Mechanical Properties of Particles from the Surface of Asteroid 25143 Itokawa Safoura Tanbakouei1,2, Josep M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(101955) Bennu from OSIRIS-Rex Imaging and Thermal Analysis
ARTICLES https://doi.org/10.1038/s41550-019-0731-1 Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis D. N. DellaGiustina 1,26*, J. P. Emery 2,26*, D. R. Golish1, B. Rozitis3, C. A. Bennett1, K. N. Burke 1, R.-L. Ballouz 1, K. J. Becker 1, P. R. Christensen4, C. Y. Drouet d’Aubigny1, V. E. Hamilton 5, D. C. Reuter6, B. Rizk 1, A. A. Simon6, E. Asphaug1, J. L. Bandfield 7, O. S. Barnouin 8, M. A. Barucci 9, E. B. Bierhaus10, R. P. Binzel11, W. F. Bottke5, N. E. Bowles12, H. Campins13, B. C. Clark7, B. E. Clark14, H. C. Connolly Jr. 15, M. G. Daly 16, J. de Leon 17, M. Delbo’18, J. D. P. Deshapriya9, C. M. Elder19, S. Fornasier9, C. W. Hergenrother1, E. S. Howell1, E. R. Jawin20, H. H. Kaplan5, T. R. Kareta 1, L. Le Corre 21, J.-Y. Li21, J. Licandro17, L. F. Lim6, P. Michel 18, J. Molaro21, M. C. Nolan 1, M. Pajola 22, M. Popescu 17, J. L. Rizos Garcia 17, A. Ryan18, S. R. Schwartz 1, N. Shultz1, M. A. Siegler21, P. H. Smith1, E. Tatsumi23, C. A. Thomas24, K. J. Walsh 5, C. W. V. Wolner1, X.-D. Zou21, D. S. Lauretta 1 and The OSIRIS-REx Team25 Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the for- mation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu’s surface is globally rough, dense with boulders, and low in albedo. -
Impact Process of Boulders on the Surface of Asteroid 25143 Itokawa— Fragments from Collisional Disruption
Earth Planets Space, 60, 7–12, 2008 Impact process of boulders on the surface of asteroid 25143 Itokawa— fragments from collisional disruption A. M. Nakamura1, T. Michikami2, N. Hirata3, A. Fujiwara4, R. Nakamura5, M. Ishiguro6, H. Miyamoto7,8, H. Demura3, K. Hiraoka1, T. Honda1, C. Honda4, J. Saito9, T. Hashimoto4, and T. Kubota4 1Graduate School of Science, Kobe University, Kobe, 657-8501, Japan 2Fukushima National College of Technology, Iwaki, Fukushima 970-8034, Japan 3School of Computer Science and Engineering, University of Aizu, Aizuwakamatsu, Fukushima 965-8580, Japan 4Institute of Space and Astronautical Sciences (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 229-8510, Japan 5National Institute of Advanced Industrial Science and Technology, Tsukuba 306-8568, Japan 6Astronomy Department, Seoul National University, Seoul 151-747, Korea 7The University Museum, University of Tokyo, Tokyo 113-0033, Japan 8Planetary Science Institute, Tucson, AZ 85719, USA 9School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan (Received November 3, 2006; Revised March 29, 2007; Accepted April 11, 2007; Online published February 12, 2008) The subkilometer-size asteroid 25143 Itokawa is considered to have a gravitationally bounded rubble-pile structure. Boulders appearing in high-resolution images retrieved by the Hayabusa mission revealed the genuine outcome of the collisional event involving the asteroid’s parent body. Here we report that the boulders’ shapes and structures are strikingly similar to laboratory rock impact fragments despite differences of orders of magnitude in scale and complexities of the physical processes. These similarities suggest the universal character of the process throughout the range of these scales, and the brittle and structurally continuous nature regarding the parent body of the boulders. -
Topography of Large Craters and Equatorial Bulge of 162173 Ryugu
EPSC Abstracts Vol. 13, EPSC-DPS2019-1723-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Topography of large craters and equatorial bulge of 162173 Ryugu Noriyuki Namiki (1,2), Takahide Mizuno (2,3), Hiroki Senshu (4), Hirotomo Noda (1,2), Koji Matsumoto (1,2), Naru Hirata (5), Ryuhei Yamada (5), Yoshiaki Ishihara (6), Hitoshi Ikeda (3), Hiroshi Araki (1,2), Keiko Yamamoto (1), Sinsuke Abe (7), Yousuke Masuda (7), Fumi Yoshida (4), Sho Sasaki (8), Shoko Oshigami (1), Makoto Shizugami (1), Arika Higuchi (1), Seiitsu Tsuruta (1), Kazuyoshi Asari (1), Toshimichi Otsubo (9), Naoyuki Hirata (10), Fuyuto Terui (3), Teiji Kase (11), Katsunori Mayuzumi (11), Sei-ichiro Watanabe (12), Takanao Saiki (3), Satoru Nakazawa (3), Makoto Yoshikawa (3), and Yuichi Tsuda (3) (1) National Astronomical Observatory of Japan, Japan, (2) SOKENDAI (The Graduate University for Advanced Studies), Japan, (3) Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Japan, (4) Chiba Institute of Technology, Japan, (5) The University of Aizu, Japan, (6) National Institute of Advanced Industrial Science and Technology, Japan, (7) Nihon University, Japan, (8) Osaka University, Japan, (9) Hitotsubashi University, Japan, (10) Kobe University, Japan, (11) NEC Corporation, Japan, (12) Nagoya University, Japan ([email protected]) Abstract Lutetia, and Bennu which was recently visited by OSIRIS-REx spacecraft. Hayabusa2 Laser Altimeter (LIDAR) conducted two- dimensional scanning observation of the equatorial Ryugu is the second asteroid whose topography is band of asteroid, 162173 Ryugu on Oct. 30, 2018 to measured accurately by laser altimeter (LIDAR) [5] obtain detailed topography data. -
An Investigation of the Low-Deltav Near-Earth Asteroids (341843) 2008
Astronomy & Astrophysics manuscript no. 29093_astroph c ESO 2016 October 5, 2016 An investigation of the low-∆V near-Earth asteroids (341843) 2008 EV5 and (52381) 1993 HA ? Two suitable targets for the ARM and MarcoPolo-M5 space missions D. Perna1, M. Popescu1; 2, F. Monteiro3, C. Lantz1, D. Lazzaro3, and F. Merlin1 1 LESIA – Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France e-mail: [email protected] 2 Astronomical Institute of the Romanian Academy, 5 Cu¸titulde Argint, 040557 Bucharest, Romania 3 Observatório Nacional, R. Gal. José Cristino 77, 20921-400, Rio de Janeiro, Brazil Received 10 June 2016; accepted 14 September 2016 ABSTRACT Context. The Asteroid Redirect Mission (ARM) under development by NASA is being planned to collect a multi-meter boulder from a near-Earth asteroid (NEA), and to bring it to the cis-lunar space in the mid-2020’s for future study and exploitation by a crewed mission. The MarcoPolo-M5 project is being proposed in 2016 for the M5 mission opportunity by ESA, to bring back to Earth a sample from a very primitive D-type NEA. As D-types are very rare within the NEA population, considerable effort is still in progress to characterize easily accessible targets with unknown surface composition, in order to discover further asteroids that belong to this taxonomic group. Aims. We aim to further characterize the physical properties of two optimal targets for sample return space missions, the low-∆V NEAs (341843) 2008 EV5 and (52381) 1993 HA. -
The Solar System
5 The Solar System R. Lynne Jones, Steven R. Chesley, Paul A. Abell, Michael E. Brown, Josef Durech,ˇ Yanga R. Fern´andez,Alan W. Harris, Matt J. Holman, Zeljkoˇ Ivezi´c,R. Jedicke, Mikko Kaasalainen, Nathan A. Kaib, Zoran Kneˇzevi´c,Andrea Milani, Alex Parker, Stephen T. Ridgway, David E. Trilling, Bojan Vrˇsnak LSST will provide huge advances in our knowledge of millions of astronomical objects “close to home’”– the small bodies in our Solar System. Previous studies of these small bodies have led to dramatic changes in our understanding of the process of planet formation and evolution, and the relationship between our Solar System and other systems. Beyond providing asteroid targets for space missions or igniting popular interest in observing a new comet or learning about a new distant icy dwarf planet, these small bodies also serve as large populations of “test particles,” recording the dynamical history of the giant planets, revealing the nature of the Solar System impactor population over time, and illustrating the size distributions of planetesimals, which were the building blocks of planets. In this chapter, a brief introduction to the different populations of small bodies in the Solar System (§ 5.1) is followed by a summary of the number of objects of each population that LSST is expected to find (§ 5.2). Some of the Solar System science that LSST will address is presented through the rest of the chapter, starting with the insights into planetary formation and evolution gained through the small body population orbital distributions (§ 5.3). The effects of collisional evolution in the Main Belt and Kuiper Belt are discussed in the next two sections, along with the implications for the determination of the size distribution in the Main Belt (§ 5.4) and possibilities for identifying wide binaries and understanding the environment in the early outer Solar System in § 5.5. -
DART Mission Update
Kinetic Impactor Andy Cheng JHU/APL 15 Nov 2018 DART Mission Update Goddard Space Flight Center Johnson Space Center Langley Research Center Glenn Research Center Marshall Space Flight Center Planetary Defense Coordination Office 1 Regimes of Primary Applicability for Planetary Defense Mitigation Defending Planet Earth (2010) Zero PHAs National Academy of Sciences Deep Impact Recommendation: “the first priority for a space About 150 PHAs mission in the mitigation area is an experimental test of a kinetic impactor” About 5,000 PHAs DART is the first kinetic DART impact test at a realistic scale for planetary Too small to be Defending Planet Earth (2010) considered PHAs defense 2 Launch June 15, 2021 March 6, 2022 IMPACT: October 5, 2022 2001 CB21 flyby S-type, 578 meters, 3.3-hour rotation rate LICIA (Light Italian Cubesat for Imaging of Asteroids) ASI contribution, under consideration DART Spacecraft 65803 Didymos 560 kg arrival mass Didymos-B (1996 GT) Didymos-A 12.5 m × 2.4 m × 2.0 m 163 meters 1,180-meter separation 780 meters, S-type 6 km/s closing speed 11.92-hour orbital period between centers of A and B 2.26-hour rotation period Earth-Based Observations • Target the binary asteroid Didymos system 0.07 AU range at impact Predicted ~8-minute change • Impact Didymos-B and change its orbital period in binary orbit period • Measure the period change from Earth DART – Double Asteroid Redirection Test 3 DART Program Update .DART mission confirmed by NASA in August, 2018. DART is in PHASE C-D .NASA has re-affirmed decision to use NEXT- C ion propulsion system for DART Autonomous navigation .NASA will procure launch services for DART using imager to guide to target through NLS; LV selection is in process ─ DART will have dedicated LV .LICIACube, an ASI-contributed cubesat ─ Letters exchanged between NASA and ASI ─ Studying operations concept and cubesat NEXT-C ion propulsion accommodations on DART first flight 4 DART Ion Propulsion Mission First flight of NASA NEXT-C ion engine . -
Organic Matter and Water from Asteroid Itokawa Q
www.nature.com/scientificreports OPEN Organic matter and water from asteroid Itokawa Q. H. S. Chan1,2*, A. Stephant2, I. A. Franchi2, X. Zhao2, R. Brunetto3, Y. Kebukawa4, T. Noguchi5, D. Johnson2,6, M. C. Price7, K. H. Harriss7, M. E. Zolensky8 & M. M. Grady2,9 Understanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the frst mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD = + 4868 ± 2288‰; δ15N = + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and ofers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modifed by D-enriched exogenous organics and water derived from a carbonaceous parent body. Understanding the earliest chemical reactions involving liquid water provides crucial insights to how simple building blocks of organic compounds evolved into increasingly complex macromolecules via actions of water. -
Robotic Asteroid Prospector
Robotic Asteroid Prospector Marc M. Cohen1 Marc M. Cohen Architect P.C. – Astrotecture™, Palo Alto, CA, USA 94306-3864 Warren W. James2 V Infinity Research LLC. – Altadena, CA, USA Kris Zacny,3 Philip Chu, Jack Craft Honeybee Robotics Spacecraft Mechanisms Corporation – Pasadena, CA, USA This paper presents the results from the nine-month, Phase 1 investigation for the Robotic Asteroid Prospector (RAP). This project investigated several aspects of developing an asteroid mining mission. It conceived a Space Infrastructure Framework that would create a demand for in space-produced resources. The resources identified as potentially feasible in the near-term were water and platinum group metals. The project’s mission design stages spacecraft from an Earth Moon Lagrange (EML) point and returns them to an EML. The spacecraft’s distinguishing design feature is its solar thermal propulsion system (STP) that provides two functions: propulsive thrust and process heat for mining and mineral processing. The preferred propellant is water since this would allow the spacecraft to refuel at an asteroid for its return voyage to Cis- Lunar space thus reducing the mass that must be launched from the EML point. The spacecraft will rendezvous with an asteroid at its pole, match rotation rate, and attach to begin mining operations. The team conducted an experiment in extracting and distilling water from frozen regolith simulant. Nomenclature C-Type = Carbonaceous Asteroid EML = Earth-Moon Lagrange Point ESL = Earth-Sun Lagrange Point IPV = Interplanetary Vehicle M-Type = Metallic Asteroid NEA = Near Earth Asteroid NEO = Near Earth Object PGM = Platinum Group Metal STP = Solar Thermal Propulsion S-Type = Stony Asteroid I. -
POSTER SESSION I: ASTEROID and COMET MISSIONS: TARGETS, INSTRUMENTS, and SCIENCE 6:00 P.M
Lunar and Planetary Science XLVIII (2017) sess313.pdf Tuesday, March 21, 2017 [T313] POSTER SESSION I: ASTEROID AND COMET MISSIONS: TARGETS, INSTRUMENTS, AND SCIENCE 6: 00 p.m. Town Center Exhibit Area Spring N. H. Herd C. D. K. Simkus D. N. Hilts R. W. Skelhorne A. W. et al. POSTER LOCATION #202 Testing the Retention of Soluble Organic Species in a Cometary Nucleus Simulant: Preparing for Comet Sample Return [#2950] Our goal is to determine the optimal T range for large-scale curation and handling of cometary material, using an IDP analogue and a sub-zero T glove box. Movshovitz N. Asphaug E. Chesley S. R. Farnocchia D. Scheeres D. J. POSTER LOCATION #203 Forming 67P/C-G and Other Jupiter-Family Contact Binaries by Tidal Disruption? [#1502] We investigate the feasibility of forming the peculiar shape of Comet 67/P Churyumov-Gerasimenko by way of tidal splitting in half of a progenitor comet. Heather D. Barthelemy M. Besse S. Fraga D. Grotheer E. et al. POSTER LOCATION #204 The Rosetta Science Archive: Status and Plans for Completing and Enhancing the Archive Content [#2087] This presentation will outline the current status of the Rosetta archive, and the ‘enhanced archiving’ activities planned with instrument teams on Rosetta. Tang Y. Birch S. P. D. Hayes A. G. de Freitas Bart R. Squyres S. W. POSTER LOCATION #205 Boulder Size Frequency Distribution on Comet 67P/Churyumov-Gerasimenko [#2796] Using data from Rosetta and Philae spacecrafts, we analyzed the boulder size distribution and surface morphologies of the comet 67P/Churyumov-Gerasimenko. Carey E. -
University of Groningen Asteroid Thermophysical Modeling Delbo
University of Groningen Asteroid thermophysical modeling Delbo, Marco; Mueller, Michael; Emery, Joshua P.; Rozitis, Ben; Capria, Maria Teresa Published in: Asteroids IV IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Delbo, M., Mueller, M., Emery, J. P., Rozitis, B., & Capria, M. T. (2015). Asteroid thermophysical modeling. In P. Michel, F. E. DeMeo, & W. F. Botke (Eds.), Asteroids IV (pp. 107-128). tUSCON: University of Arizona Press. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 13-11-2019 Asteroid thermophysical modeling Marco Delbo Laboratoire Lagrange, UNS-CNRS, Observatoire de la Coteˆ d’Azur Michael Mueller SRON Netherlands Institute for Space Research Joshua P. Emery Dept. of Earth and Planetary Sciences - University of Tennessee Ben Rozitis Dept. -
Detectability of YORP Rotational Slowing of Asteroid 25143 Itokawa
A&A 414, L21–L24 (2004) Astronomy DOI: 10.1051/0004-6361:20031739 & c ESO 2004 Astrophysics Detectability of YORP rotational slowing of asteroid 25143 Itokawa D. Vokrouhlick´y1 ,D.Capekˇ 1, M. Kaasalainen2, and S. J. Ostro3 1 Institute of Astronomy, Charles University, V Holeˇsoviˇck´ach 2, 180 00 Prague 8, Czech Republic e-mail: [email protected], [email protected] Letter to the Editor 2 Rolf Nevanlinna Institute, University of Helsinki, PO Box 4, 00014 Helsinki, Finland, and Sodankyla Geophysical Observatory, University of Oulu, Tahtelantie 62, 99600 Sodankyla, Finland e-mail: [email protected] 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA e-mail: [email protected] Received 14 November 2003 / Accepted 11 December 2003 Abstract. We predict that the YORP thermal-emission effect can be directly detected through a measurable increase in the rotation period of the several-hundred-meter near-Earth asteroid 25143 Itokawa. The fractional change of Itokawa’s rotation 4 5 rate in between 2001 and 2004 should be (1 2) 10− , significantly larger than its currently estimated uncertainty 5 10− . The corresponding change of sidereal rotation− phase,× normalized to unity in a cycle, is (0:09 0:25) in January 2004,' producing× ' − (1 3) h delay of lightcurve maximum. ' − Key words. solar system: minor planets, asteroids – radiations mechanisms: thermal 1. Introduction 2. YORP effect Solar energy absorbed by an asteroid and re-radiated at thermal Torques produced by the reflection and thermal re-emission wavelengths causes an infinitesimal pressure on each surface of sunlight from an asteroid’s surface can alter its spin state. -
Asteroid Surface Geophysics
Asteroid Surface Geophysics Naomi Murdoch Institut Superieur´ de l’Aeronautique´ et de l’Espace (ISAE-SUPAERO) Paul Sanchez´ University of Colorado Boulder Stephen R. Schwartz University of Nice-Sophia Antipolis, Observatoire de la Coteˆ d’Azur Hideaki Miyamoto University of Tokyo The regolith-covered surfaces of asteroids preserve records of geophysical processes that have oc- curred both at their surfaces and sometimes also in their interiors. As a result of the unique micro-gravity environment that these bodies posses, a complex and varied geophysics has given birth to fascinating features that we are just now beginning to understand. The processes that formed such features were first hypothesised through detailed spacecraft observations and have been further studied using theoretical, numerical and experimental methods that often combine several scientific disciplines. These multiple approaches are now merging towards a further understanding of the geophysical states of the surfaces of asteroids. In this chapter we provide a concise summary of what the scientific community has learned so far about the surfaces of these small planetary bodies and the processes that have shaped them. We also discuss the state of the art in terms of experimental techniques and numerical simulations that are currently being used to investigate regolith processes occurring on small-body surfaces and that are contributing to the interpretation of observations and the design of future space missions. 1. INTRODUCTION wide range of geological features have been observed on the surfaces of asteroids and other small bodies such as the nu- Before the first spacecraft encounters with asteroids, cleus of comet 103P/Hartley 2 (Thomas et al.