29 2003 Auth Indexword.Indd

Total Page:16

File Type:pdf, Size:1020Kb

29 2003 Auth Indexword.Indd American Mineralogist, Volume 88, pages i–x, 2003 2003 Author Index Akaogi, M., see Sugawara and Akaogi, 1020 Baron, D., see Drouet et al., 1949 crystal-chemical characterization, 464 Alberti, A., Fois, E., and Gamba, A.: A mo- Barrès, O., see Pelletier et al., 1801 Bindi, L., see Bonazzi et al., 223 lecular dynamics study of the behavior of Barrett, S., see Bickmore et al., 709 Bindi, L., see Bonazzi et al., 1796 sodium in low albite, 1 Barron, L.M.: A simple model for the pres- Binu-Lal, S.S., see Santosh et al., 1689 Alcock, J., Myer, K., and Muller, P.D.: Three- sure preservation index of inclusions in Bird, D.K., see Fridriksson et al., 277 dimensional model of heat flow in the diamond, 1615 Bird, D.K., see Fridriksson et al., 1060 aureole of the Marcy anorthosite, Adiron- Barrón, V., Torrent, J., and Grave, E.: Hydroma- Bird, D.K., see Neuhoff et al., 410 dack Highlands, New York: Implications ghemite, an intermediate in the hydrother- Bish, D.L., see Dera et al., 1428 for depth of emplacement, 474 mal transformation of 2-line ferrihydrite Bish, D.L., see Fridriksson et al., 277 Allan, N.L., see Lavrentiev et al., 1522 into hematite, 1679 Bish, D.L., see Fridriksson et al., 1060 Allwardt, J.R., Lee, S.K., and Stebbins, J.F.: Bass, J.D., see Wang et al., 1608 Bish, D.L., see Hou et al., 167 Bonding preferences of non-bridging O at- Baxter, G., see Lesher et al., 1181 Bish, D.L., Vaniman, D.T., Chipera, S.J., and oms: Evidence from 17O MAS and 3QMAS Beane, R.J., see Bostick et al., 1709 Carey, J.W.: The distribution of zeolites and NMR on calcium aluminate and low-silica Beard, J.S., see Tracy and Beard, 740 their effects on the performance of a nuclear Ca-aluminosilicate glasses, 949 Beaufort, D., see Fialips et al., 837 waste repository at Yucca Mountain, Ne- Alves, M.C.M., see Carvalho-e-Silva et al., Becker, U., Jambor, J., Lumpkin, G., and Pas- vada, U.S.A., 1889 876 teris, J.: Introduction to the Environmental Bismayer, U., see Shi et al., 1866 Amonette, J.E., see Wang et al., 398 Mineralogy Special Issue, 1843 Blum, J.D., see Utsunomiya et al., 1844 Amthauer, G., see Grodzicki et al., 481 Behrens, H., see Fechtelkord et al., 1046 Blundy, J.D., see McDade et al., 1825 Anand, M., see Taylor et al., 912 Behrens, H., see Fechtelkord et al., 47 Bodnar, R.J.: Presentation of the Mineralogical Anderson, I.M., see Hiraga et al., 1015 Behrens, H. and Schulze, F.: Pressure de- Society of America Dana Medal for 2002 Andrault, D., Angel, R.J., Mosenfelder, J.L., pendence of melt viscosity in the system to Michael F. Hochella Jr., 945 and Le Bihan, T.: Equation of state of NaAlSi3O8-CaMgSi2O6,1351 Boerio-Goates, J., see Majzlan et al., 846 stishovite to lower mantle pressures, 301 Benedetti, M., see Juillot et al., 509 Bohic, S., see Sanchez-Valle et al., 978 Angel, R.J., see Andrault et al., 301 Benna, P. and Bruno, E.: Single-crystal in Bonazzi, P., Bindi, L., and Parodi, G.: Gatelite- Argoul, P., see Muñoz et al., 694 situ high-temperature structural investi- (Ce), a new REE-bearing mineral from Tri- – Arletti, R., Ferro, O., Quartieri, S., Sani, A., gation of the I1-I2/c phase transition in mouns, French Pyrenees: Crystal structure Tabacchi, G., and Vezzalin, G.: Structural Ca0.2Sr0.8Al2Si2O8 feldspar, 1532 and polysomatic relationships with epidote deformation mechanisms of zeolites under Benvenuti, M., see Costagliola et al., 1345 and törnebohmite-(Ce), 223 pressure, 1416 Berlepsch, P., Armbruster, T., Makovicky, Bonazzi, P., Bindi, L., Popova, V., Pratesi, Armbruster, T., see Berlepsch et al., 450 E., and Topa, D.: Another step toward G., and Menchetti, S.: Alacranite, As8S9: Armbruster, T., see Di Pierro et al., 1817 understanding the true nature of sartorite: structural study of the holotype and re-as- Armbruster, T., see Döbelin and Armbruster, Determination and refinement of a ninefold signment of the original chemical formula, 527 superstructure, 450 1796 Armbruster, T., see Gnos et al., 189 Bermanec, V., Furić, K., Rajić, M., and Borda, M.J., Strongin, D.R., and Schoonen, Artioli, G., Geiger, C.A., and Dapiaggi, M.: Kniewald, G.: Thermal stability and vibra- M.A.: A vibrational spectroscopic study The crystal chemistry of julgoldite-Fe3+ tional spectra of the sheet borate tuzlaite, of the oxidation of pyrite by ferric iron, from Bombay, India, studied using syn- NaCa[B5O8(OH)2]·3H2O, 271 1318 chrotron X-ray powder diffraction and Bern, A.M., see Meeker et al., 1955 Bosbach, D., see Tournassat et al., 1989 57Fe Mössbauer spectroscopy, 1084 Bernardini, G.P., see Costagliola et al., 1345 Bostick, B.C., Jones, R.E., Ernst, W.G., Chen, Aubourg, C., see Cairanne et al., 1385 Bernasconi, S.M., see Di Pierro et al., 1817 C., Leech, M.L., and Beane, R.J.: Low-tem- Ayers, J.C., DeLaCruz, K., Miller, C., and Berry, A.J., OʼNeill, H.St.C., Jayasuriya, K.D., perature microdiamond aggregates in the Switzer, O.: Experimental study of zir- Campbell, S.J., and Foran, G.J.: XANES Maksyutov Metamorphic Complex, South con coarsening in quartzite ±H2O at 1.0 calibrations for the oxidation state of iron Ural Mountains, Russia, 1709 GPa and 1000 °C, with implications for in a silicate glass, 967 Botella, V., see Timón et al., 1788 geochronological studies of high-grade Besson, P., see Cairanne et al., 1385 Bown, P.R., see Henriksen et al., 2040 metamorphism, 365 Bickmore, B.R., Rufe, E., Barrett, S., and Bozhilov, K.N., Green II, H.W., and Dobrzhi- Baier, M., see Okrusch et al., 986 Hochella Jr., M.F.: Measuring discrete netskaya, L.F.: Quantitative 3D measure- Balan, E., Mauri, F., Pickard, C.J., Farnan, feature dimensions in AFM images with ment of ilmenite abundance in Alpe Arami I., and Calas, G.: The aperiodic states of image SXM, 709 olivine by confocal microscopy: Confirma- zircon: an ab initio molecular dynamics Bindi, L., Safonov, O.G., Yapaskurt, V.O., tion of high-pressure origin, 596 study, 1769 Perchuk, L.L., and Menchetti, S.: Ultrapo- Bozhilov, K.N., Jenkins et al., 1104 Balan, E., see Farnan et al., 1663 tassic clinopyroxene from the Kumdy-Kol Bracco, R., see Hughes et al., 1324 Bancroft, G.M., see Jackson et al., 890 microdiamond mine, Kokchetav Complex, Bradbury, S.E. and Williams, Q.: Contrasting Bancroft, G.M., see Nesbitt et al., 1279 Kazakhstan: Occurrence, composition and bonding behavior of two hydroxyl-bear- i ii 2003 AUTHOR INDEX 2003 AUTHOR INDEX iii ing metamorphic minerals under pressure: Calas, G., see Juillot et al., 509 and evaluation of thermodynamic data clinozoisite and topaz, 1460 Cámara, F., Carpenter, M.A., Domeneghetti, for morenosite-retgersite equilibria at 0.1 Brady, J.B., Cheney, J.T., Rhodes, A.L., M.C., and Tazzoli, V.: Coupling between MPa, 1943 Vasquez, A., Green, C., Duvall, M., non-convergent ordering and transition Choudary, B.M., see Parthasarathy et al., Kogut, A., Kaufman, L., and Kovaric, temperature in the C2/c × P21/c phase 1983 D.: Isotope geochemistry of Proterozoic transition in pigeonite, 1115 Cipriani, C., see Costagliola et al., 1345 talc occurrences in Archean marbles of Cámara, F., see Iezzi et al., 955 Cipriani, C., see Pratesi et al., 1778 the Ruby Mountains, southwest Montana, Campbell, S.J., see Berry et al., 967 Clark, S.B., see Utsunomiya et al., 159 U.S.A., 246 Candela, P.A., see Simon et al., 1644 Cody, G.D., see Mysen et al., 1668 Brantley, S.L., see Tsomaia et al., 54 Caporuscio, F., The 22nd edition of the Cohen, R.E., see Gramsch et al., 257 Breit, U., see Hovis et al., 547 manual of mineral science, by Cornelis Conticelli, S., see Melluso et al., 1287 Brenker, F.E., Meibom, A., and Frei, R.: On Klein, 1400 Cornelius, S., see Gunter et al., 1970 the formation of peridotite-derived Os-rich Caporuscio, F.: Emeralds of the World, Ex- Costagliola, P., Di Benedetto, F., Benvenuti, M., PGE alloys, 1731 tralapis English #2: The Legendary Green Bernardini, G.P., Cipriani, C., Lattanzi, P.F., Brenker, F.E., Müller, W.F., and Brey, G.P.: Beryl. Alfredo Petrov and Günter Neumeier and Romanelli, M.: Chemical speciation of Variation of antiphase domain size in (translators). Christian Weise Verlag, Mu- Ag in galena by EPR spectroscopy, 1345 omphacite: A tool to determine the tem- nich, and Lapis International, East Hamp- Couch, S: Experimental investigation of perature–time history of eclogites revis- ton, Connecticut, 2002, 1841 crystallization kinetics in a haplogranite ited, 1300 Carey, J.W., see Bish et al., 1889 system, 1471 Bretherton, J.L., see Fechtelkord et al., 1046 Carey, J.W., see Fridriksson et al., 1060 Crowley, J.L., Ghent, E.D., Carr, S.D., Si- Brey, G.P., see Brenker et al., 1300 Carleton, L.E., see Gieré et al., 1853 mony, P.S., and Hamilton M.A.: Multiple Brigatti, M.F., Guggenheim, S.G., and Poppi, Carlson, S., see Dinnebier et al., 996 thermotectonic events in a continuous M.: Crystal chemistry of the 1M mica poly- Carlson, W.D., see Hirsch et al., 131 metamorphic sequence, Mica Creek area, type: The octahedral sheet, 667 Carlson, W.D., see Hirsch et al., 1173 southeastern Canadian Cordillera, 930 Bromiley, G.D. and Pawley, A.R.: The stabil- Carpenter, M.A., Meyer, H.-W., Sondergeld, Cruciani, G., see Cesare et al., 583 ity of antigorite in the systems MgO-SiO2- P., Marion, S., and Knight, K.S.: Spon- Cultrone, G., see Rodriguez-Navarro et al., H2O (MSH) and MgO-Al2O3-SiO2-H2O taneous strain variations through the low 713 (MASH): The effects of Al3+ substitution temperature phase transitions of deuterated DʼAntonio, M., see Melluso et al., 1287 on high-pressure stability, 99 lawsonite, 534 dʼEspinose de la Caillerie, J.-B., see Pelletier Brouwer,
Recommended publications
  • Chromitites, Platinum-Group Elements, and Ore Minerals
    Eur. J. Mineral. 2017, 29, 539–541 Published online Chromitites, platinum-group elements, and ore minerals Special issue dedicated to Zdeněk Johan (1935–2016): Preface Fig. 1. Zdeněk Johan in the Mineralogical Collections at Charles University in Prague (Czech Republic). Zdeněk Johan, an outstanding Czech-French mineralogist and a great colleague, passed away in February 2016. He served as Scientific Director of the French Bureau de Recherches Géologiques et Minières (BRGM), became a fellow of professional and learned societies and received numerous honours and distinctions for his scientific achievements in mineralogy, crystal chemistry, petrology and ore geology (see Ettler, 2016). He also served in 1993 as president of the Société française de Minéralogie et de Cristallographie (SFMC), a founding society of the European Journal of Mineralogy (EJM). When asked by the Editorial Board, we thus immediately agreed to organize a special issue of EJM to celebrate Zdeněk Johan’s career. We were surprised by the feedback we received. We hope that the selection of papers, all following in the footsteps of Zdeněk Johan’s research activities, will resonate in the geoscience community. This special issue starts with Zdeněk’s late publication on the role of fluids in chromitite formation in ophiolite complexes (Johan et al., 2017), followed by an intriguing view on the origin of super-reduced mineral assemblages in ophiolite chromitites by Bill Griffin’s group (Xiong et al., 2017) and two articles on platinum-group minerals in ophiolites (Zaccarini et al., 2017; Augé et al., 2017). Platinum-group minerals occurring in different geological settings have always been a central theme in Zdeněk’s research and are represented here by several articles, which include the description of new minerals, new occurrences and analytical/experimental studies (Vymazalová et al., 2017; Laufek et al., 2017; Barkov et al., 2017; Pasava et al., 2017; Cabri et al., 2017; Makovicky & Karup-Møller, 2017).
    [Show full text]
  • 21Àxs34, a New Thallium Sulphosalt from Lengenbach Quarry, Binntal, Switzerland
    Mineralogical Magazine, December 2009, Vol.73(6), pp.1027–1032 Dalnegroite, Tl5ÀxPb2x(As,Sb)21ÀxS34, a new thallium sulphosalt from Lengenbach quarry, Binntal, Switzerland 1, 1 2 1 F. NESTOLA *, A. GUASTONI ,L.BINDI AND L. SECCO 1 Dipartimento di Geoscienze, Universita` degli Studi di Padova, Via Giotto 1, I-35137 Padova, Italy 2 Museo di Storia Naturale, sezione di Mineralogia, Universita` degli Studi di Firenze, Via La Pira, 4, I-50121 Firenze, Italy [Received 16 October 2009; Accepted 14 December 2009] ABSTRACT Dalnegroite, ideally Tl4Pb2(As12Sb8)S20S34, is a new mineral from Lengenbach, Binntal, Switzerland. It occurs as anhedral to subhedral grains up to 200 mm across, closely associated with realgar, pyrite, Sb- rich seligmanite in a gangue of dolomite. Dalnegroite is opaque with a submetallic lustre and shows a À2 brownish-red streak. It is brittle; the Vickers hardness (VHN25)is87kgmm (range: 69À101) (Mohs hardness ~3À3Ý). In reflected light, dalnegroite is highly bireflectant and weakly pleochroic, from white to a slightly greenish-grey. In cross-polarized light, it is highly anisotropic with bluish to green rotation tints and red internal reflections. According to chemical and X-ray diffraction data, dalnegroite appears to be isotypic with ˚ chabourne´ite, Tl5ÀxPb2x(Sb,As)21ÀxS34. It is triclinic, probable space group P1, with a = 16.217(7) A, b = 42.544(9) A˚ , c = 8.557(4) A˚ , a = 95.72(4)º, b = 90.25(4)º, g = 96.78(4)º, V = 5832(4) A˚ 3, Z =4. ˚ The nine strongest powder-diffraction lines [d (A)(I/I0)(hkl)] are: 3.927 (100) (2¯ 10 0); 3.775 (45) (22¯2); 3.685 (45) (4¯60); 3.620 (50) (440); 3.124 (50) (2¯8¯2); 2.929 (60) (42¯2); 2.850 (70) (4¯42); 2.579 (45) (0 14 2); 2.097 (60) (024).
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Cafetite, Ca[Ti2o5](H2O): Crystal Structure and Revision of Chemical Formula
    American Mineralogist, Volume 88, pages 424–429, 2003 Cafetite, Ca[Ti2O5](H2O): Crystal structure and revision of chemical formula SERGEY V. K RIVOVICHEV,1,* VICTOR N. YAKOVENCHUK,2 PETER C. BURNS,3 YAKOV A. PAKHOMOVSKY,2 AND YURY P. MENSHIKOV2 1Department of Crystallography, St. Petersburg State University, University Embankment 7/9, St. Petersburg 199034, Russia 2Geological Institute, Kola Science Centre, Russian Academy of Sciences, Fersmana 14, 184200-RU Apatity, Russia 3Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0767, U.S.A. ABSTRACT The crystal structure of cafetite, ideally Ca[Ti2O5](H2O), (monoclinic, P21/n, a = 4.9436(15), b = 12.109(4), c = 15.911(5) Å, b = 98.937(5)∞, V = 940.9(5) Å3, Z = 8) has been solved by direct methods and refined to R1 = 0.057 using X-ray diffraction data collected from a crystal pseudo-merohedrally twinned on (001). There are four symmetrically independent Ti cations; each is octahedrally coordi- nated by six O atoms. The coordination polyhedra around the Ti cations are strongly distorted with individual Ti-O bond lengths ranging from 1.743 to 2.223 Å (the average <Ti-O> bond length is 1.98 Å). Two symmetrically independent Ca cations are coordinated by six and eight anions for Ca1 and Ca2, respectively. The structure is based on [Ti2O5] sheets of TiO6 octahedra parallel to (001). The Ca atoms and H2O groups are located between the sheets and link them into a three-dimensional struc- ture. The structural formula of cafetite confirmed by electron microprobe analysis is Ca[Ti2O5](H2O), .
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Ralphcannonite, Agzn2tlas2s6, a New Mineral of the Routhierite
    1 1 Ralphcannonite, AgZn2TlAs2S6, a new mineral of the 2 routhierite isotypic series from Lengenbach, Binn 3 Valley, Switzerland 4 1* 2 3 5 LUCA BINDI , CRISTIAN BIAGIONI , THOMAS RABER , PHILIPPE 4 5 6 ROTH , FABRIZIO NESTOLA 7 8 9 10 1 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira, 4, I- 11 50121 Firenze, Italy 12 2 Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, I-56126 Pisa, 13 Italy 14 3 FGL (Forschungsgemeinschaft Lengenbach), Edith-Stein-Str. 9, D-79110 Freiburg, 15 Germany 16 4 FGL (Forschungsgemeinschaft Lengenbach), Ilanzhofweg 2, CH-8057 Zurich, Switzerland 17 5 Dipartimento di Geoscienze, Università di Padova, Via Gradenigo, 6, I-35131 Padova, Italy 18 19 20 21 22 *e-mail address: [email protected] 23 2 24 ABSTRACT 25 The new mineral species ralphcannonite, AgZn2TlAs2S6, was discovered in the Lengenbach 26 quarry, Binn Valley, Wallis, Switzerland. It occurs as metallic black equant, isometric to 27 prismatic crystals, up to 50 μm, associated with dufrénoysite, hatchite, realgar, and baryte. 28 Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm): R (%)]: 29 471.1: 25.8/27.1; 548.3: 25.2/26.6; 586.6: 24.6/25.8; 652.3: 23.9/24.8. Electron microprobe 30 analyses give (wt%): Cu 2.01(6), Ag 8.50(16), Zn 10.94(20), Fe 3.25(8), Hg 7.92(12), Tl 31 24.58(26), As 18.36(19), Sb 0.17(4), S 24.03(21), total 99.76(71).
    [Show full text]
  • Delindeite and Lourenswalsite, Two New Titanosilicates from the Magnet Cove Region, Arkansas
    Delindeite and lourenswalsite, two new titanosilicates from the Magnet Cove region, Arkansas DANIEL E. ApPLEMAN Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560, USA AND How ARD T. EVANS, JR., GORDON L. NORD, EDWARD J. DWORNIK AND CHARLES MIL TON U.S. Geological Survey, Reston, Virginia 22092, USA Abstract Delindeite and lourenswalsite are two new barium titanosilicate minerals found as microscopic crystals in miarolitic cavities in nepheline syenite in the Diamond Jo quarry, Hot Spring County, Arkansas. Delindeite is found as aggregates of flake-like crystallites in compact spherules, light pinkish grey in colour, with a resinous, pearly lustre. The flakes are biaxial positivewith average n ~ 1.813;the measured density is 3.3 g/cm3. Electron diffraction revealed a monoclinic unit cell in space group C2/m or subgroup, with a = 21.617(13), b = 6.816(5), c = 5.383(3) A, P = 94.03(5t(refined from X-ray powder data). The strongest X-ray lines are (hkl, dobs,!re'):(200,10.80,100); (311,3.54,24); (601,3.083,28); (601, 2.888, 31);(221, 2.806, 20); (910, 2.262,18). The crystals are submicroscopically twinned on (100) and also produce additional continuous diffraction streaks parallel to a*, which double the band c axes. The formula derived from electron and ion probe analyses (H20 by difference), as constrained by density and molar volume data, is approximately (Na,Kb.7(Ba,Ca)4(Ti,Fe,AI)6Sig026(OH)14' with Na> K, Ba »Ca, Ti» Fe,AI; Z = 1. Lourenswalsite occurs as very thin hexagonal plates in rosettes, silver grey to light brownish grey in colour.
    [Show full text]
  • Crystallography of Sartorite from Binn. ( with Plate V.) by Cnaal~8 0
    212 Crystallography of Sartorite from Binn. ( With Plate V.) By CnAaL~8 0. T~CHX~AN~, Ph.D., F.G.8. [Read June 12, 1906.] LITERATURE J. ~. yore Rath, ' Mineraloglsche Mittheilungen (Fortsetzuug III): If. Skleroklas.' Ann. Chem. Phys. (Poggendorff), 1864, vol. cxxii, pp. 880-387. H. Baumhauer, ' Ueber den Skleroklas yon Binn.' Sitzungsber. k. preuss. Akad. Wiss. Berlin, 1895, pp. 243-252. R. H. Solly, ' Sulpharsenites of lead fl'om the Binnenthal.' Min. Mag., 1900, vol. xii, pp. 282-297 (Sartorite on pp. 286 and 297). Translation in Zeits. Kryst. Min., 1891, vol. xxxv, pp. 321-344~. W. J. Lewis, ' A large crystal of sulpharsenite of lead from the Binnenthal.' Min. Mag., 1908, vol. xiii, p. xxxiv. (Analysis by H. Jackson.) R. H. Solly, 'On sartorite . and other minerals from the Binnenthal." Min. Mag., 1904, vol. xiv, p. xx. (Title only; abstract, giving angular elements, in ' Nature,' 1903, vol. lxlx, p. 142.) lI. Baumhauer, ' Die Minerallen des Binnenthals.' Bull. Murlthienne, Soc. valais. sci. nat., 1905, p. 85-49. HE mineral sartorite (of Dana) or scleroclase (of v. Waltershausen) T appears to have been found much more frequently in latter years in the well-known dolomite at the Lengenbach, in the Binnenthal, Switzerland, than was formerly the case, and it may now be considered to be one of the commonest of the group of sulpharsenites of lead which have made this locality famous. I~rge, detached, longitudinally striated, prismatic crystals, mostly devoid of terminal faces, have been especially frequent, the majority of which are doubtless sartorites. Notwithstanding this abundance of material, there still exists some {Toubt respecting the system in which this mineral crystallizes.
    [Show full text]
  • STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
    STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Hendekasartorite Tl2pb48as82s172
    Hendekasartorite Tl2Pb48As82S172 Crystal Data: Monoclinic. Point Group: 2/m. As imperfectly formed crystals. Physical Properties: Cleavage: Good on {100}. Tenacity: Brittle. Fracture: Conchoidal. Hardness = 3-3.5 VHN = 208-221 214 average (25 g load). D(meas.) = n.d. D(calc.) = 5.18 Optical Properties: Opaque. Color: Lead-gray; gray-white in reflected light, deep red internal reflections rare. Streak: Dark brown. Luster: Metallic. Anisotropism: Moderate to weak in brown-violet and deep green tints. Bireflectance: Weak. Pleochroism: Weak. Optical Class: n.d. R1-R2: (400) 39.5-42.5, (420) 38.7-41.8, (440) 38.0-41.3, (460) 37.5-40.8, (470) 37.2-40.6, (480) 37.1-40.4, (500) 36.7-40.0, (520) 36.2-39.5, (540) 35.6-38.9, (546) 35.3-38.5, (560) 35.0-38.1, (580) 34.3-37.2, (589) 33.9-36.8, (600) 33.4-36.3, (620) 32.6-35.3, (640) 31.8-34.4, (650) 31.5-34.0, (660) 31.1-33.6, (680) 30.5-32.9, (700) 30.1-32.4 Cell Data: Space Group: P21/c. a = 31.806(5) b = 7.889(12) c = 28.556(4) β = 99.034(2)° Z = 1 X-ray Powder Pattern: Calculated pattern. 3.50 (100), 2.941 (76), 2.753 (73), 2.751 (73), 3.87 (69), 2.947 (66), 9.76 (56) Chemistry: (1) (2) Tl 2.80 1.86 Pb 44.63 45.18 Sb 0.90 As 27.10 27.91 S 24.83 25.05 Total 100.26 100.00 (1) Lengenbach quarry, Binntal, Wallis, Switzerland; average of 22 electron microprobe analyses; corresponds to Tl3.03Pb47.71(As80.10Sb1.65)Σ=81.74S171.52.
    [Show full text]
  • Applied Geminography - Symmetry Analysis of Twinned Crystals and Definition of Twinning by Reticular Polyholohedry Massimo Nespolo, Giovanni Ferraris
    Applied geminography - symmetry analysis of twinned crystals and definition of twinning by reticular polyholohedry Massimo Nespolo, Giovanni Ferraris To cite this version: Massimo Nespolo, Giovanni Ferraris. Applied geminography - symmetry analysis of twinned crystals and definition of twinning by reticular polyholohedry. Acta Crystallographica Sec- tion A Foundations and Advances, International Union of Crystallography, 2004, 60, pp.89-95. 10.1107/S0108767303025625. hal-00130548 HAL Id: hal-00130548 https://hal.archives-ouvertes.fr/hal-00130548 Submitted on 12 Feb 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. electronic reprint Acta Crystallographica Section A Foundations of Crystallography ISSN 0108-7673 Editor: D. Schwarzenbach Applied geminography – symmetry analysis of twinned crystals and definition of twinning by reticular polyholohedry Massimo Nespolo and Giovanni Ferraris Copyright © International Union of Crystallography Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained.
    [Show full text]