A Geocoding Best Practices Guide

Total Page:16

File Type:pdf, Size:1020Kb

A Geocoding Best Practices Guide A Geocoding Best Practices Guide By Daniel W. Goldberg November 2008 University of Southern California GIS Research Laboratory SPONSORING ORGANIZATIONS: Canadian Association of Provincial Cancer Agencies Canadian Partnership Against Cancer Centers for Disease Control and Prevention College of American Pathologists National Cancer Institute National Cancer Registrars Association Public Health Agency of Canada SPONSORS WITH DISTINCTION: American Cancer Society American College of Surgeons American Joint Committee on Cancer North American Association of Central Cancer Registries, Inc. A GEOCODING BEST PRACTICES GUIDE SUBMITTED TO THE NORTH AMERICAN ASSOCIATION OF CENTRAL CANCER REGISTRIES NOVEMBER 10, 2008 BY DANIEL W. GOLDBERG UNIVERSITY OF SOUTHERN CALIFORNIA GIS RESEARCH LABORATORY This page is left blank intentionally. D. W. Goldberg TABLE OF CONTENTS List of Tables .............................................................................................................. vii List of Figures .............................................................................................................. ix List of Equations .......................................................................................................... x List of Best Practices ................................................................................................... xi List of Acronyms ........................................................................................................ xiii Foreward .................................................................................................................... xiv Preface ......................................................................................................................... xv Acknowledgements .................................................................................................. xviii Dedication .................................................................................................................. xix About This Document ................................................................................................ xx Executive Summary ................................................................................................. xxiii Part 1: The Concept and Context of Geocoding ........................................................... 1 1. Introduction ............................................................................................................................. 3 1.1 What is Geocoding?....................................................................................................... 3 2. The Importance of Geocoding ............................................................................................. 9 2.1 Geocoding's Importance to Hospitals and Central Registries ................................ 9 2.2 Typical Research Workflow ......................................................................................... 9 2.3 When To Geocode ...................................................................................................... 14 2.4 Success Stories .............................................................................................................. 17 3. Geographic Information Science Fundamentals .............................................................. 19 3.1 Geographic Data Types .............................................................................................. 19 3.2 Geographic Datums and Geographic Coordinates ................................................ 19 3.3 Map Projections and Regional Reference Systems ................................................. 20 Part 2: The Components of Geocoding ...................................................................... 23 4. Address Geocoding Process Overview ............................................................................. 25 4.1 Types of Geocoding Processes .................................................................................. 25 4.2 High-Level Geocoding Process Overview ............................................................... 25 4.3 Software-Based Geocoders ........................................................................................ 26 4.4 Input Data ..................................................................................................................... 28 4.5 Reference Datasets ...................................................................................................... 31 4.6 The Geocoding Algorithm ......................................................................................... 32 4.7 Output Data .................................................................................................................. 33 4.8 Metadata ........................................................................................................................ 34 November 10, 2008 iii A Geocoding Best Practices Guide 5. Address Data ......................................................................................................................... 37 5.1 Types of Address Data ................................................................................................ 37 5.2 First-Order Estimates .................................................................................................. 41 5.3 Postal Address Hierarchy............................................................................................ 41 6. Address Data Cleaning Processes ...................................................................................... 45 6.1 Address Cleanliness ..................................................................................................... 45 6.2 Address Normalization ............................................................................................... 45 6.3 Address Standardization ............................................................................................. 50 6.4 Address Validation ....................................................................................................... 51 7. Reference Datasets ............................................................................................................... 55 7.1 Reference Dataset Types ............................................................................................ 55 7.2 Types of Reference Datasets ...................................................................................... 55 7.3 Reference Dataset Relationships ............................................................................... 65 8. Feature Matching .................................................................................................................. 69 8.1 The Algorithm .............................................................................................................. 69 8.2 Classifications of Matching Algorithms .................................................................... 71 8.3 Deterministic Matching ............................................................................................... 71 8.4 Probabilistic Matching ................................................................................................. 78 8.5 String Comparison Algorithms .................................................................................. 80 9. Feature Interpolation ............................................................................................................ 83 9.1 Feature Interpolation Algorithms .............................................................................. 83 9.2 Linear-Based Interpolation ......................................................................................... 83 9.3 Areal Unit-Based Feature Interpolation ................................................................... 90 10. Output Data ........................................................................................................................ 93 10.1 Downstream Compatibility ...................................................................................... 93 10.2 Data Loss .................................................................................................................... 93 Part 3: The Many Metrics for Measuring Quality ...................................................... 95 11. Quality Metrics .................................................................................................................... 97 11.1 Accuracy ...................................................................................................................... 97 12. Spatial Accuracy .................................................................................................................. 99 12.1 Spatial Accuracy Defined .......................................................................................... 99 12.2 Contributors to Spatial Accuracy ............................................................................ 99 12.3 Measuring Positional Accuracy .............................................................................. 104 12.4 Geocoding Process Component Error Introduction ......................................... 104 12.5 Uses of Positional Accuracy ................................................................................... 105 13. Reference Data Quality .................................................................................................... 111 13.1 Spatial Accuracy of Reference Data .....................................................................
Recommended publications
  • Adaptive Geoparsing Method for Toponym Recognition and Resolution in Unstructured Text
    remote sensing Article Adaptive Geoparsing Method for Toponym Recognition and Resolution in Unstructured Text Edwin Aldana-Bobadilla 1,∗ , Alejandro Molina-Villegas 2 , Ivan Lopez-Arevalo 3 , Shanel Reyes-Palacios 3, Victor Muñiz-Sanchez 4 and Jean Arreola-Trapala 4 1 Conacyt-Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Victoria 87130, Mexico; [email protected] 2 Conacyt-Centro de Investigación en Ciencias de Información Geoespacial (Centrogeo), Mérida 97302, Mexico; [email protected] 3 Centro de Investigación y de Estudios Avanzados del I.P.N. Unidad Tamaulipas (Cinvestav Tamaulipas), Victoria 87130, Mexico; [email protected] (I.L.); [email protected] (S.R.) 4 Centro de Investigación en Matemáticas (Cimat), Monterrey 66628, Mexico; [email protected] (V.M.); [email protected] (J.A.) * Correspondence: [email protected] Received: 10 July 2020; Accepted: 13 September 2020; Published: 17 September 2020 Abstract: The automatic extraction of geospatial information is an important aspect of data mining. Computer systems capable of discovering geographic information from natural language involve a complex process called geoparsing, which includes two important tasks: geographic entity recognition and toponym resolution. The first task could be approached through a machine learning approach, in which case a model is trained to recognize a sequence of characters (words) corresponding to geographic entities. The second task consists of assigning such entities to their most likely coordinates. Frequently, the latter process involves solving referential ambiguities. In this paper, we propose an extensible geoparsing approach including geographic entity recognition based on a neural network model and disambiguation based on what we have called dynamic context disambiguation.
    [Show full text]
  • Georeferencing Accuracy of Geoeye-1 Stereo Imagery: Experiences in a Japanese Test Field
    International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan 2010 GEOREFERENCING ACCURACY OF GEOEYE-1 STEREO IMAGERY: EXPERIENCES IN A JAPANESE TEST FIELD Y. Meguro a, *, C.S.Fraser b a Japan Space Imaging Corp., 8-1Yaesu 2-Chome, Chuo-Ku, Tokyo 104-0028, Japan - [email protected] b Department of Geomatics, University of Melbourne VIC 3010, Australia - [email protected] Commission VIII, Working Group ICWG IV/VIII KEY WORDS: GeoEye-1, Stereo, RPCs, geopositioning, accuracy evaluation, bias compensation, satellite imagery ABSTRACT: High-resolution satellite imagery (HRSI) is being increasingly employed for large-scale topographic mapping, and especially for geodatabase updating. As the spatial resolution of HRSI sensors increases, so the potential georeferencing accuracy also improves. However, accuracy is not a function of spatial resolution alone, as it is also dependent upon radiometric image quality, the dynamics of the image scanning, and the fidelity of the sensor orientation model, both directly from orbit and attitude observations and indirectly from ground control points (GCPs). Users might anticipate accuracies of, say, 1 pixel in planimetry and 1-3 pixels in height when using GCPs. However, there are practical and in some cases administrative/legal imperatives for the georeferencing accuracy of HRSI systems to be quantified through well controlled tests. This paper discusses an investigation into the georeferencing accuracy attainable from the GeoEye-1 satellite, and specifically the 3D accuracy achievable from stereo imagery. Both direct georeferencing via supplied RPCs and indirect georeferencing via ground control and bias-corrected RPCs were examined for a stereo pair of pansharpened GeoEye-1 Basic images covering the Tsukuba Test Field in Japan, which contains more than 100 precisely surveyed and image identifiable GCPs.
    [Show full text]
  • Knowledge-Driven Geospatial Location Resolution for Phylogeographic
    Bioinformatics, 31, 2015, i348–i356 doi: 10.1093/bioinformatics/btv259 ISMB/ECCB 2015 Knowledge-driven geospatial location resolution for phylogeographic models of virus migration Davy Weissenbacher1,*, Tasnia Tahsin1, Rachel Beard1,2, Mari Figaro1,2, Robert Rivera1, Matthew Scotch1,2 and Graciela Gonzalez1 1Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85259, USA and 2Center for Environmental Security, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5904, USA *To whom correspondence should be addressed. Abstract Summary: Diseases caused by zoonotic viruses (viruses transmittable between humans and ani- mals) are a major threat to public health throughout the world. By studying virus migration and mutation patterns, the field of phylogeography provides a valuable tool for improving their surveil- lance. A key component in phylogeographic analysis of zoonotic viruses involves identifying the specific locations of relevant viral sequences. This is usually accomplished by querying public data- bases such as GenBank and examining the geospatial metadata in the record. When sufficient detail is not available, a logical next step is for the researcher to conduct a manual survey of the corresponding published articles. Motivation: In this article, we present a system for detection and disambiguation of locations (topo- nym resolution) in full-text articles to automate the retrieval of sufficient metadata. Our system has been tested on a manually annotated corpus of journal articles related to phylogeography using inte- grated heuristics for location disambiguation including a distance heuristic, a population heuristic and a novel heuristic utilizing knowledge obtained from GenBank metadata (i.e. a ‘metadata heuristic’). Results: For detecting and disambiguating locations, our system performed best using the meta- data heuristic (0.54 Precision, 0.89 Recall and 0.68 F-score).
    [Show full text]
  • An Iterative Approach to the Parcel Level Address Geocoding of a Large Health Dataset to a Shifting Household Geography
    210 Haag Hall 5100 Rockhill Road Kansas City, MO 64110 (816) 235‐1314 cei.umkc.edu Center for Economic Information Working Paper 1702-01 July 21, 2017 An Iterative Approach to the Parcel Level Address Geocoding of a Large Health Dataset to a Shifting Household Geography by Ben Wilson and Neal Wilson Abstract This article details an iterative process for the address geocoding of a large collection of health encounters (n = 242,804) gathered over a 13 year period to a parcel geography which varies by year. This procedure supports an investigation of the relationship between basic housing conditions and the corresponding health of occupants. Successful investigation of this relationship necessitated matching individuals, their health outcomes and their home environments. This match process may be useful to researchers in a variety of fields with particular emphasis on predictive modeling and up-stream medicine. An Iterative Application of Centerline and Parcel Geographies for Spatio-temporal Geocoding of Health and Housing Data Ben Wilson & Neal Wilson 1 Introduction This article explains an iterative geocoding process for matching address level health encounters (590,058 asthma and well child encounters ) to heterogeneous parcel geographies that maintains the spatio-temporal disaggregation of both datasets (243,260 surveyed parcels). The development of this procedure supports the objectives outlined in the U.S. Department of Housing and Urban Development funded Kansas City – Home Environment Research Taskforce (KC-Heart). The goal of KC-Heart is investigate the relationship between basic housing conditions and the health outcomes of child occupants. Successful investigation of this relationship necessitates matching individuals, their health outcomes and their home environments.
    [Show full text]
  • Introduction to Georeferencing
    Introduction to Georeferencing Turning paper maps to interactive layers DMDS Workshop Jay Brodeur 2019-02-29 Today’s Outline ➢ Basic fundamentals of GIS and geospatial data ⚬ Vectors vs. rasters ⚬ Coordinate reference systems ➢ Introduction to Quantum GIS (QGIS) ➢ Hands-on Problem-Solving Assignments Quantum GIS (QGIS) ➢ Free and open-source GIS software ➢ User-friendly, fully-functional; relatively lightweight ➢ Product of the Open Source Geospatial Foundation (OSGeo) ➢ Built in C++; uses python for scripting and plugins ➢ Version 1.0 released in 2009 ➢ Current version: 3.16; Long-term release (LTR): 3.14 GDAL - Geospatial Data Abstraction Library www.gdal.org SAGA - System for Automated Geoscientific Analyses saga-gis.org/ GRASS - Geographic Resources Analysis Support System www.grass.osgeo.org QGIS - Quantum GIS qgis.org GeoTools www.geotools.org Helpful QGIS Tutorials and Resources ➢ QGIS Tutorials: http://www.qgistutorials.com/en/ ➢ QGIS Quicktips with Klas Karlsson: https://www.youtube.com/channel/UCxs7cfMwzgGZhtUuwhny4-Q ➢ QGIS Training Guide: https://docs.qgis.org/2.8/en/docs/training_manual/ Geospatial Data Fundamentals Representing real-world geographic information in a computer Task 1: Compare vector and raster data layers Objective: Download some openly-available raster and vector data. Explore the differences. Topics Covered: ➢ The QGIS Interface ➢ Geospatial data ➢ Layer styling ➢ Vectors vs rasters Online version of notes: https://goo.gl/H5vqNs Task 1.1: Downloading vector raster data & adding it to your map 1. Navigate a browser to Scholars Geoportal: http://geo.scholarsportal.info/ 2. Search for ‘index’ using the ‘Historical Maps’ category 3. Load the 1:25,000 topo map index 4. Use the interactive index to download the 1972 map sheet of Hamilton 5.
    [Show full text]
  • Georeferencing
    Georeferencing How do we make sure all our data layers line up ? Georeferencing: = linking a layer or dataset with spatial coordinates Registration: = lining up layers with each other Rectification: The process by which the geometry of an image is made planimetric Georeferencing • ‘To georeference’ the act of assigning locations to atoms of information • Is essential in GIS, since all information must be linked to the Earth’s surface • The method of georeferencing must be: – Unique, linking information to exactly one location – Shared, so different users understand the meaning of a georeference – Persistent through time, so today’s georeferences are still meaningful tomorrow Georeferencing Based on Data Types • Raster and Raster • Vector and Vector • Raster and Vector Geocoding Concepts and Definitions Definition of Geocoding • Geocoding can be broadly defined as the assignment of a code to a geographic location. Usually however, Geocoding refers to a more specific assignment of geographic coordinates (latitude,Longitude) to an individual address.. UN Report Definition of Geocoding • What is Geocoding • Geocoding is a process of creating map features from addresses, place names, or similar textual information based on attributes associated with a referenced geographic database, typically a street network that has address ranges associated with each street segment or 'link' running from one intersection to the next. Definition of Geocoding • What is Geocoding • Geocoding typically uses Interpolation as a method to find the location information about an address. – (If the address along one side of a block range from 1 to 199, then Street Number = 66 is about one-third of the way along that side of the block.) • Data required: – Reasonably clean, consistent list of legal addresses (i.e.
    [Show full text]
  • A Comparison of Address Point and Street Geocoding Techniques
    A COMPARISON OF ADDRESS POINT AND STREET GEOCODING TECHNIQUES IN A COMPUTER AIDED DISPATCH ENVIRONMENT by Jimmy Tuan Dao A Thesis Presented to the FACULTY OF THE USC GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE (GEOGRAPHIC INFORMATION SCIENCE AND TECHNOLOGY) August 2015 Copyright 2015 Jimmy Tuan Dao DEDICATION I dedicate this document to my mother, sister, and Marie Knudsen who have inspired and motivated me throughout this process. The encouragement that I received from my mother and sister (Kim and Vanna) give me the motivation to pursue this master's degree, so I can better myself. I also owe much of this success to my sweetheart and life-partner, Marie who is always available to help review my papers and offer support when I was frustrated and wanting to quit. Thank you and I love you! ii ACKNOWLEDGMENTS I will be forever grateful to the faculty and classmates at the Spatial Science Institute for their support throughout my master’s program, which has been a wonderful period of my life. Thank you to my thesis committee members: Professors Darren Ruddell, Jennifer Swift, and Daniel Warshawsky for their assistance and guidance throughout this process. I also want to thank the City of Brea, my family, friends, and Marie Knudsen without whom I could not have made it this far. Thank you! iii TABLE OF CONTENTS DEDICATION ii ACKNOWLEDGMENTS iii LIST OF TABLES iii LIST OF FIGURES iv LIST OF ABBREVIATIONS vi ABSTRACT vii CHAPTER 1: INTRODUCTION 1 1.1 Brea, California
    [Show full text]
  • TAGGS: Grouping Tweets to Improve Global Geotagging for Disaster Response Jens De Bruijn1, Hans De Moel1, Brenden Jongman1,2, Jurjen Wagemaker3, Jeroen C.J.H
    Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-203 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 13 June 2017 c Author(s) 2017. CC BY 3.0 License. TAGGS: Grouping Tweets to Improve Global Geotagging for Disaster Response Jens de Bruijn1, Hans de Moel1, Brenden Jongman1,2, Jurjen Wagemaker3, Jeroen C.J.H. Aerts1 1Institute for Environmental Studies, VU University, Amsterdam, 1081HV, The Netherlands 5 2Global Facility for Disaster Reduction and Recovery, World Bank Group, Washington D.C., 20433, USA 3FloodTags, The Hague, 2511 BE, The Netherlands Correspondence to: Jens de Bruijn ([email protected]) Abstract. The availability of timely and accurate information about ongoing events is important for relief organizations seeking to effectively respond to disasters. Recently, social media platforms, and in particular Twitter, have gained traction as 10 a novel source of information on disaster events. Unfortunately, geographical information is rarely attached to tweets, which hinders the use of Twitter for geographical applications. As a solution, analyses of a tweet’s text, combined with an evaluation of its metadata, can help to increase the number of geo-located tweets. This paper describes a new algorithm (TAGGS), that georeferences tweets by using the spatial information of groups of tweets mentioning the same location. This technique results in a roughly twofold increase in the number of geo-located tweets as compared to existing methods. We applied this approach 15 to 35.1 million flood-related tweets in 12 languages, collected over 2.5 years. In the dataset, we found 11.6 million tweets mentioning one or more flood locations, which can be towns (6.9 million), provinces (3.3 million), or countries (2.2 million).
    [Show full text]
  • A Cross-Sectional Ecological Analysis of International and Sub-National Health Inequalities in Commercial Geospatial Resource Av
    Dotse‑Gborgbortsi et al. Int J Health Geogr (2018) 17:14 https://doi.org/10.1186/s12942-018-0134-z International Journal of Health Geographics RESEARCH Open Access A cross‑sectional ecological analysis of international and sub‑national health inequalities in commercial geospatial resource availability Winfred Dotse‑Gborgbortsi1,2, Nicola Wardrop2, Ademola Adewole2, Mair L. H. Thomas2 and Jim Wright2* Abstract Background: Commercial geospatial data resources are frequently used to understand healthcare utilisation. Although there is widespread evidence of a digital divide for other digital resources and infra-structure, it is unclear how commercial geospatial data resources are distributed relative to health need. Methods: To examine the distribution of commercial geospatial data resources relative to health needs, we assem‑ bled coverage and quality metrics for commercial geocoding, neighbourhood characterisation, and travel time calculation resources for 183 countries. We developed a country-level, composite index of commercial geospatial data quality/availability and examined its distribution relative to age-standardised all-cause and cause specifc (for three main causes of death) mortality using two inequality metrics, the slope index of inequality and relative concentration index. In two sub-national case studies, we also examined geocoding success rates versus area deprivation by district in Eastern Region, Ghana and Lagos State, Nigeria. Results: Internationally, commercial geospatial data resources were inversely related to all-cause mortality. This relationship was more pronounced when examining mortality due to communicable diseases. Commercial geospa‑ tial data resources for calculating patient travel times were more equitably distributed relative to health need than resources for characterising neighbourhoods or geocoding patient addresses.
    [Show full text]
  • Structured Toponym Resolution Using Combined Hierarchical Place Categories∗
    In GIR’13: Proceedings of the 7th ACM SIGSPATIAL Workshop on Geographic Information Retrieval, Orlando, FL, November 2013 (GIR’13 Best Paper Award). Structured Toponym Resolution Using Combined Hierarchical Place Categories∗ Marco D. Adelfio Hanan Samet Center for Automation Research, Institute for Advanced Computer Studies Department of Computer Science, University of Maryland College Park, MD 20742 USA {marco, hjs}@cs.umd.edu ABSTRACT list or table is geotagged with the locations it references. To- ponym resolution and geotagging are common topics in cur- Determining geographic interpretations for place names, or rent research but the results can be inaccurate when place toponyms, involves resolving multiple types of ambiguity. names are not well-specified (that is, when place names are Place names commonly occur within lists and data tables, not followed by a geographic container, such as a country, whose authors frequently omit qualifications (such as city state, or province name). Our aim is to utilize the context of or state containers) for place names because they expect other places named within the table or list to disambiguate the meaning of individual place names to be obvious from place names that have multiple geographic interpretations. context. We present a novel technique for place name dis- ambiguation (also known as toponym resolution) that uses Geographic references are a very common component of Bayesian inference to assign categories to lists or tables data tables that can occur in both (1) the case where the containing place names, and then interprets individual to- primary entities of a table are geographic or (2) the case ponyms based on the most likely category assignments.
    [Show full text]
  • Toponym Resolution in Scientific Papers
    SemEval-2019 Task 12: Toponym Resolution in Scientific Papers Davy Weissenbachery, Arjun Maggez, Karen O’Connory, Matthew Scotchz, Graciela Gonzalez-Hernandezy yDBEI, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA zBiodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85281, USA yfdweissen, karoc, [email protected] zfamaggera, [email protected] Abstract Disambiguation of toponyms is a more recent task (Leidner, 2007). We present the SemEval-2019 Task 12 which With the growth of the internet, the public adop- focuses on toponym resolution in scientific ar- ticles. Given an article from PubMed, the tion of smartphones equipped with Geographic In- task consists of detecting mentions of names formation Systems and the collaborative devel- of places, or toponyms, and mapping the opment of comprehensive maps and geographi- mentions to their corresponding entries in cal databases, toponym resolution has seen an im- GeoNames.org, a database of geospatial loca- portant gain of interest in the last two decades. tions. We proposed three subtasks. In Sub- Not only academic but also commercial and open task 1, we asked participants to detect all to- source toponym resolvers are now available. How- ponyms in an article. In Subtask 2, given to- ponym mentions as input, we asked partici- ever, their performance varies greatly when ap- pants to disambiguate them by linking them plied on corpora of different genres and domains to entries in GeoNames. In Subtask 3, we (Gritta et al., 2018). Toponym disambiguation asked participants to perform both the de- tackles ambiguities between different toponyms, tection and the disambiguation steps for all like Manchester, NH, USA vs.
    [Show full text]
  • Geocoding Guide for Slovakia Table of Contents
    Spectrum Technology Platform Version 12.0 SP1 Geocoding Guide for Slovakia Table of Contents 1 - Geocode Address Global Adding an Enterprise Geocoding Module Global Database Resource 4 2 - Input Input Fields 7 Address Input Guidelines 7 Single Line Input 7 Street Intersection Input 9 3 - Options Geocoding Options 11 Matching Options 14 Data Options 18 4 - Output Address Output 22 Geocode Output 29 Result Codes 29 Result Codes for International Geocoding 33 5 - Reverse Geocode Address Global Input 39 Options 40 Output 44 1 - Geocode Address Global Geocode Address Global provides street-level geocoding for many countries. It can also determine city or locality centroids, as well as postal code centroids. Geocode Address Global handles street addresses in the native language and format. For example, a typical French formatted address might have a street name of Rue des Remparts. A typical German formatted address could have a street name Bahnhofstrasse. Note: Geocode Address Global does not support U.S. addresses. To geocode U.S. addresses, use Geocode US Address. The countries available to you depends on which country databases you have installed. For example, if you have databases for Canada, Italy, and Australia installed, Geocode Address Global would be able to geocode addresses in these countries in a single stage. Before you can work with Geocode Address Global, you must define a global database resource containing a database for one or more countries. Once you create the database resource, Geocode Address Global will become available. Geocode Address Global is an optional component of the Enterprise Geocoding Module. In this section Adding an Enterprise Geocoding Module Global Database Resource 4 Geocode Address Global Adding an Enterprise Geocoding Module Global Database Resource Unlike other stages, the Geocode Address Global and Reverse Geocode Global stages are not visible in Management Console or Enterprise Designer until you define a database resource.
    [Show full text]