Blueprint Genetics Spastic Paraplegia Panel

Total Page:16

File Type:pdf, Size:1020Kb

Blueprint Genetics Spastic Paraplegia Panel Spastic Paraplegia Panel Test code: NE0501 Is a 75 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of spastic paraplegia. About Spastic Paraplegia Spastic paraplegia is a group of clinically and genetically heterogeneous neurodegenerative disorders characterized by lower extremity spasticity and weakness. If symptoms begin in early childhood, they may be non-progressive and resemble spastic diplegic cerebral palsy. If symptoms begin later, they usually progress slowly and steadily. Spastic paraplegia is classified clinically as non-syndromic (uncomplicated) or syndromic (complicated). Non-syndromic spastic paraplegias are characterized by slowly progressive spasticity and weakness of the lower extremity, often associated with hypertonic urinary disturbances, mild reduction of lower extremity vibration sense and, occasionally, of joint position sensation. Syndromic forms of spastic paraplegia are characterized by the presence of additional neurological or non-neurological features. The prevalence of HSP is estimated to be 1-9/100,000 (GeneReviews NBK1509). Availability 4 weeks Gene Set Description Genes in the Spastic Paraplegia Panel and their clinical significance Gene Associated phenotypes Inheritance ClinVar HGMD ABCD1* Adrenoleukodystrophy XL 95 663 AFG3L2* Spastic ataxia, Spinocerebellar ataxia AD/AR 22 40 ALDH18A1 Spastic paraplegia, Cutis laxa AD/AR 22 30 ALS2 Amyotrophic lateral sclerosis, Spastic paralysis AR 33 68 AP4B1 Spastic paraplegia 47, autosomal recessive AR 17 18 AP4E1 Stuttering, familial persistent, 1, Spastic paraplegia 51, autosomal recessive AD/AR 7 15 AP4M1 Spastic paraplegia 50, autosomal recessive AR 16 13 AP4S1* Spastic paraplegia 52, autosomal recessive AR 9 8 AP5Z1 Spastic paraplegia 48, autosomal recessive AR 11 14 ARG1 Hyperargininemia AR 28 54 ARL6IP1 Spastic paraplegia 61 AR 1 4 ATAD3A* Harel-Yoon syndrome AD/AR 4 17 ATL1 Spastic paraplegia, Neuropathy, hereditary sensory AD 29 84 B4GALNT1 Spastic paraplegia AR 7 13 https://blueprintgenetics.com/ BSCL2 Lipodystrophy, congenital generalized, Encephalopathy, progressive, AD/AR 34 50 Neuropathy, distal hereditary motor, type VA, Charcot-Marie-Tooth disease type 2, Silver syndrome, Silver spastic paraplegia syndrome, Spastic paraplegia 17 BTD Biotinidase deficiency AR 170 247 C12ORF65 Spastic paraplegia, Combined oxidative phosphorylation deficiency AR 10 11 C19ORF12 Spastic Paraplegia, Neurodegeneration with brain iron accumulation AR 15 37 CACNA1G Spinocerebellar ataxia 42 8 11 CAPN1 Spastic paraplegia 76, autosomal recessive AR 6 16 COASY Neurodegeneration with brain iron accumulation 6 AR 3 3 CTNNB1 Exudative vitreoretinopathy 7, Mental retardation, autosomal dominant 19 AD 90 51 CYP27A1 Cerebrotendinous xanthomatosis AR 69 110 CYP2U1 Spastic paraplegia 56, autosomal recessive AR 14 19 CYP7B1 Bile acid synthesis defect, Spastic paraplegia 5A, autosomal recessive AR 18 60 DARS Hypomyelination with brainstem and spinal cord involvement and leg AR 11 17 spasticity DDHD1 Spastic paraplegia AR 5 11 DDHD2 Spastic paraplegia AR 18 19 ERLIN2 Spastic paraplegia 18, autosomal recessive AR 7 13 FA2H Spastic paraplegia AR 18 51 FARS2 Combined oxidative phosphorylation deficiency 14, Spastic paraplegia 77, AR 17 20 autosomal recessive FXN* Friedreich ataxia AR 13 63 GALC Krabbe disease AR 107 243 GBA2 Cerebellar ataxia with spasticity AR 11 22 GBE1 Glycogen storage disease AR 36 70 GCH1 Dopa-Responsive Dystonia Hyperphenylalaninemia, BH4-deficient, GTP AD/AR 48 240 Cyclohydrolase 1-Deficient Dopa-Responsive Dystonia GJC2 Spastic paraplegia, Lymphedema, hereditary, Leukodystrophy, AD/AR 26 57 hypomyelinating GPT2 Mental retardation, autosomal recessive 49, Microcephaly, Spastic AR 5 7 paraplegia HACE1 Spastic paraplegia and psychomotor retardation with or without seizures AR 13 13 HSPD1* Spastic paraplegia, Leukodystrophy, hypomyelinating AD/AR 5 5 https://blueprintgenetics.com/ IBA57 Multiple mitochondrial dysfunctions syndrome 3, Spastic paraplegia 74, AR 14 23 autosomal recessive IRF2BPL Neurodevelopmental disorder with hypotonia, seizures, and absent AD 9 2 language KDM5C Mental retardation, syndromic, Claes-Jensen XL 47 55 KIAA0196 Spastic paraplegia, Ritscher-Schinzel syndrome (3C syndrome) AD/AR 15 18 KIDINS220 Spastic paraplegia, intellectual disability, nystagmus, and obesity (SINO) AD/AR 4 8 KIF1A Spastic paraplegia, Neuropathy, hereditary sensory, Mental retardation AD/AR 63 42 KIF5A Spastic paraplegia AD 18 62 L1CAM Mental retardation, aphasia, shuffling gait, and adducted thumbs (MASA) XL 80 292 syndrome, Hydrocephalus due to congenital stenosis of aqueduct of Sylvius, Spastic, CRASH syndrome, Corpus callosum, partial agenesis L2HGDH L-2-hydroxyglutaric aciduria AR 15 79 MARS2 Combined oxidative phosphorylation deficiency AR 8 5 NIPA1 Spastic paraplegia AD 5 16 NKX6-2 Spastic ataxia 8, autosomal recessive, with hypomyelinating AR 4 8 leukodystrophy NT5C2 Spastic paraplegia 45 AR 8 7 PAH Hyperphenylalaninemia, non-PKU mild, Phenylketonuria AR 294 966 PLP1 Spastic paraplegia, Pelizaeus-Merzbacher disease XL 60 348 PNPLA6 Laurence-Moon syndrome, Boucher-Neuhauser syndrome, Spastic AR 26 58 paraplegia 39 RARS Leukodystrophy, hypomyelinating 9 AR 12 11 REEP1 Spastic paraplegia, Distal hereditary motor neuronopathy AD 16 60 RTN2 Spastic paraplegia 12, autosomal dominant AD 4 5 SACS Spastic ataxia, Charlevoix-Saguenay AR 254 262 SETX Ataxia with oculomotor apraxia, Amyotrophic lateral sclerosis, juvenile, AD/AR 36 210 Spinocerebellar ataxia SLC16A2 Allan-Herndon-Dudley syndrome XL 39 84 SLC1A4 Spastic tetraplegia, thin corpus callosum, and progressive microcephaly AR 4 8 SLC25A15* Hyperornithinemia-hyperammonemia-homocitrullinemia syndrome AR 24 36 SLC33A1* Congenital cataracts, hearing loss, and neurodegeneration, Spastic AD/AR 6 7 paraplegia 42, autosomal dominant SPAST Spastic paraplegia AD 193 723 https://blueprintgenetics.com/ SPG11 Spastic paraplegia, Amyotrophic lateral sclerosis, Charcot-Marie-Tooth AR 162 274 disease SPG20 Spastic paraplegia (Troyer syndrome) AR 9 7 SPG7 Spastic paraplegia AR 69 111 SPR Dystonia, Dopa-responsive, due to sepiapterin reductase deficiency AR 12 23 TECPR2 Spastic paraplegia 49, autosomal recessive AR 9 6 TFG Spastic paraplegia, Hereditary motor and sensory neuropathy, proximal AR 4 7 TH Segawa syndrome, autosomal recessive AR 44 71 UBAP1 Spastic paraplegia AD 1 ZFYVE26 Spastic paraplegia 15 AR 63 39 *Some regions of the gene are duplicated in the genome. Read more. # The gene has suboptimal coverage (means <90% of the gene’s target nucleotides are covered at >20x with mapping quality score (MQ>20) reads), and/or the gene has exons listed under Test limitations section that are not included in the panel as they are not sufficiently covered with high quality sequence reads. The sensitivity to detect variants may be limited in genes marked with an asterisk (*) or number sign (#). Due to possible limitations these genes may not be available as single gene tests. Gene refers to the HGNC approved gene symbol; Inheritance refers to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR), mitochondrial (mi), X-linked (XL), X-linked dominant (XLD) and X-linked recessive (XLR); ClinVar refers to the number of variants in the gene classified as pathogenic or likely pathogenic in this database (ClinVar); HGMD refers to the number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD). The list of associated, gene specific phenotypes are generated from CGD or Mitomap databases. Non-coding disease causing variants covered by the panel Gene Genomic HGVS RefSeq RS-number location HG19 ARG1 Chr6:131901748 c.306-611T>C NM_000045.3 BSCL2 Chr11:62470032 c.405-11A>G NM_001122955.3 BTD Chr3:15683399 c.310-15delT NM_000060.2 rs587783008 BTD Chr3:15687154 c.*159G>A NM_000060.2 rs530872564 GALC Chr14:88401064 c.*12G>A NM_000153.3 rs372641636 GALC Chr14:88459574 c.-66G>C NM_000153.3 rs146439771 GALC Chr14:88459575 c.-67T>G NM_000153.3 rs571945132 GALC Chr14:88459917 c.-74T>A NM_001201402.1 GALC Chr14:88459971 c.-128C>T NM_001201402.1 rs181956126 GBE1 Chr3:81542964 c.2053-3358_2053-3350delGTGTGGTGGinsTGTTTTTTACATGACAGGT NM_000158.3 rs869320698 GCH1 Chr14:55369403 c.-22C>T NM_000161.2 GJC2 Chr1:228337558 c.-170A>G NM_020435.3 https://blueprintgenetics.com/ GJC2 Chr1:228337561 c.-167A>G NM_020435.3 GJC2 Chr1:228337709 c.-20+1G>C NM_020435.3 L1CAM ChrX:153128846 c.3531-12G>A NM_000425.4 L1CAM ChrX:153131293 c.2432-19A>C NM_000425.4 L1CAM ChrX:153133652 c.1704-75G>T NM_000425.4 L1CAM ChrX:153133926 c.1547-14delC NM_000425.4 L1CAM ChrX:153136500 c.523+12C>T NM_000425.4 L2HGDH Chr14:50735527 c.906+354G>A NM_024884.2 PAH Chr12:103232809 c.*144A>G NM_000277.1 rs375319584 PAH Chr12:103237404 c.1199+20G>C NM_000277.1 rs62509018 PAH Chr12:103237407 c.1199+17G>A NM_000277.1 rs62508613 PAH Chr12:103237568 c.1066-11G>A NM_000277.1 rs5030855 PAH Chr12:103237568 c.1066-12delT NM_000277.1 PAH Chr12:103237570 c.1066-13T>G NM_000277.1 PAH Chr12:103237571 c.1066-14C>G NM_000277.1 rs62507334 PAH Chr12:103238075 c.1065+39G>T NM_000277.1 rs62510582 PAH Chr12:103260355 c.509+15_509+18delCTTG NM_000277.1 rs1335303703 PAH Chr12:103288709 c.169-13T>G NM_000277.1 rs62507341 PLP1 ChrX:103031997 c.4+78_4+85delGGGGGTTC NM_000533.3 PLP1 ChrX:103041680 c.453+28_453+46delTAACAAGGGGTGGGGGAAA NM_000533.3 PLP1 ChrX:103042405 c.454-322G>A NM_000533.3 PLP1 ChrX:103042413 c.454-314T>A/G NM_000533.3 PLP1 ChrX:103042413 c.454-314T>A NM_000533.3
Recommended publications
  • Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
    Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P.
    [Show full text]
  • Targeted Genes and Methodology Details for Neuromuscular Genetic Panels
    Targeted Genes and Methodology Details for Neuromuscular Genetic Panels Reference transcripts based on build GRCh37 (hg19) interrogated by Neuromuscular Genetic Panels Next-generation sequencing (NGS) and/or Sanger sequencing is performed Motor Neuron Disease Panel to test for the presence of a mutation in these genes. Gene GenBank Accession Number Regions of homology, high GC-rich content, and repetitive sequences may ALS2 NM_020919 not provide accurate sequence. Therefore, all reported alterations detected ANG NM_001145 by NGS are confirmed by an independent reference method based on laboratory developed criteria. However, this does not rule out the possibility CHMP2B NM_014043 of a false-negative result in these regions. ERBB4 NM_005235 Sanger sequencing is used to confirm alterations detected by NGS when FIG4 NM_014845 appropriate.(Unpublished Mayo method) FUS NM_004960 HNRNPA1 NM_031157 OPTN NM_021980 PFN1 NM_005022 SETX NM_015046 SIGMAR1 NM_005866 SOD1 NM_000454 SQSTM1 NM_003900 TARDBP NM_007375 UBQLN2 NM_013444 VAPB NM_004738 VCP NM_007126 ©2018 Mayo Foundation for Medical Education and Research Page 1 of 14 MC4091-83rev1018 Muscular Dystrophy Panel Muscular Dystrophy Panel Gene GenBank Accession Number Gene GenBank Accession Number ACTA1 NM_001100 LMNA NM_170707 ANO5 NM_213599 LPIN1 NM_145693 B3GALNT2 NM_152490 MATR3 NM_199189 B4GAT1 NM_006876 MYH2 NM_017534 BAG3 NM_004281 MYH7 NM_000257 BIN1 NM_139343 MYOT NM_006790 BVES NM_007073 NEB NM_004543 CAPN3 NM_000070 PLEC NM_000445 CAV3 NM_033337 POMGNT1 NM_017739 CAVIN1 NM_012232 POMGNT2
    [Show full text]
  • A Syndrome-Based Clinical Approach for Clerkship Students General Comments 1. This Is Not an All-Inclusive “Cookbook” for Ev
    A Syndrome-Based Clinical Approach for Clerkship Students General Comments 1. This is not an all-inclusive “cookbook” for every Neurology patient, but a set of guidelines to help you rationally approach patients with certain syndromes (sets of signs and symptoms which suggest a lesion in particular parts of the nervous system). 2. As you obtain a history and perform a neurological physical exam, try initially to localize all the patient’s signs and symptoms to one, single lesion in the nervous system. It may be surprising that a variety of signs and symptoms, at first glance apparently unrelated, on second thought can localize accurately to a single lesion. If this approach fails, then consider multiple, separate lesions for the patient’s signs and symptoms. 3. The tempo or rate at which signs and symptoms develop or occur often suggests the underlying pathological process. a. sudden onset---favors stroke (ischemia or hemorrhage), seizure, migraine (or other headache syndromes), and trauma b. subacute onset---favors inflammatory, infectious or immune-mediated disorders c. chronic onset---favors degenerative disorders, tumors Toximetabolic disorders, potentially treatable and reversible, may mimic lesions in the nervous system, and can evolve at variable tempos. Hereditary conditions may be congenital (present at birth) and nonprogressive or static, or develop later in life, with variable rates of progression. Family members affected by the same genetic disorder may be remarkably similar with regards to onset and clinical severity, while some genetic disorders vary widely regarding when and how severely family members are affected. 4. In the central nervous system, “positive symptoms or phenomena,” such as flashes of light, or a tingling sensation, suggest “excitation” or increased activity in the nervous system: migraine or seizure.
    [Show full text]
  • Child Neurology: Hereditary Spastic Paraplegia in Children S.T
    RESIDENT & FELLOW SECTION Child Neurology: Section Editor Hereditary spastic paraplegia in children Mitchell S.V. Elkind, MD, MS S.T. de Bot, MD Because the medical literature on hereditary spastic clinical feature is progressive lower limb spasticity B.P.C. van de paraplegia (HSP) is dominated by descriptions of secondary to pyramidal tract dysfunction. HSP is Warrenburg, MD, adult case series, there is less emphasis on the genetic classified as pure if neurologic signs are limited to the PhD evaluation in suspected pediatric cases of HSP. The lower limbs (although urinary urgency and mild im- H.P.H. Kremer, differential diagnosis of progressive spastic paraplegia pairment of vibration perception in the distal lower MD, PhD strongly depends on the age at onset, as well as the ac- extremities may occur). In contrast, complicated M.A.A.P. Willemsen, companying clinical features, possible abnormalities on forms of HSP display additional neurologic and MRI abnormalities such as ataxia, more significant periph- MD, PhD MRI, and family history. In order to develop a rational eral neuropathy, mental retardation, or a thin corpus diagnostic strategy for pediatric HSP cases, we per- callosum. HSP may be inherited as an autosomal formed a literature search focusing on presenting signs Address correspondence and dominant, autosomal recessive, or X-linked disease. reprint requests to Dr. S.T. de and symptoms, age at onset, and genotype. We present Over 40 loci and nearly 20 genes have already been Bot, Radboud University a case of a young boy with a REEP1 (SPG31) mutation. Nijmegen Medical Centre, identified.1 Autosomal dominant transmission is ob- Department of Neurology, PO served in 70% to 80% of all cases and typically re- Box 9101, 6500 HB, Nijmegen, CASE REPORT A 4-year-old boy presented with 2 the Netherlands progressive walking difficulties from the time he sults in pure HSP.
    [Show full text]
  • The Endocytic Membrane Trafficking Pathway Plays a Major Role
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Liverpool Repository RESEARCH ARTICLE The Endocytic Membrane Trafficking Pathway Plays a Major Role in the Risk of Parkinson’s Disease Sara Bandres-Ciga, PhD,1,2 Sara Saez-Atienzar, PhD,3 Luis Bonet-Ponce, PhD,4 Kimberley Billingsley, MSc,1,5,6 Dan Vitale, MSc,7 Cornelis Blauwendraat, PhD,1 Jesse Raphael Gibbs, PhD,7 Lasse Pihlstrøm, MD, PhD,8 Ziv Gan-Or, MD, PhD,9,10 The International Parkinson’s Disease Genomics Consortium (IPDGC), Mark R. Cookson, PhD,4 Mike A. Nalls, PhD,1,11 and Andrew B. Singleton, PhD1* 1Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain 3Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 4Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 5Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom 6Department of Pathophysiology, University of Tartu, Tartu, Estonia 7Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA 8Department of Neurology, Oslo University Hospital, Oslo, Norway 9Department of Neurology and Neurosurgery, Department of Human Genetics, McGill University, Montréal, Quebec, Canada 10Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada 11Data Tecnica International, Glen Echo, Maryland, USA ABSTRACT studies, summary-data based Mendelian randomization Background: PD is a complex polygenic disorder.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Conserved and Novel Properties of Clathrin-Mediated Endocytosis in Dictyostelium Discoideum" (2012)
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2012 Conserved and Novel Properties of Clathrin- Mediated Endocytosis in Dictyostelium Discoideum Laura Macro Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Macro, Laura, "Conserved and Novel Properties of Clathrin-Mediated Endocytosis in Dictyostelium Discoideum" (2012). Student Theses and Dissertations. Paper 163. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. CONSERVED AND NOVEL PROPERTIES OF CLATHRIN- MEDIATED ENDOCYTOSIS IN DICTYOSTELIUM DISCOIDEUM A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Laura Macro June 2012 © Copyright by Laura Macro 2012 CONSERVED AND NOVEL PROPERTIES OF CLATHRIN- MEDIATED ENDOCYTOSIS IN DICTYOSTELIUM DISCOIDEUM Laura Macro, Ph.D. The Rockefeller University 2012 The protein clathrin mediates one of the major pathways of endocytosis from the extracellular milieu and plasma membrane. Clathrin functions with a network of interacting accessory proteins, one of which is the adaptor complex AP-2, to co-ordinate vesicle formation. Disruption of genes involved in clathrin-mediated endocytosis causes embryonic lethality in multicellular animals suggesting that clathrin-mediated endocytosis is a fundamental cellular process. However, loss of clathrin-mediated endocytosis genes in single cell eukaryotes, such as S.cerevisiae (yeast), does not cause lethality, suggesting that clathrin may convey specific advantages for multicellularity.
    [Show full text]
  • Hereditary Spastic Paraplegia
    8 Hereditary Spastic Paraplegia Notes and questions Hereditary Spastic Paraplegia What is Hereditary Spastic Paraplegia? Hereditary Spastic Paraplegia (HSP) is a medical term for a condition that affects muscle function. The terms spastic and paraplegia comes from several words in Greek: • ‘spastic’ means afflicted with spasms (an alteration in muscle tone that results in affected movements) • ‘paraplegia’ meaning an impairment in motor or sensory function of the lower extremities (from the hips down) What are the signs and symptoms of HSP? Muscular spasticity • Individuals with HSP commonly will have lower extremity weakness, spasticity, and muscle stiffness. • This can cause difficulty with walking or a “scissoring” gait. We are grateful to an anonymous donor for making a kind and Other common signs or symptoms include: generous donation to the Neuromuscular and Neurometabolic Centre. • urinary urgency • overactive or over responsive “brisk” reflexes © Hamilton Health Sciences, 2019 PD 9983 – 01/2019 Dpc/pted/HereditarySpasticParaplegia-trh.docx dt/January 15, 2019 ____________________________________________________________________________ 2 7 Hereditary Spastic Paraplegia Hereditary Spastic Paraplegia HSP is usually a chronic or life-long disease that affects If you have any questions about DM1, please speak with your people in different ways. doctor, genetic counsellor, or nurse at the Neuromuscular and Neurometabolic Centre. HSP can be classified as either “Uncomplicated HSP” or “Complicated HSP”. Notes and questions Types of Hereditary Spastic Paraplegia 1. Uncomplicated HSP: • Individuals often experience difficulty walking as the first symptom. • Onset of symptoms can begin at any age, from early childhood through late adulthood. • Symptoms may be non-progressive, or they may worsen slowly over many years.
    [Show full text]
  • Functional Neurologic Disorders and Related Disorders Victor W Mark MD ( Dr
    Functional neurologic disorders and related disorders Victor W Mark MD ( Dr. Mark of the University of Alabama at Birmingham has no relevant financial relationships to disclose. ) Originally released April 18, 2001; last updated December 13, 2018; expires December 13, 2021 Introduction This article includes discussion of psychogenic neurologic disorders, functional neurologic disorder, functional movement disorder, conversion disorder, and hysteria. The foregoing terms may include synonyms, similar disorders, variations in usage, and abbreviations. Overview Several behavioral disorders are related by (1) their resemblance to other, more familiar neurologic disorders; (2) lack of well-established biomarkers (eg, structural lesions on brain imaging studies, seizure waveforms on EEGs); and (3) aggravation of symptoms with the patient s attention to the disorder. However, the features and causes for these disorders are very different among themselves. This topic reviews functional neurologic disorder, Munchausen syndrome, Munchausen syndrome by proxy, and Ganser syndrome. Key points • Functional neurologic disorders are commonly encountered in general neurologic practices and, hence, knowing their manifestations and treatment is crucial for clinical care. • The disturbance is involuntary, yet at the same time it can be controlled by the patient intermittently. • Despite being self-controllable, the disturbance is generally disabling unless expert professional care is provided. • There is no consistent association between functional neurologic disorder and either posttraumatic emotional stress or sexual abuse. • Functional neurologic disturbances disorder responds best to empathetic concern by the clinician; demonstration that the disorder lacks a structural or permanent etiology; explanation that it can be improved with distraction; and guided attempts to reduce triggers of onset. Cognitive behavioral therapy, combined with physical therapy when warranted, is emerging as a successful intervention.
    [Show full text]
  • KIF1A Missense Mutations in SPG30, an Autosomal Recessive Spastic Paraplegia: Distinct Phenotypes According to the Nature of the Mutations
    European Journal of Human Genetics (2012) 20, 645–649 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations Stephan Klebe1,2,3,4,5,6, Alexander Lossos7, Hamid Azzedine1,3,4, Emeline Mundwiller1,3,4, Ruth Sheffer7, Marion Gaussen1,3,4, Cecilia Marelli2, Magdalena Nawara1,3,4, Wassila Carpentier8, Vincent Meyer9,10, Agne`s Rastetter1,3,4,11, Elodie Martin1,3,4,11, Delphine Bouteiller1,3,4, Laurent Orlando1,3,4,11, Gabor Gyapay9, Khalid H El-Hachimi1,3,4,11, Batel Zimmerman7, Moriya Gamliel7, Adel Misk12, Israela Lerer7, Alexis Brice*,1,2,3,4,6, Alexandra Durr1,2,3,4,6 and Giovanni Stevanin*,1,2,3,4,11 The hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative diseases characterised by progressive spasticity in the lower limbs. The nosology of autosomal recessive forms is complex as most mapped loci have been identified in only one or a few families and account for only a small percentage of patients. We used next-generation sequencing focused on the SPG30 chromosomal region on chromosome 2q37.3 in two patients from the original linked family. In addition, wide genome scan and candidate gene analysis were performed in a second family of Palestinian origin. We identified a single homozygous mutation, p.R350G, that was found to cosegregate with the disease in the SPG30 kindred and was absent in 970 control chromosomes while affecting a strongly conserved amino acid at the end of the motor domain of KIF1A.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • ICD9 & ICD10 Neuromuscular Codes
    ICD-9-CM and ICD-10-CM NEUROMUSCULAR DIAGNOSIS CODES ICD-9-CM ICD-10-CM Focal Neuropathy Mononeuropathy G56.00 Carpal tunnel syndrome, unspecified Carpal tunnel syndrome 354.00 G56.00 upper limb Other lesions of median nerve, Other median nerve lesion 354.10 G56.10 unspecified upper limb Lesion of ulnar nerve, unspecified Lesion of ulnar nerve 354.20 G56.20 upper limb Lesion of radial nerve, unspecified Lesion of radial nerve 354.30 G56.30 upper limb Lesion of sciatic nerve, unspecified Sciatic nerve lesion (Piriformis syndrome) 355.00 G57.00 lower limb Meralgia paresthetica, unspecified Meralgia paresthetica 355.10 G57.10 lower limb Lesion of lateral popiteal nerve, Peroneal nerve (lesion of lateral popiteal nerve) 355.30 G57.30 unspecified lower limb Tarsal tunnel syndrome, unspecified Tarsal tunnel syndrome 355.50 G57.50 lower limb Plexus Brachial plexus lesion 353.00 Brachial plexus disorders G54.0 Brachial neuralgia (or radiculitis NOS) 723.40 Radiculopathy, cervical region M54.12 Radiculopathy, cervicothoracic region M54.13 Thoracic outlet syndrome (Thoracic root Thoracic root disorders, not elsewhere 353.00 G54.3 lesions, not elsewhere classified) classified Lumbosacral plexus lesion 353.10 Lumbosacral plexus disorders G54.1 Neuralgic amyotrophy 353.50 Neuralgic amyotrophy G54.5 Root Cervical radiculopathy (Intervertebral disc Cervical disc disorder with myelopathy, 722.71 M50.00 disorder with myelopathy, cervical region) unspecified cervical region Lumbosacral root lesions (Degeneration of Other intervertebral disc degeneration,
    [Show full text]