The Respiratory System - 4 Pulmonary Function Tests and Alveolar Ventilation

Total Page:16

File Type:pdf, Size:1020Kb

The Respiratory System - 4 Pulmonary Function Tests and Alveolar Ventilation The Respiratory System - 4 Pulmonary function tests and alveolar ventilation Jennifer Carbrey Ph.D. Department of Cell Biology image by OCAL, http://www.clker.com/clipart-26501.html, public domain Respiratory System 1. Anatomy and mechanics 2. Lung volumes and compliance 3. Pressure changes and resistance 4. Pulmonary function tests and alveolar ventilation 5. Oxygen transport 6. CO2 transport and V/Q mismatch 7. Regulation of breathing 8. Exercise and hypoxia Pulmonary Function Tests (FVC and FEV1) • Forced Vital Capacity = maximal volume of air exhaled after a maximal inspiration. • Forced expiratory volume in 1 second (FEV1) = individual takes a maximal inspiration and then exhales as fast as possible. The important value is the fraction of the total forced vital capacity expired in 1 second. Normal individuals expire approx. 80% of their vital capacity in this time. • Pulmonary function tests differentiate: Obstructive lung disease: FEV1/FVC < 80% normal forced vital capacity (FVC). Restrictive lung disease: normal FEV1/FVC = 80% reduced forced vital capacity (FVC). Pulmonary Function Test 8 7 X 6 5 VOLUME 4(LITERS) Y 3 2 Z 1 0 2 4 6 8 10 TIME (SECONDS) Y- normal X – obstructive Z - restrictive Alveolar Ventilation 150 mL 450 ml 300 mL conducting conducting 150 mL volume 150 mL volume 150 mL 300 mL respiratory respiratory volume 3L volume 3L Inspired air is diluted by the air remaining in the lungs from the previous breathing cycle. Alveolar Ventilation Resp. rate Tidal volume Minute Vent. Alveolar Vent. 50 100 5000 0 10 500 5000 3500 5 1000 5000 4250 Minute Ventilation (VE) = Tidal Volume (TV) x Respiratory Rate (f) Anatomic Dead Space (VD) = volume in conducting airways (approx. 150 mL); no exchange of gas with blood. (physiological dead space = anatomic and alveolar dead spaces) **Alveolar Ventilation (VA) = [Tidal Volume (TV) – dead space (VD)] x f Gas Partial Pressures • Ambient air is a gas mixture of mostly nitrogen (79%) and oxygen (21%), carbon dioxide is low (0.04%). • Gas mixtures obey Dalton’s Law which states: sum of the partial pressures of gases = total pressure. • PO2= FiO2 x Patm = (0.21 x 760) = 160 mmHg • Inspired gas is warmed and humidified: Water vapor pressure = 47 mmHg therefore, PO2 of inspired air is 0.21 x (760 - 47) = 150 mmHg Alveolar Gas Pressure Atmosphere PO2 = 160 mmHg PCO2 = 0.3 mmHg Alveoli PAO2 = 105 mmHg PACO2 = 40 mmHg Arteries PaO2 = 100 mmHg PaCO2 = 40 mmHg Veins PvO2 = 40 mmHg PvCO2 = 46 mmHg **Alveolar gas pressures determine systemic arterial blood gas pressures. Key Concepts • Ventilation is the process of moving air into and out of the lungs. Minute ventilation is the total volume of air moved per minute. Alveolar ventilation is the volume of fresh air that reaches the alveoli per minute. • Dead space volume represents the volume in the conducting zone and does not participate in gas exchange. Physiologic dead space includes the anatomical dead space and areas of the lung that are either not ventilated or not perfused. .
Recommended publications
  • Ventilation Patterns Influence Airway Secretion Movement Marcia S Volpe, Alexander B Adams MPH RRT FAARC, Marcelo B P Amato MD, and John J Marini MD
    Original Contributions Ventilation Patterns Influence Airway Secretion Movement Marcia S Volpe, Alexander B Adams MPH RRT FAARC, Marcelo B P Amato MD, and John J Marini MD BACKGROUND: Retention of airway secretions is a common and serious problem in ventilated patients. Treating or avoiding secretion retention with mucus thinning, patient-positioning, airway suctioning, or chest or airway vibration or percussion may provide short-term benefit. METHODS: In a series of laboratory experiments with a test-lung system we examined the role of ventilator settings and lung-impedance on secretion retention and expulsion. Known quantities of a synthetic dye-stained mucus simulant with clinically relevant properties were injected into a transparent tube the diameter of an adult trachea and exposed to various mechanical-ventilation conditions. Mucus- simulant movement was measured with a photodensitometric technique and examined with image- analysis software. We tested 2 mucus-simulant viscosities and various peak flows, inspiratory/ expiratory flow ratios, intrinsic positive end-expiratory pressures, ventilation waveforms, and impedance values. RESULTS: Ventilator settings that produced flow bias had a major effect on mucus movement. Expiratory flow bias associated with intrinsic positive end-expiratory pressure generated by elevated minute ventilation moved mucus toward the airway opening, whereas in- trinsic positive end-expiratory pressure generated by increased airway resistance moved the mucus toward the lungs. Inter-lung transfer of mucus simulant occurred rapidly across the “carinal divider” between interconnected test lungs set to radically different compliances; the mucus moved out of the low-compliance lung and into the high-compliance lung. CONCLUSIONS: The move- ment of mucus simulant was influenced by the ventilation pattern and lung impedance.
    [Show full text]
  • COVID-19 Pneumonia: Different Respiratory Treatment for Different Phenotypes? L
    Intensive Care Medicine EDITORIAL Un-edited accepted proof COVID-19 pneumonia: different respiratory treatment for different phenotypes? L. Gattinoni1, D. Chiumello2, P. Caironi3, M. Busana1, F. Romitti1, L. Brazzi4, L. Camporota5 Affiliations: 1Department of Anesthesiology and Intensive Care, Medical University of GöttinGen 4Department of Anesthesia, Intensive Care and Emergency - 'Città della Salute e della Scienza’ Hospital - Turin 5Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences - London Corresponding author: Luciano Gattinoni Department of Anesthesiology and Intensive Care, Medical University of Göttingen, Robert-Koch Straße 40, 37075, Göttingen, Germany Conflict of interests: The authors have no conflict of interest to disclose NOTE: This article is the pre-proof author’s accepted version. The final edited version will appear soon on the website of the journal Intensive Care Medicine with the following DOI number: DOI 10.1007/s00134-020-06033-2 1 Gattinoni L. et al. COVID-19 pneumonia: different respiratory treatment for different phenotypes? (2020) Intensive Care Medicine; DOI: 10.1007/s00134-020-06033-2 Intensive Care Medicine EDITORIAL Un-edited accepted proof The Surviving Sepsis CampaiGn panel (ahead of print, DOI: 10.1007/s00134-020-06022-5) recently recommended that “mechanically ventilated patients with COVID-19 should be managed similarly to other patients with acute respiratory failure in the ICU.” Yet, COVID-19 pneumonia [1], despite falling in most of the circumstances under the Berlin definition of ARDS [2], is a specific disease, whose distinctive features are severe hypoxemia often associated with near normal respiratory system compliance (more than 50% of the 150 patients measured by the authors and further confirmed by several colleagues in Northern Italy).
    [Show full text]
  • Mechanisms of Pulmonary Gas Exchange Abnormalities During Experimental Group B Streptococcal Infusion
    003 I -3998/85/1909-0922$02.00/0 PEDIATRIC RESEARCH Vol. 19, No. 9, I985 Copyright 0 1985 International Pediatric Research Foundation, Inc. Printed in (I.S. A. Mechanisms of Pulmonary Gas Exchange Abnormalities during Experimental Group B Streptococcal Infusion GREGORY K. SORENSEN, GREGORY J. REDDING, AND WILLIAM E. TRUOG ABSTRACT. Group B streptococcal sepsis in newborns obtained from GBS (5, 6). Arterial Poz fell by 9 torr in association produces pulmonary arterial hypertension and hypoxemia. with the increase in pulmonary arterial pressure (4). In contrast, The purpose of this study was to investigate the mecha- the neonatal piglet infused with GBS demonstrated both pul- nisms by which hypoxemia occurs. Ten anesthetized, ven- monary arterial hypertension and profound arterial hypoxemia tilated piglets were infused with 2 x lo9 colony forming (7). These results suggest that the neonatal pulmonary vascula- unitstkg of Group B streptococci over a 30-min period. ture may respond to bacteremia differently from that of adults. Pulmonary arterial pressure rose from 14 ? 2.8 to 38 ? The relationship between Ppa and the matching of alveolar 6.7 torr after 20 min of the bacterial infusion (p< 0.01). ventilation and pulmonary perfusion, a major determinant of During the same period, cardiac output fell from 295 to arterial oxygenation during room air breathing (8), has not been 184 ml/kg/min (p< 0.02). Arterial Po2 declined from 97 studied in newborns. The predictable rise in Ppa with an infusion 2 7 to 56 2 11 torr (p< 0.02) and mixed venous Po2 fell of group B streptococcus offers an opportunity to delineate the from 39.6 2 5 to 28 2 8 torr (p< 0.05).
    [Show full text]
  • Oxygenation and Oxygen Therapy
    Rules on Oxygen Therapy: Physiology: 1. PO2, SaO2, CaO2 are all related but different. 2. PaO2 is a sensitive and non-specific indicator of the lungs’ ability to exchange gases with the atmosphere. 3. FIO2 is the same at all altitudes 4. Normal PaO2 decreases with age 5. The body does not store oxygen Therapy & Diagnosis: 1. Supplemental O2 is an FIO2 > 21% and is a drug. 2. A reduced PaO2 is a non-specific finding. 3. A normal PaO2 and alveolar-arterial PO2 difference (A-a gradient) do NOT rule out pulmonary embolism. 4. High FIO2 doesn’t affect COPD hypoxic drive 5. A given liter flow rate of nasal O2 does not equal any specific FIO2. 6. Face masks cannot deliver 100% oxygen unless there is a tight seal. 7. No need to humidify if flow of 4 LPM or less Indications for Oxygen Therapy: 1. Hypoxemia 2. Increased work of breathing 3. Increased myocardial work 4. Pulmonary hypertension Delivery Devices: 1. Nasal Cannula a. 1 – 6 LPM b. FIO2 0.24 – 0.44 (approx 4% per liter flow) c. FIO2 decreases as Ve increases 2. Simple Mask a. 5 – 8 LPM b. FIO2 0.35 – 0.55 (approx 4% per liter flow) c. Minimum flow 5 LPM to flush CO2 from mask 3. Venturi Mask a. Variable LPM b. FIO2 0.24 – 0.50 c. Flow and corresponding FIO2 varies by manufacturer 4. Partial Rebreather a. 6 – 10 LPM b. FIO2 0.50 – 0.70 c. Flow must be sufficient to keep reservoir bag from deflating upon inspiration 5.
    [Show full text]
  • The Basics of Ventilator Management Overview How We Breath
    3/23/2019 The Basics of Ventilator Management What are we really trying to do here Peter Lutz, MD Pulmonary and Critical Care Medicine Pulmonary Associates, Mobile, Al Overview • Approach to the physiology of the lung and physiological goals of mechanical Ventilation • Different Modes of Mechanical Ventilation and when they are indicated • Ventilator complications • Ventilator Weaning • Some basic trouble shooting How we breath http://people.eku.edu/ritchisong/301notes6.htm 1 3/23/2019 How a Mechanical Ventilator works • The First Ventilator- the Iron Lung – Worked by creating negative atmospheric pressure around the lung, simulating the negative pressure of inspiration How a Mechanical Ventilator works • The Modern Ventilator – The invention of the demand oxygen valve for WWII pilots if the basis for the modern ventilator https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRI5v-veZULMbt92bfDmUUW32SrC6ywX1vSzY1xr40aHMdsCVyg6g How a Mechanical Ventilator works • The Modern Ventilator – How it works Inspiratory Limb Flow Sensor Ventilator Pressure Sensor Expiratory Limb 2 3/23/2019 So what are the goals of Mechanical Ventilation • What are we trying to control – Oxygenation • Amount of oxygen we are getting into the blood – Ventilation • The movement of air into and out of the lungs, mainly effects the pH and level of CO 2 in the blood stream Lab Oxygenation Ventilation Pulse Ox Saturation >88-90% Arterial Blood Gas(ABG) Po 2(75-100 mmHg) pCO 2(40mmHg) pH(~7.4) Oxygenation How do we effect Oxygenation • Fraction of Inspired Oxygen (FIO 2) – Percentage of the gas mixture given to the patient that is Oxygen • Room air is 21% • On the vent ranges from 30-100% • So if the patient’s blood oxygen levels are low, we can just increase the amount of oxygen we give them 3 3/23/2019 How do we effect Oxygenation • Positive End Expiratory Pressure (PEEP) – positive pressure that will remains in the airways at the end of the respiratory cycle (end of exhalation) that is greater than the atmospheric pressure in mechanically ventilated patients.
    [Show full text]
  • Neonatal Ventilation
    Neonatal Ventilation Edward G. Shepherd History • Bourgeois, 1609: – “…give a small spoonfulof pure wine into the neonate’s mouth, …[to] help the infant to regain its spirits when being agitated by the labors, which sometimes make it so weak that it seems more dead than alive.” • Mauriceau, mid-1600’s: – “[The baby] should be rested on a warmed bed and brought near the fire, where the midwife having taken some wine into her mouth shall blow it into the infant’s mouth, which can be repeated several times if necessary … She should warm all the parts of the body to recall the blood and the spirits which retired during the weakness and endangered suffocation.” Neonatology 2008;94:144–149 History • Levret, 1766: – “There is one more means which sometimes works as by enchantment, it is to apply one’s mouth on that of the infant and to blow into it, taking care to pinch the tip of the nose simultaneously. This method is so effective that it is really rare that others are useful if it fails” Neonatology 2008;94:144–149 History • First ventilators: – Hunter, Chaussier, and Gorcy in the mid 1700’s • Bellows or gas attached to masks or tubes • 1800’s – Discovery of the breathing center – Determination of survival time in asphyxiated animals – First attempts at electrical resuscitation Neonatology 2008;94:144–149 History • By mid 1800’s ventilation fell out of favor – Fears of pnuemothorax, infection, and sudden death – Various positional techniques were developed • “Schultze swingings” • Arm extension and then chest compression – Stayed in practice
    [Show full text]
  • Respiratory Therapy Pocket Reference
    Pulmonary Physiology Volume Control Pressure Control Pressure Support Respiratory Therapy “AC” Assist Control; AC-VC, ~CMV (controlled mandatory Measure of static lung compliance. If in AC-VC, perform a.k.a. a.k.a. AC-PC; Assist Control Pressure Control; ~CMV-PC a.k.a PS (~BiPAP). Spontaneous: Pressure-present inspiratory pause (when there is no flow, there is no effect ventilation = all modes with RR and fixed Ti) PPlateau of Resistance; Pplat@Palv); or set Pause Time ~0.5s; RR, Pinsp, PEEP, FiO2, Flow Trigger, rise time, I:E (set Pocket Reference RR, Vt, PEEP, FiO2, Flow Trigger, Flow pattern, I:E (either Settings Pinsp, PEEP, FiO2, Flow Trigger, Rise time Target: < 30, Optimal: ~ 25 Settings directly or by inspiratory time Ti) Settings directly or via peak flow, Ti settings) Decreasing Ramp (potentially more physiologic) PIP: Total inspiratory work by vent; Reflects resistance & - Decreasing Ramp (potentially more physiologic) Card design by Respiratory care providers from: Square wave/constant vs Decreasing Ramp (potentially Flow Determined by: 1) PS level, 2) R, Rise Time (­ rise time ® PPeak inspiratory compliance; Normal ~20 cmH20 (@8cc/kg and adult ETT); - Peak Flow determined by 1) Pinsp level, 2) R, 3)Ti (shorter Flow more physiologic) ¯ peak flow and 3.) pt effort Resp failure 30-40 (low VT use); Concern if >40. Flow = more flow), 4) pressure rise time (¯ Rise Time ® ­ Peak v 0.9 Flow), 5) pt effort (­ effort ® ­ peak flow) Pplat-PEEP: tidal stress (lung injury & mortality risk). Target Determined by set RR, Vt, & Flow Pattern (i.e. for any set I:E Determined by patient effort & flow termination (“Esens” – PDriving peak flow, Square (¯ Ti) & Ramp (­ Ti); Normal Ti: 1-1.5s; see below “Breath Termination”) < 15 cmH2O.
    [Show full text]
  • ASV Quick Guide
    ASV Quick Guide Hamilton Medical | ASV 1 ! Warning This Quick Guide is based on evaluations by clinicians within and outside Hamilton Medical and is intended to serve as an example. This Quick Guide does not replace either the official operator’s manual of your ventilator or the clinical judgment of a physician. This Quick Guide should not - on its own - be used for clinical decision making. 2 Table of contents 1. Adaptive Support Ventilation (ASV) basics 4 2. Preparing for ventilation with ASV 6 3. Settings 8 4. ASV graph 12 5. Working principles of ASV 14 6. Monitoring ASV 16 7. Adjusting ASV 18 8. Weaning in ASV 20 Appendix 22 Lung-protective rules 22 Understanding the ASV safety box 24 Glossary 26 Hamilton Medical | ASV 3 1. Adaptive Support Ventilation (ASV) basics 1 ... 2 CO elimination ... 2 3 Oxygenation Conventional ventilation ASV 4 ASV focuses on simplification of mechanical ventilation. This means: 1 Eliminating separate modes for passive and active patients 2 Reducing controls relevant for CO2 elimination to just %MinVol 3 Adding direct access to controls relevant for oxygenation (PEEP/CPAP and Oxygen) ASV maintains an operator-preset minimum minute volume independent of the patient‘s activity. The breathing pattern (tidal volume, rate, and inspiratory time) is calculated, based on the assump- tion that the optimal breathing pattern results in: a The least work of breathing b The least amount of ventilator-applied inspiratory pressure A lung-protection strategy ensures ASV’s safety. ASV attempts to guide the patient using a favorable breathing pattern and avoids potentially detrimental patterns such as rapid shallow breathing, excessive dead space ventilation, intrinsic PEEP, barotrauma, and volutrauma.
    [Show full text]
  • Influence of a Six-Week Swimming Training with Added Respiratory
    International Journal of Environmental Research and Public Health Article Influence of a Six-Week Swimming Training with Added Respiratory Dead Space on Respiratory Muscle Strength and Pulmonary Function in Recreational Swimmers Stefan Szczepan 1,* , Natalia Danek 2 , Kamil Michalik 2 , Zofia Wróblewska 3 and Krystyna Zato ´n 1 1 Department of Swimming, Faculty of Physical Education, University School of Physical Education in Wroclaw, Ignacego Jana Paderewskiego 35, Swimming Pool, 51-612 Wroclaw, Poland; [email protected] 2 Department of Physiology and Biochemistry, Faculty of Physical Education, University School of Physical Education in Wroclaw, Ignacego Jana Paderewskiego 35, P-3 Building, 51-612 Wroclaw, Poland; [email protected] (N.D.); [email protected] (K.M.) 3 Faculty of Pure and Applied Mathematics, Wroclaw University of Science and Technology, Zygmunta Janiszewskiego 14a, C-11 Building, 50-372 Wroclaw, Poland; zofi[email protected] * Correspondence: [email protected]; Tel.: +48-713-473-404 Received: 5 July 2020; Accepted: 6 August 2020; Published: 8 August 2020 Abstract: The avoidance of respiratory muscle fatigue and its repercussions may play an important role in swimmers’ health and physical performance. Thus, the aim of this study was to investigate whether a six-week moderate-intensity swimming intervention with added respiratory dead space (ARDS) resulted in any differences in respiratory muscle variables and pulmonary function in recreational swimmers. A sample of 22 individuals (recreational swimmers) were divided into an experimental (E) and a control (C) group, observed for maximal oxygen uptake (VO2max). The intervention involved 50 min of front crawl swimming performed at 60% VO2max twice weekly for six weeks.
    [Show full text]
  • Calculation of Dead Space - Relevance in Critical Care
    CALCULATION OF DEAD SPACE - RELEVANCE IN CRITICAL CARE Kodati Rakesh Dead space • Dead space calculation • CO2 measurement • Effect of mechanical ventilation • ARDS • Recruitment & proning • Pulmonary embolism • Weaning DEAD SPACE CALCULATION Dead space • Volume of the airways and lungs that does not participate in gas exchange • Anatomical dead space – Volume of conducting airways – Upper airways, larynx, trachea, bronchi and bronchioles – Does not include respiratory bronchioles and alveoli • Physiologic dead space (VDphys) – Total volume of the lungs that does not participate in gas exchange – Includes anatomic dead space plus a functional dead space in the alveoli Dead space Dead space Difference b/w expected & actual composition of the effluent media Basis for calculating dead space and shunt Dead space Rileys 3 compartment model Alveoli groups according to V/Q ratios A – normal perfusion, no ventilation (shunt V/Q of 0) B – normal perfusion & ventilation (shunt V/Q of 1) C – normal ventilation, no perfusion (shunt V/Q of infinity) Physiological dead space (VD phys) Airway dead space (VD aw) Alveolar dead space (VD alv) Riley RL et al, J App Physiol 1949 Dead space Bohrs dead space • Danish physiologist Christian Bohr in 1891 • Mass balance calculation dilution of the expired gas by the inspiratory gas filling the conductive airways FACO2 - mean alveolar CO2 concentration sample of gas collected late in exhalation FECO2 fractional CO2 concentration in the total mixed exhaled breath H. Thomas Robertson, Eur Respir J 2015; 45 Tusman G et al, Anesth Analg 2012 Bohrs dead space • Fractions or partial pressures of CO2 are used interchangeably • FACO2 is the mean value of CO2 within the alveolar compartment • FE CO2 is calculated using formula VCO2/VT x (Pb – PH2O) H.
    [Show full text]
  • Dead Space and CO2 Elimination Related to Pattern of Inspiratory Gas
    Aboab et al. Critical Care 2012, 16:R39 http://ccforum.com/content/16/2/R39 RESEARCH Open Access Dead space and CO2 elimination related to pattern of inspiratory gas delivery in ARDS patients Jerome Aboab1, Lisbet Niklason2, Leif Uttman2, Laurent Brochard1,3 and Björn Jonson1,2* Abstract Introduction: The inspiratory flow pattern influences CO2 elimination by affecting the time the tidal volume remains resident in alveoli. This time is expressed in terms of mean distribution time (MDT), which is the time available for distribution and diffusion of inspired tidal gas within resident alveolar gas. In healthy and sick pigs, abrupt cessation of inspiratory flow (that is, high end-inspiratory flow (EIF)), enhances CO2 elimination. The objective was to test the hypothesis that effects of inspiratory gas delivery pattern on CO2 exchange can be comprehensively described from the effects of MDT and EIF in patients with acute respiratory distress syndrome (ARDS). Methods: In a medical intensive care unit of a university hospital, ARDS patients were studied during sequences of breaths with varying inspiratory flow patterns. Patients were ventilated with a computer-controlled ventilator allowing single breaths to be modified with respect to durations of inspiratory flow and postinspiratory pause (TP), as well as the shape of the inspiratory flow wave. From the single-breath test for CO2, the volume of CO2 eliminated by each tidal breath was derived. Results: A long MDT, caused primarily by a long TP, led to importantly enhanced CO2 elimination. So did a high EIF. Effects of MDT and EIF were comprehensively described with a simple equation.
    [Show full text]
  • 1. Ventilator Management
    1. Ventilator Management Indications for Mechanical Ventilation Apnea Ventilatory insufficiency Increase in PaCo2 and decrease in ph Refractory hypoxemia Complications Associated with Mechanical Ventilation Hypotension Increased intrathoracic pressure decreases venous return to the heart Increased risk of ventilator associated pneumonia (VAP) Keep HOB at > 30 Maintain frequent, good oral care Problems with endotracheal tube Mucous plugging Tube my become dislodged Kinking or biting of tube Cuff rupture Pneumothorax Initial Ventilator Settings—parameters to be clarified Type of ventilation Mode of ventilation Tidal volume or peak inspiratory setting Respiratory rate FiO2 PEEP (Positive End Expiratory Pressure) Types of Ventilation Volume Cycled Ventilation(VCV) A pre-selected tidal volume is delivered at the pressure required. Tidal volume guaranteed. Peak inspiratory pressure will vary depending on airway resistance and lung compliance. Pressure Control Time-Cycled Ventilation (PCV) Operator selects inspiratory pressure and inspiratory time Breath is terminated when inspiratory time is reached Inspiratory pressure is guaranteed; tidal volume is dependant on airway resistance and lung compliance Pressure Support (PSV) Requires intact respiratory drive Operator selects inspiratory pressure Patient initiates breath, pressure quickly rises to set pressure and is maintained throughout the inspiratory phase Tidal volume determined by lung compliance and inspiratory effort Modes of Ventilation Assist/Control
    [Show full text]