The Founding of the London Mathematical Society in 1865
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Should the College Teach Analytic Geometry?*
1906.] THE TEACHING OF ANALYTIC GEOMETRY. 493 HOW SHOULD THE COLLEGE TEACH ANALYTIC GEOMETRY?* BY PROFESSOR HENRY S. WHITE. IN most American colleges, analytic geometry is an elective study. This fact, and the underlying causes of this fact, explain the lack of uniformity in content or method of teaching this subject in different institutions. Of many widely diver gent types of courses offered, a few are likely to survive, each because it is best fitted for some one purpose. It is here my purpose to advocate for the college of liberal arts a course that shall draw more largely from projective geometry than do most of our recent college text-books. This involves a restriction of the tendency, now quite prevalent, to devote much attention at the outset to miscellaneous graphs of purely statistical nature or of physical significance. As to the subject matter used in a first semester, one may formulate the question : Shall we teach in one semester a few facts about a wide variety of curves, or a wide variety of propositions about conies ? Of these alternatives the latter is to be preferred, for the educational value of a subject is found less in its extension than in its intension ; less in the multiplicity of its parts than in their unification through a few fundamental or climactic princi ples. Some teachers advocate the study of a wider variety of curves, either for the sake of correlation wTith physical sci ences, or in order to emphasize what they term the analytic method. As to the first, there is a very evident danger of dis sipating the student's energy ; while to the second it may be replied that there is no one general method which can be taught, but many particular and ingenious methods for special problems, whose resemblances may be understood only when the problems have been mastered. -
Greece Part 3
Greece Chapters 6 and 7: Archimedes and Apollonius SOME ANCIENT GREEK DISTINCTIONS Arithmetic Versus Logistic • Arithmetic referred to what we now call number theory –the study of properties of whole numbers, divisibility, primality, and such characteristics as perfect, amicable, abundant, and so forth. This use of the word lives on in the term higher arithmetic. • Logistic referred to what we now call arithmetic, that is, computation with whole numbers. Number Versus Magnitude • Numbers are discrete, cannot be broken down indefinitely because you eventually came to a “1.” In this sense, any two numbers are commensurable because they could both be measured with a 1, if nothing bigger worked. • Magnitudes are continuous, and can be broken down indefinitely. You can always bisect a line segment, for example. Thus two magnitudes didn’t necessarily have to be commensurable (although of course they could be.) Analysis Versus Synthesis • Synthesis refers to putting parts together to obtain a whole. • It is also used to describe the process of reasoning from the general to the particular, as in putting together axioms and theorems to prove a particular proposition. • Proofs of the kind Euclid wrote are referred to as synthetic. Analysis Versus Synthesis • Analysis refers to taking things apart to see how they work, or so you can understand them. • It is also used to describe reasoning from the particular to the general, as in studying a particular problem to come up with a solution. • This is one general meaning of analysis: a way of solving problems, of finding the answers. Analysis Versus Synthesis • A second meaning for analysis is specific to logic and theorem proving: beginning with what you wish to prove, and reasoning from that point in hopes you can arrive at the hypotheses, and then reversing the logical steps. -
On the Constructibility of the Axes of an Ellipsoid
ON THE CONSTRUCTIBILITY OF THE AXES OF AN ELLIPSOID. THE CONSTRUCTION OF CHASLES IN PRACTICE AKOS´ G.HORVATH´ AND ISTVAN´ PROK Dedicated to the memory of the teaching of Descriptive Geometry in BME Faculty of Mechanical Engineering Abstract. In this paper we discuss Chasles’s construction on ellipsoid to draw the semi-axes from a complete system of conjugate diameters. We prove that there is such situation when the construction is not planar (the needed points cannot be constructed with compasses and ruler) and give some others in which the construction is planar. 1. Introduction Who interested in conics know the construction of Rytz, namely a construction which determines the axes of an ellipse from a pair of conjugate diameters. Contrary to this very few mathematicians know that in the first half of the nineteens century Chasles (see in [1]) gave a construction in space to the analogous problem. The only reference which we found in English is also in an old book written by Salmon (see in [6]) on the analytic geometry of the three-dimensional space. In [2] the author extracted this analytic method to prove some results on the quadric of n-dimensional space. However, in practice this construction cannot be done using compasses and ruler only as we will see in present paper (Statement 4). On the other hand those steps of the construction which are planar constructions we can draw by descriptive geometry (see the figures in this article). 2. Basic properties The proof of the statements of this section can be found in [2]. -
11.-HYPERBOLA-THEORY.Pdf
12. HYPERBOLA 1. INTRODUCTION A hyperbola is the locus of a point which moves in the plane in such a way that Z the ratio of its distance from a fixed point in the same plane to its distance X’ P from a fixed line is always constant which is always greater than unity. M The fixed point is called the focus, the fixed line is called the directrix. The constant ratio is generally denoted by e and is known as the eccentricity of the Directrix hyperbola. A hyperbola can also be defined as the locus of a point such that S (focus) the absolute value of the difference of the distances from the two fixed points Z’ (foci) is constant. If S is the focus, ZZ′ is the directrix and P is any point on the hyperbola as show in figure. Figure 12.1 SP Then by definition, we have = e (e > 1). PM Note: The general equation of a conic can be taken as ax22+ 2hxy + by + 2gx + 2fy += c 0 This equation represents a hyperbola if it is non-degenerate (i.e. eq. cannot be written into two linear factors) ahg ∆ ≠ 0, h2 > ab. Where ∆=hb f gfc MASTERJEE CONCEPTS 1. The general equation ax22+ 2hxy + by + 2gx + 2fy += c 0 can be written in matrix form as ahgx ah x x y + 2gx + 2fy += c 0 and xy1hb f y = 0 hb y gfc1 Degeneracy condition depends on the determinant of the 3x3 matrix and the type of conic depends on the determinant of the 2x2 matrix. -
Attoclock Ultrafast Timing of Inversive Chord-Contact Dynamics
Attoclock Ultrafast Timing of Inversive Chord-Contact Dynamics - A Spectroscopic FFT-Glimpse onto Harmonic Analysis of Gravitational Waves - Walter J. Schempp Lehrstuhl f¨urMathematik I Universit¨atSiegen 57068 Siegen, Germany [email protected] According to Bohr's model of the hydrogen atom, it takes about 150 as for an electron in the ground state to orbit around the atomic core. Therefore, the attosecond (1 as = 10−18s) is the typical time scale for Bloch wave packet dynamics operating at the interface of quantum field theory and relativity theory. Attoclock spectroscopy is mathematically dominated by the spectral dual pair of spin groups with the commuting action of the stabilized symplectic spinor quantization (Mp(2; R); PSO(1; 3; R)) In the context of the Mp(2; R) × PSO(1; 3; R) module structure of the complex Schwartz space 2 2 ∼ S(R ⊕ R ) = S(C ⊕ C) of quantum field theory, the metaplectic Lie group Mp(2; R) is the ∼ two-sheeted covering group Sp(2f ; R) of the symplectic group Sp(2; R) = SL(2; R), where the ∼ special linear group SL(2; R) is a simple Lie group, and the two-cycle rotation group SO(2f ; R) = U(1e ; C) is a maximal compact subgroup of Mp(2; R). The two-fold hyperbolically, respectively ∼ elliptically ruled conformal Lie group SU(1; 1; C) is conjugate to SL(2; R) = Spin(1; 2; R) in the ∼ ∼ complexification SL(2; C) = Spin(1; 3; R); the projective Lorentz-M¨obiusgroup PSO(1; 3; R) = ∼ PSL(2; C) = SL(2; C)=(Z2:id) represents a semi-simple Lie group which is isomorphic to the "+ four-dimensional proper orthochroneous Lorentz group L4 of relativity theory. -
James Short and John Harrison: Personal Genius and Public Knowledge
Science Museum Group Journal James Short and John Harrison: personal genius and public knowledge Journal ISSN number: 2054-5770 This article was written by Jim Bennett 10-09-2014 Cite as 10.15180; 140209 Research James Short and John Harrison: personal genius and public knowledge Published in Autumn 2014, Issue 02 Article DOI: http://dx.doi.org/10.15180/140209 Abstract The instrument maker James Short, whose output was exclusively reflecting telescopes, was a sustained and consistent supporter of the clock and watch maker John Harrison. Short’s specialism placed his work in a tradition that derived from Newton’s Opticks, where the natural philosopher or mathematician might engage in the mechanical process of making mirrors, and a number of prominent astronomers followed this example in the eighteenth century. However, it proved difficult, if not impossible, to capture and communicate in words the manual skills they had acquired. Harrison’s biography has similarities with Short’s but, although he was well received and encouraged in London, unlike Short his mechanical practice did not place him at the centre of the astronomers’ agenda. Harrison became a small part of the growing public interest in experimental demonstration and display, and his timekeepers became objects of exhibition and resort. Lacking formal training, he himself came to be seen as a naive or intuitive mechanic, possessed of an individual and natural ‘genius’ for his work – an idea likely to be favoured by Short and his circle, and appropriate to Short’s intellectual roots in Edinburgh. The problem of capturing and communicating Harrison’s skill became acute once he was a serious candidate for a longitude award and was the burden of the specially appointed ‘Commissioners for the Discovery of Mr Harrison’s Watch’, whose members included Short. -
Back Matter (PDF)
[ 395 ] INDEX TO THE PHILOSOPHICAL TRANSACTIONS, S e r ie s A, V o l . 193. A. Abney (W. de W.). The Colour Sensations in Terms of Luminosity, 259. Atmospheric electricity—experiments in connection with precipitation (Wilson), 289. Bakebian Lectube. See Ewing and Kosenhain. C. Colour-blind, neutral points in spectra found by (Abney), 259. Colour sensations in terms of luminosity (Abney), 259. Condensation nuclei, positively and negatively charged ions as (W ilson), 289. Crystalline aggregates, plasticity in (Ewing and Rosenhain), 353. D. Dawson (H. M.). See Smithells, Dawson, and Wilson VOL. CXCIII.— Ao : S F 396 INDEX. Electric spark, constitution of (Schuster and Hemsalech), 189; potential—variation with pressure (Strutt), 377. Electrical conductivity of flames containing vaporised salts (Smithells, Dawson, and Wilson), 89. Electrocapillary phenomena, relation to potential differences between‘solutions (Smith), 47. Electrometer, capillary, theory of (Smith), 47. Ewing (J. A.) and Rosenhain (W.). The Crystalline Structure of Metals.—Bakerian Lecture, 353. F. Filon (L. N. G ). On the Resistance to Torsion of certain Forms of Shafting, with special Reference to the Effect of Keyways, 309. Flames, electrical conductivity of, and luminosity of salt vapours in (Smithells, Dawson, and Wilson), 89. G. Gravity balance, quartz thread (Threlfall and Pollock), 215. H. Hemsalech (Gustav). See Schuster and Hemsalech. Hertzian oscillator, vibrations in field of (Pearson and Lee), 159. Hysteresis in the relation of extension to stress exhibited by overstrained iron (Muir), 1. I. Ions, diffusion into gases, determination of coefficient (Townsend), 129. Ions positively and negatively charged, as condensation nuclei (Wilson), 289. Iron, recovery of, from overstrain (Muir), 1. -
A Survey of the Development of Geometry up to 1870
A Survey of the Development of Geometry up to 1870∗ Eldar Straume Department of mathematical sciences Norwegian University of Science and Technology (NTNU) N-9471 Trondheim, Norway September 4, 2014 Abstract This is an expository treatise on the development of the classical ge- ometries, starting from the origins of Euclidean geometry a few centuries BC up to around 1870. At this time classical differential geometry came to an end, and the Riemannian geometric approach started to be developed. Moreover, the discovery of non-Euclidean geometry, about 40 years earlier, had just been demonstrated to be a ”true” geometry on the same footing as Euclidean geometry. These were radically new ideas, but henceforth the importance of the topic became gradually realized. As a consequence, the conventional attitude to the basic geometric questions, including the possible geometric structure of the physical space, was challenged, and foundational problems became an important issue during the following decades. Such a basic understanding of the status of geometry around 1870 enables one to study the geometric works of Sophus Lie and Felix Klein at the beginning of their career in the appropriate historical perspective. arXiv:1409.1140v1 [math.HO] 3 Sep 2014 Contents 1 Euclideangeometry,thesourceofallgeometries 3 1.1 Earlygeometryandtheroleoftherealnumbers . 4 1.1.1 Geometric algebra, constructivism, and the real numbers 7 1.1.2 Thedownfalloftheancientgeometry . 8 ∗This monograph was written up in 2008-2009, as a preparation to the further study of the early geometrical works of Sophus Lie and Felix Klein at the beginning of their career around 1870. The author apologizes for possible historiographic shortcomings, errors, and perhaps lack of updated information on certain topics from the history of mathematics. -
The Project Gutenberg Ebook #43006: Space–Time–Matter
The Project Gutenberg EBook of Space--Time--Matter, by Hermann Weyl This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: Space--Time--Matter Author: Hermann Weyl Translator: Henry L. Brose Release Date: June 21, 2013 [EBook #43006] Language: English Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK SPACE--TIME--MATTER *** Produced by Andrew D. Hwang, using scanned images and OCR text generously provided by the University of Toronto Gerstein Library through the Internet Archive. transcriber’s note The camera-quality files for this public-domain ebook may be downloaded gratis at www.gutenberg.org/ebooks/43006. This ebook was produced using scanned images and OCR text generously provided by the University of Toronto Gerstein Library through the Internet Archive. Typographical corrections, uniformization of punctuation, and minor presentational changes have been effected without comment. This PDF file is optimized for screen viewing, but may be recompiled for printing. Please consult the preamble of the LATEX source file for instructions and other particulars. SPACE—TIME—MATTER BY HERMANN WEYL TRANSLATED FROM THE GERMAN BY HENRY L. BROSE WITH FIFTEEN DIAGRAMS METHUEN & CO. LTD. 36 ESSEX STREET W.C. LONDON First Published in 1922 FROM THE AUTHOR’S PREFACE TO THE FIRST EDITION Einstein’s Theory of Relativity has advanced our ideas of the structure of the cosmos a step further. -
Lettere Scritte Da Thomas Archer Hirst a Luigi Cremona Dal 1865 Al 1892 Conservate Presso L’Istituto Mazziniano Di Genova
LETTERE SCRITTE DA THOMAS ARCHER HIRST A LUIGI CREMONA DAL 1865 AL 1892 CONSERVATE PRESSO L’ISTITUTO MAZZINIANO DI GENOVA a cura di Giovanna Dimitolo www.luigi-cremona.it – luglio 2016 Indice Presentazione della corrispondenza 3 Criteri di edizione 3 Necrologio di Thomas Archer Hirst 4 Traduzione del necrologio di Thomas Archer Hirst 9 Il carteggio 14 Tabella – i dati delle lettere 83 Indice dei nomi citati nelle lettere 86 Bibliografia 92 2 Immagine di copertina: Thomas Archer Hirst (http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Hirst.html) www.luigi-cremona.it – luglio 2016 Presentazione della corrispondenza La corrispondenza qui trascritta è composta da 84 lettere di Thomas Archer Hirst a Luigi Cremona e da 2 di Cremona a Hirst (una delle quali è probabilmente una bozza). La corrispondenza tra Hirst e Cremona racconta l’evoluzione di un profondo rapporto di amicizia tra i due matematici, della viva passione intellettuale che li accomuna e dell’ammirazione di Hirst per il collega italiano. Se nelle prime lettere vi sono molti richiami alle questioni matematiche, alle ricerche, alle pubblicazioni sulle riviste di matematiche, insieme a un costante rammarico per il poco tempo che Hirst può dedicare allo studio e un amichevole rimbrotto per gli incarichi politici di Cremona che lo distolgono dalla ricerca, man mano che passano gli anni, la corrispondenza diventa sempre più intima, vi compaiono le preoccupazioni per la salute declinante di Hirst, il dolore per la scomparsa prematura di persone care (il fratello e la prima moglie di Cremona, la nipote di Hirst), le vite degli amici comuni, i racconti dei viaggi e il desiderio sempre vivo di incontrarsi durante le vacanze estive o in occasione di conferenze internazionali. -
Full History of The
London Mathematical Society Historical Overview Taken from the Introduction to The Book of Presidents 1865-1965 ADRIAN RICE The London Mathematical Society (LMS) is the primary learned society for mathematics in Britain today. It was founded in 1865 for the promotion and extension of mathematical knowledge, and in the 140 years since its foundation this objective has remained unaltered. However, the ways in which it has been attained, and indeed the Society itself, have changed considerably during this time. In the beginning, there were just nine meetings per year, twenty-seven members and a handful of papers printed in the slim first volume of the ’s Society Proceedings. Today, with a worldwide membership in excess of two thousand, the LMS is responsible for numerous books, journals, monographs, lecture notes, and a whole range of meetings, conferences, lectures and symposia. The Society continues to uphold its original remit, but via an increasing variety of activities, ranging from advising the government on higher education, to providing financial support for a wide variety of mathematically-related pursuits. At the head of the Society there is, and always has been, a President, who is elected annually and who may serve up to two years consecutively. As befits a prestigious national organization, these Presidents have often been famous mathematicians, well known and respected by the mathematical community of their day; they include Cayley and Sylvester, Kelvin and Rayleigh, Hardy and Littlewood, Atiyah and Zeeman.1 But among the names on the presidential role of honour are many people who are perhaps not quite so famous today, ’t have theorems named after them, and who are largely forgotten by the majority of who don modern-day mathematicians. -
Back Matter (PDF)
INDEX TO THE PHILOSOPHICAL TRANSACTIONS (10 FOR THE YEAR 1895. A. Abbott (E. C.) (see Gadow and A bbott). B. B lackman (F. F.). Experimental Researches on Vegetable Assimilation and Respiration.—No. I. On a New Method for Investigating the Carbonic Acid Exchanges of Plants, 485. -No. II. On the Paths of Gaseous Exchange between Aerial Leaves and the Atmosphere, 503. B ourne (G. G.). On the Structure and Affinities of P allas. With some Observa tions on the Structure of Xenia and Heteroxenia,455. Boice (K.). A Contribution to the Study of Descending Degenerations in the Brain and Spinal Cord, and on the Seat of Origin and Paths of Conduction of the Fits in Absinthe Epilepsy, 321. C. Catamites, the roots of, 683 (see W illiamson and Scott). CoebeHum, degenerations consequent on experimental lesions of the, 633 (sec R ussell). Coal-measures, further observations on the fossil plants of the, 683, 703 (see Williamson and Scott). C celomic fluid of Lumbricus terrestrisin relation to a protective mechanism, on the, 383 (see Kenu). Cynodontia from the Karroo llocks, on the skeleton in new, 59 (see S eeley). D. D ixon (H. H.) and J oey (J .). On the Ascent of Sap, 563. MDCCCXCV.—B. 5 X 878 INDEX. E. Echinoderm larva}, the effect of environment on the development of, 577 (see V ernon). Evolution of the vertebral column of fishes, on the, 163 (see Gadow and A bbott). F. Fishes, on the evolution of the vertebral column of, 163 (see Gadow and A bbott). Foraminifera,contributions to the life-history of the, 401 (see L ister).