Molecular Characterization and Species Delimiting of Plant-Parasitic 0$5
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigation of the Development of Root Lesion Nematodes, Pratylenchus Spp
Türk. entomol. derg., 2021, 45 (1): 23-31 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/entoted.753614 E-ISSN 2536-491X Original article (Orijinal araştırma) Investigation of the development of root lesion nematodes, Pratylenchus spp. (Tylenchida: Pratylenchidae) in three chickpea cultivars Kök lezyon nematodlarının, Pratylenchus spp. (Tylenchida: Pratylenchidae) üç nohut çeşidinde gelişmesinin incelenmesi İrem AYAZ1 Ece B. KASAPOĞLU ULUDAMAR1* Tohid BEHMAND1 İbrahim Halil ELEKCİOĞLU1 Abstract In this study, penetration, population changes and reproduction rates of root lesion nematodes, Pratylenchus neglectus (Rensch, 1924), Pratylenchus penetrans (Cobb, 1917) and Pratylenchus thornei Sher & Allen, 1953 (Tylenchida: Pratylenchidae), at 3, 7, 14, 21, 28, 35, 42, 49 and 56 d after inoculation in chickpea Bari 2, Bari 3 (Cicer reticulatum Ladiz) and Cermi [Cicer echinospermum P.H.Davis (Fabales: Fabaceae)] were assessed in a controlled environment room in 2018-2019. No juveniles were observed in the roots in the first 3 d after inoculation. Although, population density of P. thornei reached the highest in Cermi (21 d), Bari 3 (42 d) and the lowest observed on Bari 2. Pratylenchus neglectus reached the highest population density in Bari 3 and Cermi on day 28. The population density of P. neglectus was the lowest in Bari 2. Also, population density of P. penetrans reached the highest in Bari 3 cultivar within 49 d, similar to P. thornei, whereas Bari 2 and Cermi had low population densities during the entire experimental period. Keywords: -
Description of Pratylenchus Dunensis Sp. N. (Nematoda: Pratylenchidae
Nematology, 2006, Vol. 8(1), 79-88 Description of Pratylenchus dunensis sp.n.(Nematoda: Pratylenchidae), a root-lesion nematode associated with the dune grass Ammophila arenaria (L.) Link ∗ Eduardo DE LA PEÑA 1, , Maurice MOENS 1,2, Adriaan VA N AELST 3 and Gerrit KARSSEN 4,5 1 Agricultural Research Centre, Crop Protection Department, Burg. van Gansberghelaan 96, 9820, Merelbeke, Belgium 2 Gent University, Laboratory for Agrozoology, Coupure 653, 9000 Gent, Belgium 3 Wageningen University & Research Centre, Laboratory of Plant Cell Biology, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands 4 Plant Protection Service, Nematology Section, P.O. Box 9102, 6700 HC Wageningen, The Netherlands 5 Wageningen University & Research Centre, Laboratory of Nematology, Binnenhaven 5, 6709 PD Wageningen, The Netherlands Received: 4 April 2005; revised: 7 November 2005 Accepted for publication: 7 November 2005 Summary – A root-lesion nematode, Pratylenchus dunensis sp. n., is described and illustrated from Ammophila arenaria (L.) Link, a grass occurring abundantly in coastal dunes of Atlantic Europe. The new species is characterised by medium sized (454-579 µm) slender, vermiform, females and males having two lip annuli (sometimes three to four; incomplete incisures only visible with scanning electron microscopy), medium to robust stylet (ca 16 µm) with robust stylet knobs slightly set off, long pharyngeal glands (ca 42 µm), lateral field with four parallel, non-equidistant, lines, the middle ridge being narrower than the outer ones, lateral field with partial areolation and lines converging posterior to the phasmid which is located between the two inner lines of the lateral field in the posterior half of the tail, round spermatheca filled with round sperm, vulva at 78% of total body length and with protruding vulval lips, posterior uterine sac relatively short (ca 19 µm), cylindrical tail (ca 33 µm) narrowing in the posterior third with smooth tail tip and with conspicuous hyaline part (ca 2 µm). -
Burrowing Nematode Radopholus Similis (Cobb, 1893) Thorne, 1949 (Nematoda: Secernentea: Tylenchida: Pratylenchidae: Pratylenchinae)1 Nicholas Sekora and William T
EENY-542 Burrowing Nematode Radopholus similis (Cobb, 1893) Thorne, 1949 (Nematoda: Secernentea: Tylenchida: Pratylenchidae: Pratylenchinae)1 Nicholas Sekora and William T. Crow2 Introduction by fine textured soils rich in organic matter. However, soil texture plays a less important role on nematode population Radopholus similis, the burrowing nematode, is the most levels on banana (O’Bannon 1977). economically important nematode parasite of banana in the world. Infection by burrowing nematode causes toppling disease of banana, yellows disease of pepper and spreading Life Cycle and Biology decline of citrus. These diseases are the result of burrowing Burrowing nematode is an endoparasitic migratory nema- nematode infection destroying root tissue, leaving plants tode, meaning it completes its life cycle within root tissue. with little to no support or ability to take up water and All motile juvenile stages and females can infect root tissue translocate nutrients. Because of the damage that it causes at any point along the length of a root. After root penetra- to citrus, ornamentals and other agricultural industries, tion, these life stages mainly feed and migrate into the worldwide, burrowing nematode is one of the most regu- cortical parenchyma and also into the stele. Mature males lated nematode plant pests (Hockland et al. 2006). of burrowing nematode are not infective. As the mature females migrate through root tissue, they lay eggs that are Distribution produced through either sexual reproduction with males or by hermaphroditistim (Thorne 1961, Kaplan and Burrowing nematode is native to Australasia, but is found worldwide in tropical and subtropical regions of Africa, Opperman 2000). Once an egg hatches, the emergent Asia, Australia, North and South America, and many second-stage juvenile can migrate within the root and island regions. -
Phylogenetic Analysis of Nematodes of the Genus Pratylenchus Using Nuclear 26S Rdna
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of February 1997 Phylogenetic Analysis of Nematodes of the Genus Pratylenchus Using Nuclear 26S rDNA Luma Al-Banna University of Jordan, [email protected] Valerie M. Williamson University of California, Davis, [email protected] Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Al-Banna, Luma; Williamson, Valerie M.; and Gardner, Scott Lyell, "Phylogenetic Analysis of Nematodes of the Genus Pratylenchus Using Nuclear 26S rDNA" (1997). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 52. https://digitalcommons.unl.edu/parasitologyfacpubs/52 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Molecular Phylogenetics and Evolution (ISSN: 1055-7903), vol. 7, no. 1 (February 1997): 94-102. Article no. FY960381. Copyright 1997, Academic Press. Used by permission. Phylogenetic Analysis of Nematodes of the Genus Pratylenchus Using Nuclear 26S rDNA Luma Al-Banna*, Valerie Williamson*, and Scott Lyell Gardner1 *Department of Nematology, University of California at Davis, Davis, California 95676-8668 1H. W. Manter Laboratory, Division of Parasitology, University of Nebraska State Museum, W-529 Nebraska Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0514; [email protected] Fax: (402) 472-8949. -
Investigations on the Early Stages of Interactions Between the Nematodes Meloidogyne Javanica and Pratylenchus Thornei and Two of Their Plant Hosts
Investigations on the early stages of interactions between the nematodes Meloidogyne javanica and Pratylenchus thornei and two of their plant hosts SOSAMMA PAZHAVARICAL Doctor of Philosophy August 2009 University of Western Sydney “O LORD, How great are your works!” Psalm 92:5 Dedicated to My father the late P. V. Easow, who passed away in 1976 when I was still in high school; y brother the late P. Vergis, who passed away in early 2009 and y loving other Maria a Easow, who is, always, y ain source of inspiration . ACKNOWLEDGEMENTS This thesis was one which was almost never written but for the grace of God. I wish to express my gratitude to the many who directly and indirectly contributed towards the completion of this thesis from the beginning, eight years ago. First and foremost I would like to thank the University of Western Sydney for the Post Graduate Award Scholarship, and the Australian National University for the additional funding to enable me to realise my research dreams at the UWS Hawkesbury and ANU Canberra. I express my deep appreciation for the understanding and support of my supervisory panel, especially my Principal Supervisor Associate Professor Robert Spooner-Hart, without whose infinite patience, dedication, lateral thinking and valuable time which he spent editing, this thesis would never have been realised. My heartfelt thank you goes to Associate Professor Tan Nair for his valuable guidance during the initial stages of my candidature, and his advice in all academic matters up until recent retirement. I would like to thank Professor Dr. Geoff Wasteneys for his kindness and support in providing all laboratory facilities for my cytoskeletal research at the Research School of Biological Sciences, Australian National University, Canberra. -
Diversity, Phylogeny, Characterization and Diagnostics of Root-Knot and Lesion Nematodes
Diversity, phylogeny, characterization and diagnostics of root-knot and lesion nematodes Toon Janssen Promotors: Prof. Dr. Wim Bert Prof. Dr. Gerrit Karssen Thesis submitted to obtain the degree of doctor in Sciences, Biology Proefschrift voorgelegd tot het bekomen van de graad van doctor in de Wetenschappen, Biologie 1 Table of contents Acknowledgements Chapter 1: general introduction 1 Organisms under study: plant-parasitic nematodes .................................................... 11 1.1 Pratylenchus: root-lesion nematodes ..................................................................................... 13 1.2 Meloidogyne: root-knot nematodes ....................................................................................... 15 2 Economic importance ..................................................................................................... 17 3 Identification of plant-parasitic nematodes .................................................................. 19 4 Variability in reproduction strategies and genome evolution ..................................... 22 5 Aims .................................................................................................................................. 24 6 Outline of this study ........................................................................................................ 25 Chapter 2: Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. 1 Abstract -
Description of Pratylenchus Gutierrezi N. Sp. (Nematoda: Pratylenchidae
Journal of Nematology 24(2):298-304. 1992. © The Society of Nematologists 1992. Description of Pratylenchus 9utierrezi n. sp. (Nematoda: Pratylenchidae) from Coffee in Costa Rica A. MORGAN GOLDEN, 1 ROGER L6PEZ CH., 2 AND HERNAN VILCHEZ R. 2 Abstract: A lesion nematode, Pratylenchu6 gutierrezi n. sp., collected from the roots of coffee in the Central Plateau of Costa Rica, is described and illustrated. Its relationships to Pratylenchusflakkensis, P. similis, and P. gibbicaudatus, the only other species of the genus having two head annules, males, or spermatheca with sperm, and an annulated tail terminus, is discussed. Other distinctive characters are its posterior vulva (mean of 80%); its prominently rounded stylet knobs, low head, and subcy- lindrical tail. SEM observations provide additional details of females and males, especially face views, which show for the first time sexual dimorphism. Key words: Coffea arabica, Costa Rica, lesion nematode, morphology, nematode, new species, Pra- tylenchus flakkensis, P. gibbicaudatus, P. gutierrezi n. sp., P. similis, scanning electron microscopy, SEM, taxonomy. Certain species of lesion nematodes to be a new Pratylenchus species, which is (Pratylenchus spp.) are important parasites described and illustrated herein. of coffee (Coffea spp.). In a recent excellent review of nematodes reported to occur on MATERIALS AND METHODS coffee (1), the following five Pratylenchus species were listed: P. brachyurus (Godfrey, Nematodes were extracted from in- 1929) Filipjev & Schuurmans Stekhoven, fected coffee roots by placing chopped or 1941; P. coffeae (Zimmermann, 1889) Fil- blenderized roots on filter paper over wa- ipjev & Schuurmans Stekhoven, 1941; P. ter in a Baermann funnel. Specimens were goodeyi Sher & Alien, 1953; P. -
Evaluation of Metabarcoding Primers for Analysis of Soil Nematode Communities
diversity Article Evaluation of Metabarcoding Primers for Analysis of Soil Nematode Communities Md. Maniruzzaman Sikder 1,2 , Mette Vestergård 1 , Rumakanta Sapkota 3 , Tina Kyndt 4 and Mogens Nicolaisen 1,* 1 Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark; [email protected] (M.M.S.); [email protected] (M.V.) 2 Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, 1342 Savar, Dhaka, Bangladesh 3 Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, 4000 Roskilde, Denmark; [email protected] 4 Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +45-24757668 Received: 5 August 2020; Accepted: 7 October 2020; Published: 9 October 2020 Abstract: While recent advances in next-generation sequencing technologies have accelerated research in microbial ecology, the application of high throughput approaches to study the ecology of nematodes remains unresolved due to several issues, e.g., whether to include an initial nematode extraction step or not, the lack of consensus on the best performing primer combination, and the absence of a curated nematode reference database. The objective of this method development study was to compare different primer sets to identify the most suitable primer set for the metabarcoding of nematodes without initial nematode extraction. We tested four primer sets for amplicon sequencing: JB3/JB5 (mitochondrial, I3-M11 partition of COI gene), SSU_04F/SSU_22R (18S rRNA, V1-V2 regions), and Nemf/18Sr2b (18S rRNA, V6-V8 regions) from earlier studies, as well as MMSF/MMSR (18S rRNA, V4-V5 regions), a newly developed primer set. -
Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review
diversity Review Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review Stela Lazarova 1,* , Danny Coyne 2 , Mayra G. Rodríguez 3 , Belkis Peteira 3 and Aurelio Ciancio 4,* 1 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Y. Gagarin Str., 1113 Sofia, Bulgaria 2 International Institute of Tropical Agriculture (IITA), Kasarani, Nairobi 30772-00100, Kenya; [email protected] 3 National Center for Plant and Animal Health (CENSA), P.O. Box 10, Mayabeque Province, San José de las Lajas 32700, Cuba; [email protected] (M.G.R.); [email protected] (B.P.) 4 Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, 70126 Bari, Italy * Correspondence: [email protected] (S.L.); [email protected] (A.C.); Tel.: +359-8865-32-609 (S.L.); +39-080-5929-221 (A.C.) Abstract: The analysis of the functional diversity of soil nematodes requires detailed knowledge on theoretical aspects of the biodiversity–ecosystem functioning relationship in natural and managed terrestrial ecosystems. Basic approaches applied are reviewed, focusing on the impact and value of soil nematode diversity in crop production and on the most consistent external drivers affecting their stability. The role of nematode trophic guilds in two intensively cultivated crops are examined in more detail, as representative of agriculture from tropical/subtropical (banana) and temperate (apple) climates. The multiple facets of nematode network analysis, for management of multitrophic interactions and restoration purposes, represent complex tasks that require the integration of different interdisciplinary expertise. Understanding the evolutionary basis of nematode diversity at the field Citation: Lazarova, S.; Coyne, D.; level, and its response to current changes, will help to explain the observed community shifts. -
7/22/21 Wall DIANA HARRISON WALL University Distinguished
7/22/21 Wall DIANA HARRISON WALL University Distinguished Professor, Director, School of GlobAl EnvironmentAl SustAinAbility and Professor, DepArtment of Biology Colorado State University, Fort Collins, CO 80523-1036 Phone: 970/491-2504 FAX: 970/492-4094 http://www.biology.colostate.edu/faculty/dwall email: [email protected] EDUCATION Ph.D. Plant Pathology. University of Kentucky, Lexington. B.A. Biology. University of Kentucky, Lexington. PROFESSIONAL EMPLOYMENT 2008- present Inaugural Director, School of Global Environmental Sustainability, Colorado State University (CSU), Fort Collins, CO 2006- present Professor, Department of Biology, CSU 1993-present Senior Research Scientist, Natural Resource Ecology Laboratory, CSU 1993-2006 Professor, Forest, Rangeland, and Watershed Stewardship Department, CSU 1993-2005 Director, Natural Resource Ecology Laboratory, CSU 2001 Interim Dean, College of Natural Resources, CSU 1993-2000 Associate Dean for Research, College of Natural Resources, CSU 1993 Professor, Dept. Nematology, University of California (UC), Riverside 1990-1993 Associate Professor and Associate Nematologist, Dept. Nematology, UC Riverside 1982-1990 Associate Research Nematologist, Dept. Nematology, UC Riverside 1988-1989 Associate Program Director, Ecology Program, National Science Foundation (NSF), Washington, DC 1986-1988 Associate Director, Drylands Research Institute, UC Riverside 1976-1982 Assistant Research Nematologist, Dept. Nematology, UC Riverside 1975-1976 Lecturer, Dept. Plant Science, California State University, -
Nematodes As Bioindicators of Soil Food Web
NEMATODES AS BIOINDICATORS OF SOIL FOOD WEB HEALTH IN AGROECOSYSTEMS: A CRITICAL ANALYSIS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By SHABEG SINGH BRIAR * * * * * The Ohio State University 2007 Dissertation Committee: Professor Parwinder S. Grewal, Adviser Professor Sally A. Miller, Adviser Professor Casey W. Hoy Professor Landon H. Rhodes Approved by Advisers ____________________ ____________________ Plant Pathology Graduate Program Abstract Nematodes occupy a central position in the soil food web occurring at multiple trophic levels and, therefore, have the potential to provide insights into condition of the soil food webs. I hypothesized that differences in management strategies may have differential effects on nematode community structure and soil properties. This hypothesis was tested in three different replicated experiments. In the first study a conventional farming system receiving synthetic inputs was compared with an organically managed system and in the second study four different farming strategies with and without compost application transitioning to organic management were compared for nematode communities and soil characteristics including soil bulk density, organic matter, microbial biomass and mineral-N. The third study was aimed at assessing the indicative value of various nematode measures in five habitats. Nematode food webs were analyzed for trophic group abundance and by calculating MI, and enrichment (EI), structure (SI) and channel indices (CI) based on weighted abundance of c-p (colonizer-persister) guilds. Bacterivore nematodes were more abundant in the organic than the conventional whereas the conventional system had higher population of the root lesion nematode, Pratylenchus crenatus compared with organic system. -
JOURNAL of NEMATOLOGY Intraspecific Variation in Phenotypic
JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2020-102 e2020-102 | Vol. 52 Intraspecific variation in phenotypic and phylogenetic features among Pratylenchus penetrans isolates from Wisconsin, USA Kanan Saikai and Ann E. MacGuidwin* Abstract Department of Plant Pathology, University of Wisconsin–Madison, Pratylenchus penetrans is a common and important agricultural pest 484 Russell Laboratories, 1630 in Wisconsin, a USA state with a diverse agriculture. We compared Linden Dr., Madison, WI, 53706. populations from around the state to each other and to data published for populations around the world to gain insight on the variability of *E-mail: [email protected] features important for identification of this cosmopolitan species. This paper was edited by Thirteen isolates from samples collected in soybean fields in ten Zafar Ahmad Handoo. Wisconsin counties were established in monoxenic cultures. Analysis of morphological features revealed the least variable feature for all Received for publication isolates collectively was vulva percentage. Features less variable within August 3, 2020. than among isolates were body width, lip region height, and stylet length. Some isolates showed only the smooth tail tip phenotype and others had a mix of smooth and annulated tail phenotypes. A suite of features provided sufficient pattern to group isolates into four clusters according to hierarchical agglomerative clustering and canonical discriminative analyses, but not with enough distinction to be useful for classification. Haplotype analysis based on the COI mitochondrial gene of the 13 cultured isolates, 39 Wisconsin field populations, and published sequences representing five additional USA states and six countries revealed 21 haplotypes, 15 of which occurred in Wisconsin.