Ostracoda: Myodocopa: Halocyprididae

Total Page:16

File Type:pdf, Size:1020Kb

Ostracoda: Myodocopa: Halocyprididae Acta Oceanol. Sin., 2020, Vol. 39, No. 4, P. 73–83 https://doi.org/10.1007/s13131-020-1584-2 http://www.hyxb.org.cn E-mail: [email protected] A new pelagic Polyconchoecia Xiang, Chen and Du, 2018 (Ostracoda: Myodocopa: Halocyprididae) from the South China Sea Peng Xiang1*†, Yu Wang1†, Ruixiang Chen1, Youyin Ye1, Chunguang Wang1, Xiaoyin Chen1, Mao Lin1, 2* 1 Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China 2 Collaborative Innovation Center of Deep Sea Biology, Hangzhou 310012, China Received 20 November 2018; accepted 6 May 2019 © Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Halocyprid ostracods are appreciable part of ostracods floating through virtually everywhere in marine environment. In this study, we describe a new species of genus Polyconchoecia Xiang, Chen and Du, 2018, tribe Conchoeciini Chavtur and Angel, 2011, family Halocyprididae Dana, 1853 from the middle of the South China Sea. Polyconchoecia chenii sp. nov. is very close to P. commixtus Xiang, Chen and Du, 2018. But it differs from P. commixtus by the distinctions of locations of major glands of carapace and the characteristics of appendages: more posteriorly situated left asymmetric gland of carapace, no right asymmetric gland; segmented frontal organ; the endopod 2 of the first antenna with a very small seta; a- and c-setae of the first antenna with long end joint have long end joint, the b- and d-setae have no end joint, spinose e-seta without end joint; the e-seta of the second antenna is present; teeth side is distinctive; the setal counts of the mandible, maxilla, fifth limb, and sixth limb are individual. The locations of the major glands on carapace and the characteristics of the first antenna can be the key of the new species. This work is the second discovery of the genus Polyconchoecia from the world. Key words: taxonomy, Ostracoda, Halocyprididae, Conchoeciini, Polyconchoecia chenii sp. nov., new species, South China Sea Citation: Xiang Peng, Wang Yu, Chen Ruixiang, Ye Youyin, Wang Chunguang, Chen Xiaoyin, Lin Mao. 2020. A new pelagic Polyconchoecia Xiang, Chen and Du, 2018 (Ostracoda: Myodocopa: Halocyprididae) from the South China Sea. Acta Oceanologica Sinica, 39(4): 73–83, doi: 10.1007/s13131-020-1584-2 1 Introduction and abyss (van Harten, 1992; Oakley et al., 2013; Tanaka and Yas- Class Ostracoda Latreille, 1802, emend. Martin and Davis, uhara, 2016; Yamaguchi et al., 2016). In 1853, the largest family 2001 are a big group of small bivalved crustaceans. They inhabit Halocyprididae Dana, 1853 (Chavtur, 2003; Martin and Davis, almost all aquatic environments with high taxonomic diversity 2001; Brandão et al., 2019) within order Halocyprida Dana, 1853 (Karanovic, 2010). Ostracods are one of the momentous groups was erected. And then, the subfamily Conchoeciinae Müller, 1912 of marine organisms, and are functionally important in the pro- was erected under this family. In 2011, Chavtur and Angel (2011) cess of bio-geo-chemical cycles in marine ecosystem, especially designated the tribe Conchoeciini Chavtur and Angel, 2011 on the in the tropics and subtropical regions (Angel et al., 2007; George basis of the locational shifts of glands. Not long ago, Du et al. (2018) and Nair, 1980). They also play a significant participant of mar- erected genus Polyconchoecia Xiang, Chen and Du, 2018 with the ine deposition, because their calcified valves are preserved as type species P. commixtus Xiang, Chen and Du, 2018 based on the fossils (Di Celma et al., 2016). The studies of ostracods have been definite characteristics of locations of major glands on carapace. well improved in last two decades, and many new taxa have been Soon after that, genus Conchoecia Dana, 1849 was subdivided into erected (Harrison-Nelson and Kornicker, 2000; Chavtur, 2003; five genera: Conchoecia; Macrochoecilla Chavtur, 2018; Lophuroe- Lum et al., 2008; Karanovic, 2010; Chavtur and Angel, 2011; Pinto cia Chavtur, 2018; Parvidentoecia Chavtur, 2018; and Hyalocoecia and Jocqué, 2013; Xiang et al., 2017a, b, 2018; Du et al., 2018). Chavtur, 2018; and genus Parthenoecia Chavtur, 2018 was erected, These faunae might no-monophyletic, phylogeny remains indis- mainly based on characteristics of lateral gland, armature of seta-e tinct, and classification is based on typical characteristics (Fortey on the first antenna in the male, and copulatory appendage and Thomas, 1998; Yamaguchi and Endo, 2003). (Chavtur and Bashmanov, 2018). Thus far, the tribe Conchoeciini Halocyprid ostracods constitute appreciable part of marine zo- has contained 27 genera (Brandão et al., 2019). oplankton. They are floating through virtually everywhere in mar- In this study, a new species of genus Polyconchoecia from the ine environment including surface, hydrothermal vent, cold seep South China Sea was described. Foundation item: The Global Climate Change and Ocean Atmosphere Interaction Research under contract No. GASI-01-02-04; the National Natural Science Foundation of China under contract Nos 41406216 and 41506217; the project sponsored by the Scientific Research Foundation of Third Institute of Oceanography, MNR under contract No. 2017009; the National Special Project on Gas Hydrate of China under contract No. DD20190218. *Corresponding author, E-mail: [email protected]; [email protected] †These authors contributed equally to this work. 74 Xiang Peng et al. Acta Oceanol. Sin., 2020, Vol. 39, No. 4, P. 73–83 2 Methods Inc., Illinois, USA). Observations were done by a Carl Zeiss Axio Imager Z2 differential interference contrast microscope system 2.1 Sampling and morphological methods with AxioVision Image-Pro software (Carl Zeiss Inc., Oberkochen, Collections were obtained from two cruises of the South Germany). All drawings were made from micro-images of dissec- China Sea in 2014–2015. All zooplankton specimens were collec- ted appendages, followed the methodology in Chavtur and Angel ted using a Multinet sampling system (Type Midi, Mesh-size (2011), and further processed with Adobe Photoshop CS6 (Adobe aperture 200 μm, HydroBios Inc., Kiel, Germany) by vertical and Inc., San Jose, CA, USA). stratified hauls from bottom to surface. Collections were pre- The type specimens/appendages were deposited in the Mar- served by immersion in 5% buffered formaldehyde. ine Biological Sample Museum of the Chinese Offshore Investig- Specimens were dissected under a Carl Zeiss Discovery V20 ation and Assessment, Third Institute of Oceanography, MNR zoom-stereomicroscope. Dissected appendages were mounted (Xiamen, China), under the collection numbers TIO-OHH-PP- in permanent slides with CMC-9AF medium (Masters Company 201 to TIO-OHH-PP-204. a c 1 000 μm 500 μm b 1 000 μm Fig. 1. Polyconchoecia chenii sp. nov. (♀). a. Left valve, external view; b. carapace, internal view; and c. postero-ventral corner of right valve, internal view. Xiang Peng et al. Acta Oceanol. Sin., 2020, Vol. 39, No. 4, P. 73–83 75 2.2 Nomenclatural acts urn:lsid:zoobank.org:pub:C8D3334A-AA1C-4355-AB53- The electronic edition of this article conforms to the require- 140B299051B0. The electronic edition of this work was published ments of the amended International Code of Zoological Nomen- in a journal with an ISSN, and has been archived and is available clature, and hence the new names contained herein are avail- from the following digital repositories: SpringerLink, PubMed able under that code from the electronic edition of this article. Central, LOCKSS. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the 3 Results ICZN. The ZooBank LSIDs (Life Science Identifiers) can be re- solved and the associated information viewed through any stand- 3.1 Systematics ard web browser by appending the LSID to the prefix Oder Halocyprida Dana, 1853 “http://zoobank.org/”. The LSID for this publication is: Family Halocyprididae Dana, 1853 a b 100 μm 200 μm c 50 μm d e f 500 μm 50 μm 100 μm Fig. 2. Polyconchoecia chenii sp. nov. (♀). a. First antenna and frontal organ, external view; b. tip of first antenna, external view; c. tip of frontal organ, external view; d. detail of e-seta, external view; e. second antenna, external view; and f. exopod of second antenna, external view. 76 Xiang Peng et al. Acta Oceanol. Sin., 2020, Vol. 39, No. 4, P. 73–83 Subfamily Conchoeciinae Müller, 1912 Oceanography, MNR, in recognition of his important contribu- Tribe Conchoeciini Chavtur and Angel, 2011 tions of marine ostracods of China. Genus Polyconchoecia Xiang, Chen and Du, 2018 Holotype. No. TIO-OHH-PP-201, adult female, length Species Polyconchoecia chenii Xiang, Wang and Chen sp. nov. 2.57 mm, height 1.47 mm from Sta. CS-068 (14°31′N, 114°54′E) in the top of the South China Sea, 200–500 m water layer, 12 Janu- 3.2 Species Polyconchoecia chenii sp. nov. ary 2015. Specimen was dissected on slide and deposited in the Figs 1–8 Marine Biological Sample Museum, in the Third Institute of LSID: urn:lsid:zoobank.org:act:9B60314F-EE85-46C7-8213- Oceanography, MNR, China (Xiamen, China). 737601ED74D8 Paratypes. No. TIO-OHH-PP-202, adult female, length Etymology. Latinized name of Ruixiang Chen, our teacher, a 2.33 mm, height 1.35 mm, No. TIO-OHH-PP-203, adult female, scientist of the planktonic research group, Third Institute of length 2.45 mm, height 1.41 mm, from the same locality of the a c 50 μm 200 μm b d 50 μm 50 μm e 100 μm Fig. 3. Polyconchoecia chenii sp. nov. (♀). a. Details of swimming seta of second antenna, external view; b. terminal seta of second antenna, external view; c. mandible, internal view; d. exopod of mandible, internal view; and e. coxal endite of left mandible, internal view. Xiang Peng et al. Acta Oceanol. Sin., 2020, Vol.
Recommended publications
  • Anchialine Ostracoda (Halocyprididae) from San Salvador, Bahamas
    Anchialine Ostracoda (Halocyprididae) from San Salvador, Bahamas LOUIS S. KORNICKER and DOUGLAS J. BARR i SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 588 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiobgy Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Vertical Distribution and Population Structure of the Three Dominant Planktonic Ostracods (Discoconchoecia Pseudodiscophora
    Plankton Biol. Ecol. 49 (2): 66-74, 2002 plankton biology & ecology K> The Plankton Society of Japan 2002 Vertical distribution and population structure of the three dominant planktonic ostracods (Discoconchoecia pseudodiscophora, Orthoconchoecia haddoni and Metaconchoecia skogsbergi) in the Oyashio region, western North Pacific Hideki Kaeriyama & Tsutomu Ikeda Marine Biodiversity Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido 041-0821, Japan Received 19 November 2001; accepted 4 April 2002 Abstract: Diel and seasonal vertical distribution and population structure of Discoconchoecia pseu- dodiscophora (Rudjakov), Orthoconchoecia haddoni (Brady & Norman) and Metaconchoecia skogs bergi (lies) were investigated in the Oyashio region during September 1996 through October 1997. Monthly samples were collected with 0.1 mm mesh closing nets hauled vertically through five con tiguous discrete depths between the surface and ~2000 m. D. pseudodiscophora occurred predomi nantly from the base of the thermocline to a depth of 500 m. O. haddoni and M. skogsbergi occurred somewhat deeper at depths of 250 to 1000 m, but were also moderately abundant below 1000 m. Sampling was undertaken both by day and by night during December 1996, April and October 1997 to assess diel vertical migration activity, but revealed no appreciable day/night differences in the ver tical distributions of the ostracods. All the instars sampled [instars II through VIII (adults) of D. pseu dodiscophora and O. haddoni, and instars III through VIII (adults) of M. skogsbergi] were collected throughout the entire period of the study. All three species showed evidence of ontogenetic vertical migration—the ranges of these migrations being from 300-1000 m in D.
    [Show full text]
  • Proceedings Biological Society of Washington
    Vol. 81, pp. 439-472 30 December 1968 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BATHYAL MYODOCOPID OSTRACODA FROM THE NORTHEASTERN GULF OF MEXICO BY LOUIS S. KORNJCKEB Smithsonian Institution, Washington, D. C. Myodocopid ostracods of the deeper waters of the Gulf of Mexico are virtually unknown . only 1 species, Cypridina fla- tus Tressler, 1949, having been previously reported from 1200 meters near Tortugas (Tressler, 1949, p. 336, p. 431). There- fore, I was quite pleased to receive from Dr. Willis E. Pequeg- nat and Mr. Thomas J. Bright a small collection containing myodocopid ostracods collected in a mid-water trawl that acci- dentally dragged along the bottom at a depth of 1000-1200 meters for 1.5 hours during the Texas A&M University cruise 66-A-9 of the R/V Alaminos on July 11, 1966. The Myodo- copida are described in the systematic part of this paper. Os- tracods in the sample are listed below: Order Myodocopida Suborder Myodocopina Superfamily Cypridinacea Tetragonodon rhamphodes new species 19 Paramekodon poidseni new species 19 Bathyvargula optilus new species 299,1 juv. Suborder Halocypridina Superfamily Halocypridacea Conchoecia atlantica (Lubbock) 2 9 9 Conchoecia valdimae Muller 2 9 9 Conchoecia macrocheira Muller 1 9 45—PROC. BIOL. SOC. WASH., VOL. 81, 1968 (439) 440 Proceedings of the Biological Society of Washington Order Poclocopida (ident. by Drs. R. H. Benson and R. F. Maddocks) Suborder Podocopina Bairdoppilata ?hirsuta (Brady) 19,4 MT shells Bairdia new species 29 9,9 MT shells. 2 single valves Echinocythereis echinata (Sars) 1 single valve Four specimens of bottom fish collected in the trawl con- tained ostracods in their stomachs or intestines: Nezumia hildebrandi (2 specimens), Dicrolene intronigra (1 specimen), and Dicromita agassizii (1 specimen).
    [Show full text]
  • The Pelagic Oceanic Assemblages of the Sargasso Sea Around Bermuda Martin V
    The Pelagic Oceanic Assemblages of the Sargasso Sea Around Bermuda Martin V. Angel Number 1 Sargasso Sea Alliance Science Report Series When referenced this report should be referred to as: Angel, M.V. 2011. The Pelagic Ocean Assemblages of the Sargasso Sea Around Bermuda. Sargasso Sea Alliance Science Report Series, No 1, 25 pp. ISBN 978-0-9847520-1-0 The Sargasso Sea Alliance is led by the Bermuda Government and aims to promote international awareness of the importance of the Sargasso Sea and to mobilise support from a wide variety of national and international organisations, governments, donors and users for protection measures for the Sargasso Sea. Further details: Dr David Freestone, Executive Director, Sargasso Sea Alliance, Suite 300, 1630 Connecticut Avenue NW, Washington D.C., 20009, USA. Email: [email protected] Kate K. Morrison, Deputy Director, at the same address Email: [email protected] The Secretariat of the Sargasso Sea Alliance is hosted by the Washington D.C. Office of the International Union for the Conservation of Nature (IUCN). Website is www.sargassoalliance.org This case is being produced with generous support of donors to the Sargasso Sea Alliance: Ricardo Cisneros, Erik H. Gordon, JM Kaplan Fund, Richard Rockefeller, David E. Shaw, and the Waitt Foundation. Additional support provided by: WWF Sweden and the Pew Environment Group. Cover photo: Porbeagle shark, A. Murch. ISBN 978-0-9847520-1-0 The Pelagic Oceanic Assemblages of the Sargasso Sea Around Bermuda Martin V. Angel Research Fellow National Oceanography Centre Southampton, UK Summary Science and Supporting Evidence Case Foreword etween 2010 AND 2012 a large number of authors from seven different countries and B 26 separate organisations developed a scientific case to establish the global importance of the Sargasso Sea.
    [Show full text]
  • Orden HALOCYPRIDA Manual
    Revista IDE@ - SEA, nº 73 (30-06-2015): 1–6. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Clase: Ostracoda Orden HALOCYPRIDA Manual CLASE OSTRACODA Orden Halocyprida Francesc Mesquita-Joanes1 & Ángel Baltanás2 1 Inst. “Cavanilles” de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Av. Dr. Moliner, 50, 46100 Burjassot (España). [email protected] 2 Departamento Ecología (Fac. Ciencias), Universidad Autónoma de Madrid, C/ Darwin, 2, 28049 Madrid (España). [email protected] 1. Breve definición del grupo y principales caracteres diagnósticos Se trata de un grupo de crustáceos exclusivamente marinos que habita todos los mares del planeta, des- de la superficie hasta las profundidades abisales. La mayoría de las especies de ostrácodos planctónicos pertenecen a este grupo, que también incluye formas bentónicas. Algunas especies disponen de glándu- las epidermales situadas en el borde del caparazón que secretan luciferina-luciferasa, produciendo biolu- miniscencia. Sus hábitos tróficos varían según las especies: filtradores, comedores de detritus, o carnívo- ros. 1.1. Morfología (los términos en negrita se representan en la figura adjunta) El elemento más característico de los halocípridos, como del resto de los ostrácodos, es el caparazón bivalvo que en los miembros de este orden es oblongo o sub-rectangular (Fig. 1A-D). La existencia de 'rostrum' es habitual, con la excepción de la la familia Thaumatocyprididae (Fig. 1D), y a menudo se ob- servan en la región postero-dorsal espinas o procesos puntiagudos asociados a glándulas. Carecen de ojos medio y lateral, aunque el órgano de Bellonci (O.B.), bifurcado o no, está presente en la mayoría de las especies.
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • Secretion of Embryonic Envelopes and Embryonic Molting Cycles In
    Homology of Holocene ostracode biramous appendages with those of other crustaceans: the protopod, epipod, exopod and endopod ANNE C. COHEN, JOEL W. MARTIN AND LOUIS S. KORNICKER Cohen, A.C., Martin, J.W. & Kornicker, L.S. 1998 09 15: Homology of Holocene ostracode LETHAIA biramous appendages with those of other crustaceans: the protopod, epipod, exopod and endopod. Lethaia, Vol. 31, pp. 251-265. Oslo. ISSN 0024-1164. Unambiguously biramous appendages with a proximal precoxa, well-defined coxa and basis, setose plate-like epipod originating on the precoxa, and both an endopod and exopod attached to the terminal end of the basis are described from several living Ostracoda of the order Halo- cyprida (Myodocopa). These limbs are proposed as the best choice for comparison of ostracode limbs with those of other crustaceans and fossil arthropods with preserved limbs, such as the Cambrian superficially ostracode-like Kunmingella and Hesslandona. The 2nd maxilla of Metapolycope (Cladocopina) and 1st trunk limb oi Spelaeoecia, Deeveya and Thaumatoconcha (all Halocypridina) are illustrated, and clear homologies are shown between the parts of these limbs and those of some general crustacean models as well as some of the remarkable crusta­ cean 5.5. Orsten fossils. No living ostracodes exhibit only primitive morphology; all have at least some (usually many) derived characters. Few have the probably primitive attribute of trunk segmentation (two genera of halocyprid Myodocopa, one order plus one genus of Podocopa, and the problematic Manawa); unambiguously biramous limbs are limited to a few halo- cyprids. Homologies between podocopid limbs and those of the illustrated primitive myodo- copid limbs are tentatively suggested.
    [Show full text]
  • Trophic-Based Analyses of the Scotia Sea Ecosystem with an Examination of the Effects of Some Data Limitations and Uncertainties
    Trophic-based analyses of the Scotia Sea ecosystem with an examination of the effects of some data limitations and uncertainties Sarah Collings Doctor of Philosophy University of York Biology September 2015 Abstract The Scotia Sea is a sub-region of the Southern Ocean with a unique biological operation, including high rates of primary production, high abundances of Antarctic krill, and a diverse community of land-breeding predators. Trophic interactions link all species in an ecosystem into a network known as the food web. Theoretical analyses of trophic food webs, which are parameterised using diet composition data, offer useful tools to explore food web structure and operation. However, limitations in diet data can cause uncertainty in subsequent food web analyses. Therefore, this thesis had two aims: (i) to provide ecological insight into the Scotia Sea food web using theoretical analyses; and (ii) to identify, explore and ameliorate for the effects of some data limitations on these analyses. Therefore, in Chapter 2, I collated a set of diet composition data for consumers in the Scotia Sea, and highlighted its strengths and limitations. In Chapters 3 and 4, I constructed food web analyses to draw ecological insight into the Scotia Sea food web. I indicated the robustness of these conclusions to some of the assumptions I used to construct them. Finally, in Chapter 5, I constructed a probabilistic model of a penguin encountering prey to investigate changes in trophic interactions caused by the spatial and temporal variability of their prey. I show that natural variabilities, such as the spatial aggregation of prey into swarms, can explain observed foraging outcomes for this predator.
    [Show full text]
  • Multi-Level Convergence of Complex Traits and the Evolution of Bioluminescence Emily S
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 December 2020 Multi-level convergence of complex traits and the evolution of bioluminescence Emily S. Lau* and Todd H. Oakley* Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara CA 93106 Corresponding authors information: Emily S. Lau: [email protected]; Todd H. Oakley: [email protected] Keywords multi‐level convergence | evolution | bioluminescence | biological organization | complex trait ABSTRACT Evolutionary convergence provides natural opportunities to investigate how, when, and why novel traits evolve. Many convergent traits are complex, highlighting the importance of explicitly considering convergence at different levels of biological organization, or ‘multi‐level convergent evolution’. To investigate multi‐level convergent evolution, we propose a holistic and hierarchical framework that emphasizes breaking down traits into several functional modules. We begin by identifying long‐standing questions on the origins of complexity and the diverse evolutionary processes underlying phenotypic convergence to discuss how they can be addressed by examining convergent systems. We argue that bioluminescence, a complex trait that evolved dozens of times through either novel mechanisms or conserved toolkits, is particularly well suited for these studies. We present an updated estimate of at least 94 independent origins of bioluminescence across the tree of life, which we calculated by reviewing and summarizing all estimates of independent origins. Then, we use our framework to review the biology, chemistry, and evolution of bioluminescence, and for each biological level identify questions that arise from our systematic review. We focus on luminous organisms that use the shared luciferin substrates coelenterazine or vargulin to produce light because these organisms convergently evolved bioluminescent proteins that use the same luciferins to produce bioluminescence.
    [Show full text]
  • Transoceanic Transport of Living Marine Ostracoda (Crustacea) on Tsunami Debris from the 2011 Great East Japan Earthquake
    Aquatic Invasions (2018) Volume 13, Issue 1: 125–135 DOI: https://doi.org/10.3391/ai.2018.13.1.10 © 2018 The Author(s). Journal compilation © 2018 REABIC Special Issue: Transoceanic Dispersal of Marine Life from Japan to North America and the Hawaiian Islands as a Result of the Japanese Earthquake and Tsunami of 2011 Research Article Transoceanic transport of living marine Ostracoda (Crustacea) on tsunami debris from the 2011 Great East Japan Earthquake Hayato Tanaka1,*, Moriaki Yasuhara2 and James T. Carlton3 1Research Center for Marine Education, Ocean Alliance, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan 2School of Biological Sciences and Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China 3Williams College-Mystic Seaport Maritime Studies Program, Mystic, Connecticut 06355, USA Author e-mails: [email protected] (HT), [email protected] (MY), [email protected] (JTC) *Corresponding author Received: 21 February 2017 / Accepted: 21 April 2017 / Published online: 15 February 2018 Handling editor: Amy Fowler Co-Editors’ Note: This is one of the papers from the special issue of Aquatic Invasions on “Transoceanic Dispersal of Marine Life from Japan to North America and the Hawaiian Islands as a Result of the Japanese Earthquake and Tsunami of 2011." The special issue was supported by funding provided by the Ministry of the Environment (MOE) of the Government of Japan through the North Pacific Marine Science Organization (PICES). Abstract We report the first direct evidence for the transoceanic transport of living marine Ostracoda. Seven benthic, phytal species, Sclerochilus verecundus Schornikov, 1981, Sclerochilus sp.
    [Show full text]
  • Department of Marine Biology Texas a & M Univer
    Thomas M. Iliffe Page 1 CURRICULUM VITAE of THOMAS MITCHELL ILIFFE ADDRESS: Department of Marine Biology Texas A & M University at Galveston Galveston, TX 77553-1675 Office Phone: (409) 740-4454 E-mail: [email protected] Web page: www.cavebiology.com QUALIFICATIONS: Broad background in evolutionary and marine biology, oceanography, ecology, conservation, invertebrate taxonomy, biochemistry, marine pollution studies and diving research. Eleven years full-time research experience in the marine sciences as a Research Associate at the Bermuda Biological Station. Independently developed investigations on the biodiversity, origins, evolution and biogeography of animals inhabiting marine caves. This habitat, accessible only through use of specialized cave diving technology, rivals that of the deep-sea thermal vents for numbers of new taxa and scientific importance. Led research expeditions for studies of the biology of marine and freshwater caves to the Bahamas, Belize, Mexico, Jamaica, Dominican Republic, Canary Islands, Iceland, Mallorca, Italy, Romania, Czechoslovakia, Galapagos, Hawaii, Guam, Palau, Tahiti, Cook Islands, Niue, Tonga, Western Samoa, Fiji, New Caledonia, Vanuatu, Solomon Islands, New Zealand, Australia, Philippines, China, Thailand and Christmas Island; in addition to 9 years of studies on Bermuda's marine caves. Discovered 3 new orders (of Peracarida and Copepoda), 8 new families (of Isopoda, Ostracoda, Caridea, Remipedia and Calanoida), 55 new genera (of Caridea, Brachyura, Ostracoda, Remipedia, Amphipoda, Isopoda, Mysidacea, Tanaidacea, Thermosbaenacea, Leptostraca, Calanoida, Misophrioida and Polychaeta) and 168 new species of marine and freshwater cave-dwelling invertebrates. Published 243 scientific papers, most of which concern marine cave studies. First author on papers in Science and Nature, in addition to 10 invited book chapters on the anchialine cave fauna of the Bahamas, Bermuda, Yucatan Peninsula of Mexico, Galapagos, Tonga, Niue and Western Samoa.
    [Show full text]