50.9% of proteins contain at least one TR, often located at the sequence flanks. Positive linear correlation between the proportion of TRs and the protein length was observed universally, with Eukaryotes in general having more TRs, but when the difference in length is taken into account the difference is quite small.
    [Show full text]
  • 5 February 2020 Draft Programme
    Genomic Practice for Genetic Counsellors Wellcome Genome Campus Hinxton, Cambridge, UK 3 - 5 February 2020 Draft Programme Monday 3 February 11:00 – 11:00 Registration with coffee 11:30 – 12:00 Welcome and introduction to the course 12:00 – 13:45 Session 1: The role of genomics in healthcare The role in the NHS Nicki Taverner Cardiff University and All Wales Medical Genetic Service, UK Catherine Houghton Liverpool Women's NHS Foundation Trust, UK Outside the NHS Gemma Chandratilake University of Cambridge, UK An international perspective – Melbourne Genomics Health Alliance Lyndon Gallacher Victorian Clinicial Genetics Service, Australia Q&A with speakers 13:45 – 14:45 Lunch 14:45 – 16:00 Session 2: Variant interpretation Introduction to a genome browser Gemma Chandratillake University of Cambridge, UK Variant interpretation: going from millions to one of interest that could be the answer Helen Firth Cambridge University Hospitals, UK 16:00 – 16:20 Afternoon tea 16:20 – 18.20 Workshop: Variant interpretation using DECIPHER {and other approaches} Julia Foreman WSI, UK + Gemma Chandratillake University of Cambridge, UK 18:29 – 19:00 Consolidating learning for Day 1, Q+A Led by programme committee 19:00 Dinner Tuesday 4 February 09:00 – 10:00 Session 3: Cancer genomics Cancer Genomics: bridging from the tumour to the germline in variant interpretation Clare Turnbull The Institute of Cancer Research, UK 10:00 – 12:00 Workshop: Cancer variant interpretation Heather Pierce Cambridge University Hospitals, UK 12:00 – 13:00 Functional studies
    [Show full text]
  • PA28: New Insights on an Ancient Proteasome Activator
    biomolecules Review PA28γ: New Insights on an Ancient Proteasome Activator Paolo Cascio Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy; [email protected] Abstract: PA28 (also known as 11S, REG or PSME) is a family of proteasome regulators whose members are widely present in many of the eukaryotic supergroups. In jawed vertebrates they are represented by three paralogs, PA28α, PA28β, and PA28γ, which assemble as heptameric hetero (PA28αβ) or homo (PA28γ) rings on one or both extremities of the 20S proteasome cylindrical structure. While they share high sequence and structural similarities, the three isoforms significantly differ in terms of their biochemical and biological properties. In fact, PA28α and PA28β seem to have appeared more recently and to have evolved very rapidly to perform new functions that are specifically aimed at optimizing the process of MHC class I antigen presentation. In line with this, PA28αβ favors release of peptide products by proteasomes and is particularly suited to support adaptive immune responses without, however, affecting hydrolysis rates of protein substrates. On the contrary, PA28γ seems to be a slow-evolving gene that is most similar to the common ancestor of the PA28 activators family, and very likely retains its original functions. Notably, PA28γ has a prevalent nuclear localization and is involved in the regulation of several essential cellular processes including cell growth and proliferation, apoptosis, chromatin structure and organization, and response to DNA damage. In striking contrast with the activity of PA28αβ, most of these diverse biological functions of PA28γ seem to depend on its ability to markedly enhance degradation rates of regulatory protein by 20S proteasome.
    [Show full text]
  • Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins, Second Edition Andreas D
    BIOINFORMATICS A Practical Guide to the Analysis of Genes and Proteins SECOND EDITION Andreas D. Baxevanis Genome Technology Branch National Human Genome Research Institute National Institutes of Health Bethesda, Maryland USA B. F. Francis Ouellette Centre for Molecular Medicine and Therapeutics Children’s and Women’s Health Centre of British Columbia University of British Columbia Vancouver, British Columbia Canada A JOHN WILEY & SONS, INC., PUBLICATION New York • Chichester • Weinheim • Brisbane • Singapore • Toronto BIOINFORMATICS SECOND EDITION METHODS OF BIOCHEMICAL ANALYSIS Volume 43 BIOINFORMATICS A Practical Guide to the Analysis of Genes and Proteins SECOND EDITION Andreas D. Baxevanis Genome Technology Branch National Human Genome Research Institute National Institutes of Health Bethesda, Maryland USA B. F. Francis Ouellette Centre for Molecular Medicine and Therapeutics Children’s and Women’s Health Centre of British Columbia University of British Columbia Vancouver, British Columbia Canada A JOHN WILEY & SONS, INC., PUBLICATION New York • Chichester • Weinheim • Brisbane • Singapore • Toronto Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. Copyright ᭧ 2001 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher.
    [Show full text]