Containing Phosphotransfer (Hpt) Domain of the Arcb Sensory

Total Page:16

File Type:pdf, Size:1020Kb

Containing Phosphotransfer (Hpt) Domain of the Arcb Sensory View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS 18604 FEBS Letters 408 (1997) 337-340 Interaction between the CheY response regulator and the histidine- containing phosphotransfer (HPt) domain of the ArcB sensory kinase in Escherichia coli Hidenobu Yakua, Masato Katob, Toshio Hakoshimab, Masakatsu Tsuzukia, Takeshi Mizunoa'* "Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464, Japan hDepartment of Molecular Biology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-01, Japan Received 10 March 1997; revised version received 9 April 1997 Bordetella pertussi BvgS sensory kinase, involved in virulence Abstract Bacteria have devised sophisticated His-Asp phos- phorelay signaling systems for eliciting a variety of adaptive regulation, is another example, which is structurally very sim- responses to their environment. The histidine-containing phos- ilar to ArcB [9,13]. An even more striking instance of such a photransfer (HPt) domain, found in many signal transduction HPt domain has emerged from the yeast Saccharomyces cere- protein, functions as a mediator of the His-Asp phosphorelay. visiae osmoregulatory signaling system [10,14]. The Slnlp- The ArcB anaerobic sensor of E. coli contains such a HPt Ypdlp-Ssklp pathway represents yet another design of the domain, although its function is not fully understood. In this phosphorelay, in which Ypdlp containing a HPt domain study, we provide in vivo and in vitro evidence that the HPt plays a crucial role in the His-Asp phosphorelay. Taking all domain is capable of interacting with the CheY receiver, which these examples together, it was proposed that the HPt do- contains a phospho-accepting aspartate residue. mains in a set of signal transducers function as a novel device © 1997 Federation of European Biochemical Societies. for the signal transduction via multi-step phosphorelay [11]. However, exploration of the structure and function of the HPt Key words: Phosphotransfer signaling in E. coli; domains is still at a very early stage. ArcB anerobic sensor; HPt phosphotransfer domain; CheY response regulator Here we focused our attention on the structure and func- tion of the HPt domain of ArcB (originally named ArcBc; see Fig. 1) [7,8]. We recently determined the 3-dimensional struc- ture of ArcBc by X-ray analysis [15]. Based on this structural 1. Introduction information, to address a relevant issue with regard to the structure and function of the HPt domain, we examined a Adaptive response systems in bacterial cells often involve possible interaction between the HPt domain of ArcB and two components of signal transduction proteins, sensory kin- the well-characterized response regulator, CheY, which is in- ases and response regulators [1-4]. To date, instances of the volved in the signal transduction responsible for the chemo- two-component signaling systems have been described in a taxis in E. coli. large number of bacterial species [5]. Furthermore, some have recently been discovered in eukaryotes, including plas- 2. Materials and methods tids, protozoa, fungi, and plants [6]. Most of these signal transduction proteins contain one of the two common phos- 2.1. Bacteria and plasmids - photransfer signaling domains, transmitter and receiver [5]. E. coli K-12 strain DZ225 (F , AenvZ, AlacU169, araD139, rpsL, relA, thiA,flbB) was constructed previously [16]. This strain carries an The transmitters contain a crucial histidine residue, which is ompC-lacZ fusion gene on the chromosome. Strain CSH26 (A[lac-pro] autophosphorylated in an ATP-dependent manner, whereas ara thi) was also used, which is a wild-type with respect to the chemo- the receivers contain an aspartate residue which can acquire tactic behavior. Plasmids, pIAOOl and pIA005, were constructed pre- a phosphoryl group from the phospho-histidine of the cognate viously [7,8], both of which carry the arcB gene, but the latter has the transmitter. Besides these domains, another common domain mutations resulting in the His-292 to Leu, and Asp-576 to Gin sub- stitutions. has recently been identified, which is also implicated in the phosphotransfer signaling [7-10]. This domain, referred to 2.2. Purification of ArcB1 and CheY here as the histidine-containing phosphotransfer (HPt) do- The ArcBc consisting of the HPt domain was purified as described main contains a crucial histidine residue, which appears to previously [7]. For the purification of CheY, a plasmid was con- function as a mediator of phophorelay by acquiring/transfer- structed in this study, in which the CheY-coding region was placed under the T7-promoter on a versatile overexpression vector (pET- ring a phosphoryl group from/to other components (i.e., His- series, NOVAGEN, USA). From the cells carrying this plasmid, the Asp phosphorelay) [11,12]. CheY protein was purified by essentially the same procedures as those c A typical HPt domain was first discovered in the Esche- described for the purification of AtcB . richia coli ArcB sensory kinase responsible for anaerobic reg- 2.3. Enzyme assays ulation, which is unorthodox in the sense that it contains both ß-Galactosidase activity was determined by Miller's method with a transmitter domain and a receiver domain in its primary slight modifications, as described previously [7]. amino acid sequence (see Fig. 1A) [7,8]. In ArcB, these two typical signaling domains are followed by a HPt domain. The 2.4. Phosphorylation experiment Radioactively phosphorylated ArcBc was prepared and purified as described previously [7,8]. Phosphotransfer experiment with phospho- *Corresponding author. Fax: (81) 52-789-4091 ArcBc and CheY was also carried out as described previously [7,8]. 0014-5793/97/S17.00 © 1997 Federation of European Biochemical Societies. All rights reserved. P//S0014-5793(97)00459-6 338 H. Yaku et al.lFEBS Letters 408 (1997) 337-340 2.5. Chemotactic assay on 'swarm' plates For swarm assays, tryptone semisolid agar (1% tryptone, 0.5% NaCl, 0.3% agar) supplemented with 50 μg/ml ampicillin was used. An aliquot (3 μΐ) of fresh overnight culture in tryptone-glycerol me- dium (1% tryptone, 0.5% NaCl, 0.5% glycerol, and an appropriate cordon and energy source: 0.1 mM glucose or galactose) was spotted onto the semisolid agar plate, which was then incubated at 30°C for 20 h. For swarm assays under the micro-aerobic conditions, the swarm plate was incubated in GasPak Pouch™ (Becton Dickinson Microbiology, USA), at 30°C for 36 h. 3. Results and discussion Fig. 2. An experimental design to examine a possible in vivo inter- action between CheY and the HPt domain of ArcB. The inset data shows ß-galactosidase activities, determined for strain DZ225 carry- We examined a possible interaction between the HPt do- ing each combination of plasmids, as indicated. Details were given main of ArcB and the CheY response regulator, in vivo and in in the text. vitro. The reason we wanted to address this particular issues is following (Fig. 1). The CheY response regulator interacts nor- ArcB might interact with CheY, as in the case of CheA. To mally with the CheA chemotaxis sensor (Fig. IB) [1]. Among gain a new insight into the structure and function of the HPt a number of sensory kinases, the basic structural design of domain, in this study we tested this idea by taking both in CheA is significantly different from that of other orthodox vivo and in vitro approaches. ones (compare with that of the ArcB transmitter domain in Based on the following experimental rationale, an interac- Fig. 1A) [5]. In fact, the short sequence surrounding the phos- tion of CheY and the HPt domain was first assessed in vivo. phorylated histidine site in CheA does not resemble those We previously demonstrated that the HPt domain of ArcB is surrounding the phosphorylation histidine sites of other or- capable of functioning as a phosphodonor in vivo. Here we thodox transmitters (Fig. 1C, compare with that of the ArcB used the previously constructed plasmid (named pIA005), transmitter domain containing His-1 site). Rather, we noticed which specifies a mutant ArcB protein (named ArcB*) con- that the CheA sequence in question is significantly similar to taining His-717, but lacking both His-292 (His to Leu substi- the sequence of His-2 site in the HPt domain (Fig. 1C). Sec- tution) and Asp-576 (Asp to Gin substitution) (Fig. 2). In ond, recent NMR studies revealed that a domain of CheA other words, the mutant ArcB* protein has the functional containing the phosphorylated histidine site (named PI do- HPt domain, but its transmitter and receiver domains are main) has a global fold of five a-helices that contains a presumably inactive. Provided that ArcB* is overexpressed four-helix bundle [17]. On the other hand, the recent X-ray through the multicopy plasmid, it is capable of phosphorylat- analysis of the isolated HPt domain of ArcB revealed that this ing the OmpR response regulator, even in the absence of its domain also consists of six a-helices containing a four-helix cognate EnvZ sensory kinase [7,8]. Consequently, the resul- bundle with a kidney-like shape [15]. Interestingly, an inspec- tant phospho-OmpR activate an ompC-lacZ fusion gene in tion by superpositioning these two structures containing the strain DZ225 (AenvZ), as schematically shown in Fig. 2 active histidine sites of CheA and the HPt domain of ArcB, (note that the ompC gene is one of the targets of the OmpR respectively, suggested that they are significantly similar to transcriptional activator). This particular phenomenon was each other, based on this structural point of view too [15]. used as a hallmark of the in vivo function of the HPt domain These facts led us to envisage the idea that HPt domain of of ArcB, as follows.
Recommended publications
  • Genome-Wide Identification, Classification, and Analysis of Two-Component Signal System Genes in Maize
    Genome-wide identification, classification, and analysis of two-component signal system genes in maize Z.X. Chu*, Q. Ma*, Y.X. Lin, X.L. Tang, Y.Q. Zhou, S.W. Zhu, J. Fan and B.J. Cheng Anhui Province Key Laboratory of Crop Biology, School of Life Science, Anhui Agricultural University, Hefei, China *These authors contributed equally to this study. Corresponding authors: B.J. Cheng / J. Fan E-mail: [email protected] / [email protected] Genet. Mol. Res. 10 (4): 3316-3330 (2011) Received March 23, 2011 Accepted August 31, 2011 Published December 8, 2011 DOI http://dx.doi.org/10.4238/2011.December.8.3 ABSTRACT. Cytokinins play many vital roles in plant development and physiology. In plants, cytokinin signals are sensed and transduced by the two-component signal system. This signaling cascade is typically com- posed of three proteins: a sensory histidine kinase, a histidine phosphotrans- fer protein, and a response regulator. Through a comprehensive genome- wide analysis of the maize (Zea mays) genome, 48 genes were identified, including 11 ZmHKs, 9 ZmHPs, and 28 ZmRRs (21 A-type ZmRRs and 7 B-type ZmRRs). Using maize genome sequence databases, we analyzed conserved protein motifs and established phylogenetic relationships based on gene structure, homology, and chromosomal location. The duplication of these two-component system genes in the maize genome corresponded to the clusters of these genes in the phylogenetic trees. Sequence analysis of the duplicate genes demonstrated that one gene may be in gene duplica- tion, and that there was significant variation in the evolutionary history of the different gene families.
    [Show full text]
  • Structure and Function of the Archaeal Response Regulator Chey
    Structure and function of the archaeal response PNAS PLUS regulator CheY Tessa E. F. Quaxa, Florian Altegoerb, Fernando Rossia, Zhengqun Lia, Marta Rodriguez-Francoc, Florian Krausd, Gert Bangeb,1, and Sonja-Verena Albersa,1 aMolecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; bLandes-Offensive zur Entwicklung Wissenschaftlich- ökonomischer Exzellenz Center for Synthetic Microbiology & Faculty of Chemistry, Philipps-University-Marburg, 35043 Marburg, Germany; cCell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; and dFaculty of Chemistry, Philipps-University-Marburg, 35043 Marburg, Germany Edited by Norman R. Pace, University of Colorado at Boulder, Boulder, CO, and approved December 13, 2017 (received for review October 2, 2017) Motility is a central feature of many microorganisms and provides display different swimming mechanisms. Counterclockwise ro- an efficient strategy to respond to environmental changes. Bacteria tation results in smooth swimming in well-characterized peritri- and archaea have developed fundamentally different rotary motors chously flagellated bacteria such as Escherichia coli, whereas enabling their motility, termed flagellum and archaellum, respec- rotation in the opposite direction results in tumbling. In contrast, tively. Bacterial motility along chemical gradients, called chemo- in other bacteria (i.e., Vibrio alginolyticus) and haloarchaea, taxis, critically relies on the response regulator CheY, which, when clockwise rotation results
    [Show full text]
  • Crosstalk and the Evolution of Specificity in Two-Component Signaling
    Corrections BIOPHYSICS AND COMPUTATIONAL BIOLOGY PLANT BIOLOGY Correction for “Crosstalk and the evolution of specificity in two- Correction for “Differential processing of Arabidopsis ubiquitin- component signaling,” by Michael A. Rowland and Eric J. Deeds, like Atg8 autophagy proteins by Atg4 cysteine proteases,” by which appeared in issue 15, April 15, 2014, of Proc Natl Acad Sci Jongchan Woo, Eunsook Park, and S. P. Dinesh-Kumar, which USA (111:5550–5555; first published March 31, 2014; 10.1073/ appeared in issue 2, January 14, 2014, of Proc Natl Acad Sci pnas.1317178111). USA (111:863–868; first published December 30, 2013; 10.1073/ The authors note that ref. 4, “Huynh TN, Stewart V (2011) pnas.1318207111). Negative control in two-component signal transduction by trans- The authors note that the following statement should be mitter phosphatase activity. Mol Microbiol 82(2):275–286.” should added to the Acknowledgments: “National Science Foundation instead appear as “Ray JC, Igoshin OA (2010) Adaptable func- Grant NSF-IOS-1258135 funded to Dr. Georgia Drakakaki sup- tionality of transcriptional feedback in bacterial two-component ported Eunsook Park.” systems. PLoS Comput Biol 6(2):e1000676.” www.pnas.org/cgi/doi/10.1073/pnas.1409947111 www.pnas.org/cgi/doi/10.1073/pnas.1408294111 CORRECTIONS www.pnas.org PNAS | June 24, 2014 | vol. 111 | no. 25 | 9325 Downloaded by guest on September 29, 2021 Crosstalk and the evolution of specificity in two-component signaling Michael A. Rowlanda and Eric J. Deedsa,b,1 aCenter for Bioinformatics and bDepartment of Molecular Biosciences, University of Kansas, Lawrence, KS 66047 Edited by Thomas J.
    [Show full text]
  • Response Regulators Implicated in His-To-Asp Phosphotransfer Signaling in Arabidopsis (Escherichia Coli)
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 2691–2696, March 1998 Plant Biology Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis (Escherichia coli) AYA IMAMURA,NAOTO HANAKI,HIROYUKI UMEDA,AYAKO NAKAMURA,TOMOMI SUZUKI,CHIHARU UEGUCHI, AND TAKESHI MIZUNO† Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464, Japan Communicated by Robert Haselkorn, University of Chicago, Chicago, IL, December 29, 1997 (received for review November 7, 1997) ABSTRACT The His to Asp phosphotransfer signal as a mediator of phosphotransfer by acquiringytransferring a transduction mechanism involves three common signaling phosphoryl group fromyto another component (8–12). domains: the transmitter (or His-kinase), the receiver, and the Instances of His-Asp phosphotransfer systems have been histidine-containing phototransfer (HPt) domain. Typically, a found in a large number of bacterial species (3). Inspection of sensor kinase has a His-kinase domain and a response the nucleotide sequence of Escherichia coli reveals at least regulator has a receiver domain containing a phosphoaccept- thirty different sensor-regulator pairs in this single species ing aspartate, whereas a histidine-containing phototransfer (13). This mechanism was once thought to be restricted to domain serves as a mediator of the histidine-to-aspartate prokaryotes. However, many instances have been discovered phosphotransfer. This signal transduction mechanism was in diverse eukaryotic species including higher plants (14–23). thought to be restricted to prokaryotes. However, many ex- The most striking example is the yeast osmo-responsive system amples have been discovered in diverse eukaryotic species (23). Three components, Sln1p (sensor kinase)-Ypd1p (HPt including higher plants.
    [Show full text]
  • Making Informed Decisions: Regulatory Interactions Between Two-Component Systems
    Review TRENDS in Microbiology Vol.11 No.8 August 2003 359 Making informed decisions: regulatory interactions between two-component systems Jetta J.E. Bijlsma and Eduardo A. Groisman Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Avenue, St Louis, MO 63110, USA Bacteria experience a multitude of stresses in the com- phosphorylate from small molecular weight phosphoryl plex niches they inhabit. These stresses are denoted by donors, such as acetyl phosphate and carbamoyl phos- specific signals that typically alter the activity of individ- phate [3,4]. In addition, the vast majority of sensor kinases ual two-component regulatory systems. Processing of exhibit phosphatase activity towards their cognate multiple signals by different two-component systems response regulators. Although most two-component sys- occurs when multiple sensors interact with a single tems entail a single His-to-Asp phosphotransfer event response regulator, by phosphatases interrupting phos- between a histidine kinase and a response regulator, there phoryl transfer in phosphorelays and through transcrip- is a subset that consists of a three-step His-Asp-His-Asp tional and post-transcriptional mechanisms. Gaining phosphorelay (Fig. 1b) [1,2]. The extra phosphorylatable insight into these mechanisms provides an understand- domains in a phosphorelay can be present in separate ing at the molecular level of bacterial adaptation to ever proteins or be part of multi-domain (i.e.
    [Show full text]
  • Mutations Affecting HVO 1357 Or HVO 2248 Cause Hypermotility in Haloferax Volcanii, Suggesting Roles in Motility Regulation
    G C A T T A C G G C A T genes Article Mutations Affecting HVO_1357 or HVO_2248 Cause Hypermotility in Haloferax volcanii, Suggesting Roles in Motility Regulation Michiyah Collins 1 , Simisola Afolayan 1, Aime B. Igiraneza 1, Heather Schiller 1 , Elise Krespan 2, Daniel P. Beiting 2, Mike Dyall-Smith 3,4 , Friedhelm Pfeiffer 4 and Mechthild Pohlschroder 1,* 1 Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] (M.C.); [email protected] (S.A.); [email protected] (A.B.I.); [email protected] (H.S.) 2 Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] (E.K.); [email protected] (D.P.B.) 3 Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville 3010, Australia; [email protected] 4 Computational Biology Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany; [email protected] * Correspondence: [email protected]; Tel.: +1-215-573-2283 Abstract: Motility regulation plays a key role in prokaryotic responses to environmental stimuli. Here, we used a motility screen and selection to isolate hypermotile Haloferax volcanii mutants from a transposon insertion library. Whole genome sequencing revealed that hypermotile mutants were predominantly affected in two genes that encode HVO_1357 and HVO_2248. Alterations of these genes comprised not only transposon insertions but also secondary genome alterations. HVO_1357 Citation: Collins, M.; Afolayan, S.; Igiraneza, A.B.; Schiller, H.; contains a domain that was previously identified in the regulation of bacteriorhodopsin transcription, Krespan, E.; Beiting, D.P.; as well as other domains frequently found in two-component regulatory systems.
    [Show full text]
  • Temporal and Evolutionary Dynamics of Two-Component Signaling Pathways
    Temporal and evolutionary dynamics of two-component signaling pathways The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Salazar, Michael E, and Michael T Laub. “Temporal and Evolutionary Dynamics of Two-Component Signaling Pathways.” Current Opinion in Microbiology 24 (2015): 7–14. As Published http://dx.doi.org/10.1016/j.mib.2014.12.003 Publisher Elsevier Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/105366 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ HHS Public Access Author manuscript Author Manuscript Author ManuscriptCurr Opin Author Manuscript Microbiol. Author Author Manuscript manuscript; available in PMC 2016 April 01. Published in final edited form as: Curr Opin Microbiol. 2015 April ; 24: 7–14. doi:10.1016/j.mib.2014.12.003. Temporal and Evolutionary Dynamics of Two-Component Signaling Pathways Michael E. Salazar1 and Michael T. Laub1,2,* 1Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Abstract Bacteria sense and respond to numerous environmental signals through two-component signaling pathways. Typically, a given stimulus will activate a sensor histidine kinase to autophosphorylate and then phosphotransfer to a cognate response regulator, which can mount an appropriate response. Although these signaling pathways often appear to be simple switches, they can also orchestrate surprisingly sophisticated and complex responses. These temporal dynamics arise from several key regulatory features, including the bifunctionality of histidine kinases as well as positive and negative feedback loops.
    [Show full text]
  • Why Chloroplasts and Mitochondria Retain Their Own Genomes and Genetic Systems
    PAPER Why chloroplasts and mitochondria retain their own COLLOQUIUM genomes and genetic systems: Colocation for redox regulation of gene expression John F. Allen1 Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom Edited by Patrick J. Keeling, University of British Columbia, Vancouver, BC, Canada, and accepted by the Editorial Board April 26, 2015 (received for review January 1, 2015) Chloroplasts and mitochondria are subcellular bioenergetic organ- control. Fig. 2B illustrates the two possible pathways of synthesis elles with their own genomes and genetic systems. DNA replica- of each of the three token proteins, A, B, and C. Synthesis may tion and transmission to daughter organelles produces cytoplasmic begin with transcription of genes in the endosymbiont or of gene inheritance of characters associated with primary events in photo- copies acquired by the host. CoRR proposes that gene location synthesis and respiration. The prokaryotic ancestors of chloroplasts by itself has no structural or functional consequence for the and mitochondria were endosymbionts whose genes became mature form of any protein whereas natural selection never- copied to the genomes of their cellular hosts. These copies gave theless operates to determine which of the two copies is retained. Selection favors continuity of redox regulation of gene A, and rise to nuclear chromosomal genes that encode cytosolic proteins ’ and precursor proteins that are synthesized in the cytosol for import this regulation is sufficient to render the host s unregulated copy into the organelle into which the endosymbiont evolved. What redundant. In contrast, there is a selective advantage to location of genes B and C in the genome of the host (5), and thus it is the accounts for the retention of genes for the complete synthesis endosymbiont copies of B and C that become redundant and are within chloroplasts and mitochondria of a tiny minority of their lost.
    [Show full text]
  • Phosphorylation-Dependent Derepression by the Response Regulator Hnoc in the Shewanella Oneidensis Nitric Oxide Signaling Network
    Phosphorylation-dependent derepression by the response regulator HnoC in the Shewanella oneidensis nitric oxide signaling network Lars Platea,b and Michael A. Marlettaa,b,c,1 aDepartment of Chemistry, The Scripps Research Institute, La Jolla, CA 92037; and Departments of bMolecular and Cell Biology and cChemistry, University of California, Berkeley, CA 94720 Contributed by Michael A. Marletta, September 27, 2013 (sent for review August 10, 2013) Nitric oxide (NO) is an important signaling molecule that regulates with biofilm dispersal by decreasing cyclic-di-GMP levels, al- diverse physiological processes in all domains of life. In many though the nature of the NO sensor and the signaling mechanism gammaproteobacteria, NO controls behavioral responses through are unknown (7). In Legionella pneumophila and Shewanella a complex signaling network involving heme-nitric oxide/oxygen woodyi, heme-nitric oxide/oxygen binding (H-NOX) proteins binding (H-NOX) domains as selective NO sensors. In Shewanella have been identified as selective NO sensors. The H-NOX pro- oneidensis, H-NOX–mediated NO sensing increases biofilm forma- tein controls the activity of a diguanylate cyclase and phospho- tion, which is thought to serve as a protective mechanism against diesterase, thus influencing cyclic-di-GMP levels and biofilm NO cytotoxicity. The H-NOX/NO-responsive (hno) signaling network dispersal (8, 9). In contrast, NO stimulates biofilm formation in involves H-NOX–dependent control of HnoK autophosphorylation Shewanella oneidensis and Vibrio cholerae (6). Here, H-NOX and phosphotransfer from HnoK to three response regulators. proteins act as sensors in a more sophisticated multicomponent Two of these response regulators, HnoB and HnoD, regulate cyclic- signaling system that elevates cyclic-di-GMP levels in response to di-GMP levels and influence biofilm formation.
    [Show full text]
  • Two-Component Systems in Plant Signal Transduction Takeshi Urao, Kazuko Yamaguchi-Shinozaki and Kazuo Shinozaki
    trends in plant science Reviews Two-component systems in plant signal transduction Takeshi Urao, Kazuko Yamaguchi-Shinozaki and Kazuo Shinozaki In plants, two-component systems play important roles in signal transduction in response to environmental stimuli and growth regulators. Genetic and biochemical analyses indicate that sensory hybrid-type histidine kinases, ETR1 and its homologs, function as ethylene re- ceptors and negative regulators in ethylene signaling. Two other hybrid-type histidine kinases, CKI1 and ATHK1, are implicated in cytokinin signaling and osmosensing processes, respectively. A data base search of Arabidopsis ESTs and genome sequences has identified many homologous genes encoding two-component regulators. We discuss the possible origins and functions of these two-component systems in plants. ll living organisms have diverse and sophisticated signal- A multistep His-to-Asp phosphorelay: more than ing strategies to recognize and respond to their environ- two components Amental conditions. Protein phosphorylation is a key Such a simple His-to-Asp phosphorelay is not the only two-com- mechanism for intracellular signal transduction in both eukaryotic ponent system. In some cases, two-component systems include and prokaryotic cells. This process is catalyzed by protein additional signaling modules or motifs and constitute more kinases, and these are classified into three major groups based on complicated phosphorelay circuits (Fig. 1). This additional signal- their substrate specificities: serine/threonine kinases, tyrosine ing domain, known as the histidine-containing phosphotransfer kinases and histidine kinases. Histidine kinases in bacteria play (HPt) domain, was first uncovered in an E. coli anaerobic sensor key roles in sensing and transducing extracellular signals in- ArcB.
    [Show full text]
  • Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens
    International Journal of Molecular Sciences Review Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens Anjali Y. Bhagirath 1,†, Yanqi Li 1,†, Rakesh Patidar 2 , Katherine Yerex 1, Xiaoxue Ma 1, Ayush Kumar 2,* and Kangmin Duan 1,3,* 1 Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; [email protected] (A.Y.B.); [email protected] (Y.L.); [email protected] (K.Y.); [email protected] (X.M.) 2 Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; [email protected] 3 Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada * Correspondence: [email protected] (A.K.); [email protected] (K.D.) † Authors have contributed equally to this work. Received: 18 February 2019; Accepted: 8 April 2019; Published: 10 April 2019 Abstract: Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria.
    [Show full text]
  • Understanding the Posttranslational Regulation of the Response Regulator Rcsb and Acetyl Phosphate As an Acetyl Group Donor in E
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2013 Understanding the Posttranslational Regulation of the Response Regulator Rcsb and Acetyl Phosphate as an Acetyl Group Donor in E. Coli Linda Hu Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Microbiology Commons Recommended Citation Hu, Linda, "Understanding the Posttranslational Regulation of the Response Regulator Rcsb and Acetyl Phosphate as an Acetyl Group Donor in E. Coli" (2013). Dissertations. 722. https://ecommons.luc.edu/luc_diss/722 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2013 Linda Hu LOYOLA UNIVERSITY CHICAGO UNDERSTANDING THE POSTTRANSLATIONAL REGULATION OF THE RESPONSE REGULATOR RCSB AND ACETYL PHOSPHATE AS AN ACETYL GROUP DONOR IN E. COLI A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN MICROBIOLOGY AND IMMUNOLOGY BY LINDA I-LIN HU CHICAGO, IL DECEMBER 2013 Copyright by Linda I-Lin Hu, 2013 All rights reserved. ACKNOWLEDGEMENTS I would like to first thank my husband Nestor. His love and encouragement has been critical throughout my graduate school career. Having him with me has made any challenge feel conquerable. He is my weapon of choice. I also thank my family for all of their patience, love, and support.
    [Show full text]