Sensory Genes Identification with Head Transcriptome of the Migratory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Four New Species of Noctuidae (Lepidoptera) for the Fauna of Serbia Introduction Area Examined
Acta entomologica serbica, 2002, 7 (1/2): 155-161 UDC 595.78,062.1 (497.11) FOUR NEW SPECIES OF NOCTUIDAE (LEPIDOPTERA) FOR THE FAUNA OF SERBIA D. STOJANOVIĆ SCG-21000 Novi Sad, V.Masleše 150/28, Serbia, E-mail: [email protected] Ithas been recorded 516 species for the fauna Noctuidae (Lepidoptera) in Serbia until now. The species Orectis proboscidata,Chortodesfluxa,Mythimnaimpura and Mythimna alopecuri present new-founded species for the fauna of Serbia. The species were found in sur- rounding of Bor (east Serbia). Furthermore, the finding of species Chortodesfluxa presents the first one for former Yugoslavia. KEY WORDS: Noctuidae, Lepidoptera, moths, fauna, Serbia INTRODUCTION Theformer research shows that it has been recorded the five hundred sixteen species of family Noctuidae in Serbia until now. Here are shown several interest- ing species that have been found in the surrounding of Bor (east Serbia), which have not been recorded until now for the fauna of Serbia. AREA EXAMINED The species were found in the surrounding of Bor (east Serbia). The locali- ties of findings are marked on given map with UTM grids (Fig. 1). The locality Stol is drawn on map with appropriate scale. The locality is marked as (EP99). The altitude is about 850 m. The locality Brestovačka banja is drawn on map with appropriate scale. The locality is marked as (EP87). The altitude is about 350 m. Acta ent. serb., 2002, 7 (1/2): 155-161 156 D. STOJANOVIĆ:Four new species of Noctuidae (Lepidoptera) for the fauna of Serbia Fig. 1. Locality of finding RESULTS The following four species of family Noctuidae were found in the surround- ing of Bor (east Serbia): Orectis proboscidata (H-S). -
Olfactory Perception and Behavioral Effects of Sex Pheromone Gland Components in Helicoverpa Armigera and Helicoverpa Assulta
www.nature.com/scientificreports OPEN Olfactory perception and behavioral effects of sex pheromone gland components Received: 10 September 2015 Accepted: 26 February 2016 in Helicoverpa armigera and Published: 15 March 2016 Helicoverpa assulta Meng Xu*, Hao Guo*, Chao Hou*, Han Wu, Ling-Qiao Huang & Chen-Zhu Wang Two sympatric species Helicoverpa armigera and Helicoverpa assulta use (Z)-11-hexadecenal and (Z)-9- hexadecenal as sex pheromone components in reverse ratio. They also share several other pheromone gland components (PGCs). We present a comparative study on the olfactory coding mechanism and behavioral effects of these additional PGCs in pheromone communication of the two species using single sensillum recording, in situ hybridization, calcium imaging, and wind tunnel. We classify antennal sensilla types A, B and C into A, B1, B2, C1, C2 and C3 based on the response profiles, and identify the glomeruli responsible for antagonist detection in both species. The abundance of these sensilla types when compared with the number of OSNs expressing each of six pheromone receptors suggests that HarmOR13 and HassOR13 are expressed in OSNs housed within A type sensilla, HarmOR14b within B and C type sensilla, while HassOR6 and HassOR16 within some of C type sensilla. We find that for H. armigera, (Z)-11-hexadecenol and (Z)-11-hexadecenyl acetate act as behavioral antagonists. For H. assulta, instead, (Z)-11-hexadecenyl acetate acts as an agonist, while (Z)-9-hexadecenol, (Z)-11- hexadecenol and (Z)-9-hexadecenyl acetate are antagonists. The results provide an overall picture of intra- and interspecific olfactory and behavioral responses to all PGCs in two sister species. -
Noctuid Moth (Lepidoptera, Noctuidae) Communities in Urban Parks of Warsaw
POLISH ACADEMY OF SCIENCES • INSTITUTE OF ZOOLOGY MEMORABILIA ZOOLOGICA MEMORABILIA ZOOL. 42 125-148 1986 GRAŻYNA WINIARSKA NOCTUID MOTH (LEPIDOPTERA, NOCTUIDAE) COMMUNITIES IN URBAN PARKS OF WARSAW ABSTRACT A total of 40 noctuid moth species were recorded in four parks of Warsaw. Respective moth communities consisted of a similar number of species (17—25), but differed in their abundance index (3.5 —7.9). In all the parks, the dominant species were Autographa gamma and Discrestra trifolii. The subdominant species were represented by Acronicta psi, Trachea atriplicis, Mamestra suasa, Mythimna pallens, and Catocala nupta. There were differences in the species composition and dominance structure among noctuid moth communities in urban parks, suburban linden- oak-hornbeam forest, and natural linden-oak-hornbeam forest. In the suburban and natural linden-oak-hornbeam forests, the number of species was higher by 40% and their abundance wao 5 — 9 times higher than in the urban parks. The species predominating in parks occurred in very low numbers in suburban and natural habitats. Only T. atriplicis belonged to the group of most abundant species in all the habitats under study. INTRODUCTION In recent years, the interest of ecologists in urban habitats has been increasing as they proved to be rich in plant and animal species. The vegetation of urban green areas is sufficiently well known since its species composition and spatial structure are shaped by gardening treatment. But the fauna of these areas is poorly known, and regular zoological investigations in urban green areas were started not so long ago, when urban green was recognized as one of the most important factors of the urban “natural” habitat (Ciborowski 1976). -
Check List of Noctuid Moths (Lepidoptera: Noctuidae And
Бiологiчний вiсник МДПУ імені Богдана Хмельницького 6 (2), стор. 87–97, 2016 Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (2), pp. 87–97, 2016 ARTICLE UDC 595.786 CHECK LIST OF NOCTUID MOTHS (LEPIDOPTERA: NOCTUIDAE AND EREBIDAE EXCLUDING LYMANTRIINAE AND ARCTIINAE) FROM THE SAUR MOUNTAINS (EAST KAZAKHSTAN AND NORTH-EAST CHINA) A.V. Volynkin1, 2, S.V. Titov3, M. Černila4 1 Altai State University, South Siberian Botanical Garden, Lenina pr. 61, Barnaul, 656049, Russia. E-mail: [email protected] 2 Tomsk State University, Laboratory of Biodiversity and Ecology, Lenina pr. 36, 634050, Tomsk, Russia 3 The Research Centre for Environmental ‘Monitoring’, S. Toraighyrov Pavlodar State University, Lomova str. 64, KZ-140008, Pavlodar, Kazakhstan. E-mail: [email protected] 4 The Slovenian Museum of Natural History, Prešernova 20, SI-1001, Ljubljana, Slovenia. E-mail: [email protected] The paper contains data on the fauna of the Lepidoptera families Erebidae (excluding subfamilies Lymantriinae and Arctiinae) and Noctuidae of the Saur Mountains (East Kazakhstan). The check list includes 216 species. The map of collecting localities is presented. Key words: Lepidoptera, Noctuidae, Erebidae, Asia, Kazakhstan, Saur, fauna. INTRODUCTION The fauna of noctuoid moths (the families Erebidae and Noctuidae) of Kazakhstan is still poorly studied. Only the fauna of West Kazakhstan has been studied satisfactorily (Gorbunov 2011). On the faunas of other parts of the country, only fragmentary data are published (Lederer, 1853; 1855; Aibasov & Zhdanko 1982; Hacker & Peks 1990; Lehmann et al. 1998; Benedek & Bálint 2009; 2013; Korb 2013). In contrast to the West Kazakhstan, the fauna of noctuid moths of East Kazakhstan was studied inadequately. -
Sensillar Expression and Responses of Olfactory Receptors Reveal Different Peripheral Coding in Two Helicoverpa Species Using the Same Pheromone Components
www.nature.com/scientificreports OPEN Sensillar expression and responses of olfactory receptors reveal different peripheral coding in two Received: 06 July 2015 Accepted: 23 November 2015 Helicoverpa species using the same Published: 08 January 2016 pheromone components Hetan Chang1,2,*, Mengbo Guo1,2,*, Bing Wang1, Yang Liu1, Shuanglin Dong2 & Guirong Wang1 Male moths efficiently recognize conspecific sex pheromones thanks to their highly accurate and specific olfactory system. TheHeliothis /Helicoverpa species are regarded as good models for studying the perception of sex pheromones. In this study, we performed a series of experiments to investigate the peripheral mechanisms of pheromone coding in two-closely related species, Helicoverpa armigera and H. assulta. The morphology and distribution patterns of sensilla trichoidea are similar between the two species when observed at the scanning electron microscope, but their performances are different. In H. armigera, three functional types of sensilla trichoidea (A, B and C) were found to respond to different pheromone components, while inH. assulta only two types of such sensilla (A and C) could be detected. The response profiles of all types of sensilla trichoidea in the two species well matched the specificities of the pheromone receptors (PRs) expressed in the same sensilla, as measured in voltage- clamp experiments. The expressions of PRs in neighboring olfactory sensory neurons (OSNs) within the same trichoid sensillum were further confirmed byin situ hybridization. Our results show how the same pheromone components can code for different messages at the periphery of twoHelicoverpa species. Within insect olfaction, the detection of specific pheromones is a particularly attractive system to investigate. In fact, sensitivity to pheromones is much higher that to environmental odors, making the electrophysiological responses to these stimuli much easier to record. -
Harper's Island Wetlands Butterflies & Moths (2020)
Introduction Harper’s Island Wetlands (HIW) nature reserve, situated close to the village of Glounthaune on the north shore of Cork Harbour is well known for its birds, many of which come from all over northern Europe and beyond, but there is a lot more to the wildlife at the HWI nature reserve than birds. One of our goals it to find out as much as we can about all aspects of life, both plant and animal, that live or visit HIW. This is a report on the butterflies and moths of HIW. Butterflies After birds, butterflies are probably the one of the best known flying creatures. While there has been no structured study of them on at HIW, 17 of Ireland’s 33 resident and regular migrant species of Irish butterflies have been recorded. Just this summer we added the Comma butterfly to the island list. A species spreading across Ireland in recent years possibly in response to climate change. Hopefully we can set up regular monitoring of the butterflies at HIW in the next couple of years. Butterfly Species Recorded at Harper’s Island Wetlands up to September 2020. Colias croceus Clouded Yellow Pieris brassicae Large White Pieris rapae Small White Pieris napi Green-veined White Anthocharis cardamines Orange-tip Lycaena phlaeas Small Copper Polyommatus icarus Common Blue Celastrina argiolus Holly Blue Vanessa atalanta Red Admiral Vanessa cardui Painted Lady Aglais io Peacock Aglais urticae Small Tortoiseshell Polygonia c-album Comma Speyeria aglaja Dark-green Fritillary Pararge aegeria Speckled Wood Maniola jurtina Meadow Brown Aphantopus hyperantus Ringlet Moths One group of insects that are rarely seen by visitors to HIW is the moths. -
The National Plant Biosecurity Status Report
The National Plant Biosecurity Status Report 2014 © Plant Health Australia 2015 Disclaimer: This publication is published by Plant Health Australia for information purposes only. Information in the document is drawn from a variety of sources outside This work is copyright. Apart from any use as Plant Health Australia. Although reasonable care was taken in its preparation, Plant Health permitted under the Copyright Act 1968, no part Australia does not warrant the accuracy, reliability, completeness or currency of the may be reproduced by any process without prior information, or its usefulness in achieving any purpose. permission from Plant Health Australia. Given that there are continuous changes in trade patterns, pest distributions, control Requests and enquiries concerning reproduction measures and agricultural practices, this report can only provide a snapshot in time. and rights should be addressed to: Therefore, all information contained in this report has been collected for the 12 month period from 1 January 2014 to 31 December 2014, and should be validated and Communications Manager confirmed with the relevant organisations/authorities before being used. A list of Plant Health Australia contact details (including websites) is provided in the Appendices. 1/1 Phipps Close DEAKIN ACT 2600 To the fullest extent permitted by law, Plant Health Australia will not be liable for any loss, damage, cost or expense incurred in or arising by reason of any person relying on the ISSN 1838-8116 information in this publication. Readers should make and rely on their own assessment An electronic version of this report is available for and enquiries to verify the accuracy of the information provided. -
Unarmed Wainscot Moth Leucania Inermis
Noctuidae Leucania inermis Unarmed Wainscot Moth 10 9 8 n=1 • • 7 High Mt. • • 6 • N 5 • u 4 3 • m 2 • b 1 • e 0 • • • r 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 • 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 NC counties: 20 • • Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec • o 10 • f 9 n=15 • = Sighting or Collection 8 • 7 Low Mt. High counts of: • in NC since 2001 F 6 • l 5 9 - Macon - 2000-06-11 = Not seen since 2001 4 • i 3 8 - Pender - 1996-05-07 g 2 Status Rank h 1 5 - Pender - 1995-05-09 0 NC US NC Global t 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 D Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec a 10 10 9 9 t 8 n=5 8 n=25 e 7 Pd 7 CP s 6 6 5 5 4 4 3 3 2 2 1 1 0 0 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Three periods to each month: 1-10 / 11-20 / 21-31 FAMILY: Noctuidae SUBFAMILY: Noctuinae TRIBE: Leucaniini TAXONOMIC_COMMENTS: One of 30 species in this genus that occur in North America north of Mexico (Lafontaine and Schmidt, 2010; Lafontaine and Schmidt, 2015), 16 of which have been recorded in North Carolina. -
Pest Insects Infesting Carrot and Other Apiaceous Crops
FACTSHEET 01/16 Field Vegetables Dr Rosemary Collier, University of Warwick Pest insects infesting carrot and other Apiaceous crops Carrot and related Apiaceous crops such as parsnip, celeriac and celery may be infested by a relatively small number of damaging pest insect species that can reduce both quality and yield. This factsheet focuses on the pest insects infesting carrot. However, the insects described may also be pests of related crops such as parsnip, celeriac and celery. The factsheet does not cover nematodes or slugs. Figure 1. Carrot fly damage to carrot roots Action points Carrot fly • Use suction trap records to indicate when all species of pest aphid are on the wing. • Use the carrot fly forecast to indicate when adult flies of each generation are likely to emerge and when the • Monitor crops closely. application of insecticide sprays is likely to be most effective. • Use the most effective aphicide treatments available, • Check whether an insecticide spray treatment is able taking account of their effects on natural enemies and be to kill adults or larvae or both stages. To maximise the aware of potential instances of insecticide resistance. ‘knockdown’ effect of insecticide sprays that target adults, they should be applied between 4–6pm on warm days, as Cutworms this is when most female flies are in the crop. • Use pheromone traps to indicate when turnip moths are • Where possible, isolate new crops from possible sources flying and laying eggs. of infestation (older crops), ideally using a separation distance of >1km. • Use a cutworm forecast to estimate the risk of damage to susceptible crops. -
Viruses 2015, 7, 306-319; Doi:10.3390/V7010306 OPEN ACCESS
Viruses 2015, 7, 306-319; doi:10.3390/v7010306 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review History and Current Status of Development and Use of Viral Insecticides in China Xiulian Sun Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; E-Mail: [email protected]; Tel.: +86-27-8719-8641; Fax: +86-27-8719-8072 Academic Editors: John Burand and Madoka Nakai Received: 1 December 2014 / Accepted: 14 January 2015 / Published: 20 January 2015 Abstract: The use of insect viruses as biological control agents started in the early 1960s in China. To date, more than 32 viruses have been used to control insect pests in agriculture, forestry, pastures, and domestic gardens in China. In 2014, 57 products from 11 viruses were authorized as commercial viral insecticides by the Ministry of Agriculture of China. Approximately 1600 tons of viral insecticidal formulations have been produced annually in recent years, accounting for about 0.2% of the total insecticide output of China. The development and use of Helicoverpa armigera nucleopolyhedrovirus, Mamestra brassicae nucleopolyhedrovirus, Spodoptera litura nucleopolyhedrovirus, and Periplaneta fuliginosa densovirus are discussed as case studies. Additionally, some baculoviruses have been genetically modified to improve their killing rate, infectivity, and ultraviolet resistance. In this context, the biosafety assessment of a genetically modified Helicoverpa armigera nucleopolyhedrovirus is discussed. Keywords: viral insecticides; commercialization; genetic modification 1. Introduction Research on insect viruses in China started with the Bombyx mori nucleopolyhedrovirus in the mid-1950s [1] and, to date, more than 200 insect virus isolates have been recorded in China. -
Detecting Deep Divergence in Seventeen Populations of Tea Geometrid (Ectropis Obliqua Prout) in China by COI Mtdna and Cross-Breeding
Detecting Deep Divergence in Seventeen Populations of Tea Geometrid (Ectropis obliqua Prout) in China by COI mtDNA and Cross-Breeding Gui-Hua Zhang1., Zhi-Jun Yuan1., Chuan-Xi Zhang2, Kun-Shan Yin1, Mei-Jun Tang1, Hua-Wei Guo1, Jian-Yu Fu1*, Qiang Xiao1* 1 Key Laboratory of Tea Plants Biology and Resources Utilization of Agriculture Ministry, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China, 2 Institute of Insect Science, Zhejiang University, Hangzhou, China Abstract The tea geometrid (Ectropis obliqua Prout, Lepidoptera: Geometridae) is a dominant chewing insect endemic in most tea- growing areas in China. Recently some E. obliqua populations have been found to be resistant to the nucleopolyhedrovirus (EoNPV), a host-specific virus that has so far been found only in E. obliqua. Although the resistant populations are morphologically indistinguishable from susceptible populations, we conducted a nationwide collection and examined the genetic divergence in the COI region of the mtDNA in E. obliqua. Phylogenetic analyses of mtDNA in 17 populations revealed two divergent clades with genetic distance greater than 3.7% between clades and less than 0.7% within clades. Therefore, we suggest that E. obliqua falls into two distinct groups. Further inheritance analyses using reciprocal single-pair mating showed an abnormal F1 generation with an unbalanced sex ratio and the inability to produce fertile eggs (or any eggs) through F1 self-crossing. These data revealed a potential cryptic species complex with deep divergence and reproductive isolation within E. obliqua. Uneven distribution of the groups suggests a possible geographic effect on the divergence. Future investigations will be conducted to examine whether EoNPV selection or other factors prompted the evolution of resistance. -
25 Host Plant Resistance and Insect Pest Management in Chickpea
25 Host Plant Resistance and Insect Pest Management in Chickpea H.C. SHARMA,1 C.L.L. GOWDA,1 P.C. STEVENSON,2 T.J. RIDSDILL-SMITH,3 S.L. CLEMENT,4 G.V. RANGA RAO,1 J. ROMEIS,5 M. MILES6 AND M. EL BOUHSSINI7 1Genetics Resources Divisions, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Asia Center, Hyderabad 502324, India; 2Natural Resources Institute, University of Greenwich, Chatham, ME4 4TB, UK and Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK; 3CSIRO Entomology, Private Bag No 5, Wembley, WA 6913, Australia; 4USDA-ARS, 59 Johnson Hall, Washington State University, Pullman, WA 99164-6402, USA; 5Agroscope ART Reckenholz Tänikon, Reckenholzstr, 191, 8046 Zurich, Switzerland; 6Department of Primary Industries and Fisheries, 203 Tor Street, PO Box 102, Toowoomba, Queensland 4350, Australia; 7International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria Insect Pest Problems in Chickpea Chickpea (C. arietinum L.) is the third most important legume crop in the world, after dry beans and peas (FAO, 2003). It is cultivated in 42 countries in South Asia, North and Central America, the Mediterranean region, West Asia and North and East Africa. In recent years, it has become an important crop in Australia, Canada and the USA. Nearly 60 insect species are known to feed on chickpea (Reed et al., 1987) (Table 25.1). The important insect pests damaging chickpea in different regions are: ● Wireworms: false wireworm – Gonocephalum spp.; ● Cutworm: black cutworm – A. ipsilon (Hfn.) and turnip moth – A. segetum Schiff.; ● Termite: Microtermes obesi (Holm.) and Odontotermes sp.; ● Leaf-feeding caterpillars: cabbage looper – Trichoplusia ni (Hub.), leaf caterpillar – S.