An Optical Survey of the Partially Embedded Young Cluster in NGC

Total Page:16

File Type:pdf, Size:1020Kb

An Optical Survey of the Partially Embedded Young Cluster in NGC An Optical Survey of the Partially Embedded Young Cluster in NGC 7129 S. E. Dahm1 and L. A. Hillenbrand2 ABSTRACT NGC 7129 is a bright reflection nebula located in the molecular cloud complex near l =105◦.4, b =+9◦.9, about 1.15 kpc distant. Embedded within the reflection nebula is a young cluster dominated by a compact grouping of four early-type stars: BD+65◦1638 (B3V), BD+65◦1637 (B3e), SVS 13 (B5e), and LkHα 234 (B8e). About 80 Hα emission sources brighter than V ∼23 are identified in the region, many of which are presumably T Tauri star members of the cluster. We also present deep (V ∼23), optical (V RCIC ) photometry of a field centered on the reflection nebula and spectral types for more than 130 sources determined from low dispersion, optical spectroscopy. The narrow pre-main sequence evident in the color-magnitude diagram suggests that star formation was rapid and coeval. A median age of about 1.8 Myr is inferred for the Hα and literature-identified X-ray emission sources having established spectral types, using pre- main sequence evolutionary models. Our interpretation of the structure of the molecular cloud and the distribution of young stellar objects is that BD+65◦1638 is primarily responsible for evacuating the blister-like cavity within the molecular cloud. LkHα 234 and several embedded sources evident in near infrared adaptive optics imaging have formed recently within the ridge of compressed molecular gas. The compact cluster of low-mass stars formed concurrently with the early-type members, concentrated within a central radius of ∼0.7 pc. Star formation is simultaneously occurring in a semi-circular arc some ∼3 pc in radius that outlines remaining dense regions of molecular gas. High dispersion, optical spectra are presented for BD+65◦1638, BD+65◦1637, SVS 13, LkHα 234, and V350 Cep. These spectra are discussed in the context of the circumstellar environments inferred for these stars. Subject headings: stars: formation, pre-main sequence - Galaxy: open clusters and associations: individ- ual(NGC 7129) 1. Introduction a tight grouping of B-type stars that includes BD+65◦1638 (B3), BD+65◦1637 (B3e), SVS 13 The bright reflection nebula NGC 7129 (l = ◦ ◦ (B5e), and the Herbig Be star LkHα 234 (B8e). arXiv:1503.06230v1 [astro-ph.SR] 20 Mar 2015 105 ,b =+9.9) is illuminated by the early-type An elongated cavity one parsec in diameter has members of a young stellar cluster emerging from been carved out of L1181, presumably by the stel- a molecular cloud complex composed of the dark lar winds and ultraviolet flux emanating from the nebulae Lynds 1181 (L1181), L1183, and TDS central grouping of B-stars. Shown in Figure 1 395 (Taylor et al. 1987; Yonekura et al. 1997). is a three-color (V RC IC -band) image of the re- Signatures of star formation activity are present flection nebula obtained by G. H. Herbig in 1999 throughout the region including two dozen Herbig- October using the University of Hawaii (UH) 2.2 Haro (HH) objects, two large molecular outflows, m telescope on Mauna Kea. The image clearly numerous nebulous filaments, and embedded in- depicts the dense molecular ridge to the east and frared sources. The cluster is dominated by south, the evacuated region around the four lumi- 1 nous central stars, and the emerging young cluster W. M. Keck Observatory, Kamuela, HI 96743 lying within the reflection nebula. The distance of 2California Institute of Technology 1 NGC7129 was estimated to be ∼1 kpc by Racine cluster core (defined as a 0.5 pc radius arc ex- (1968), but more recent estimates include 1.26 tending from the peak of the local stellar surface kpc (Shevchenko & Yakubov 1989) and 1.15 kpc density). From a star count analysis, Gutermuth (Straiˇzys et al. 2014), which is adopted in this et al. (2004) estimate that there are about 80 clus- analysis. Kun et al. (2008) present a comprehen- ter members within the core, down to a limiting sive literature review of the Cepheus star forming magnitude of KS=16 mag, or approximately 0.055 region including NGC 7129 and its embedded clus- M⊙ for unattenuated sources. In the peripheral ter. Below we summarize only pertinent studies areas Gutermuth et al. (2004) estimate that the that are directly relevant to the present survey of extended cluster population is roughly equal to the young stellar population. that of the core. NGC 7129 and its associated molecular clouds Muzerolle et al. (2004) present 24 µm Multi- have been studied extensively at millimeter wave- band Imaging Photometer for Spitzer (MIPS) lengths by Loren (1975, 1977); Bechis et al. (1978); imaging of NGC 7129 and provide a census of the Bertout (1987); and Miskolczi et al. (2001). These cluster population outside of the reflection neb- 12CO and 13CO surveys have identified multi- ula. Of the 36 sources detected at 24 µm and in ple density enhancements in the region, a semi- at least three IRAC passbands, 13 were classified circular ridge of CO emission to the north, east, as Class 0/I protostars with envelopes including and south of the reflection nebula, and the large FIRS 2 (Class 0), another 18 as Class II sources evacuated cavity centered near BD+65◦1637. In (classical T Tauri stars, CTTS) with relatively low the infrared, Bechis et al. (1978) detected two 100 infrared luminosity, and six were classified as Class µm sources in the area: LkHα 234 and far infrared III sources with emission consistent with that of source 2 (FIRS 2), which has no optical coun- pure stellar photospheres. The majority of these terpart, located some 2′ south of BD+65◦1638. sources are located in an arc sweeping north-east At least two molecular outflows have been iden- to south of the reflection nebula, effectively trac- tified in the region (Edwards & Snell 1983; Liseau ing the densest regions of the remnant molecular & Sandell 1983, Bechis et al. 1978); one cen- cloud. Muzerolle et al. (2004) conclude that star tered on FIRS 2 and the other originating near formation is not concentrated in the cluster core, LkHα234. Yonekura et al. (1997) estimate the to- but rather dispersed over a substantial area, some tal mass of the molecular cloud group associated ∼3 pc in scale. with NGC7129 to be ∼2900 M⊙. Stelzer & Scholz (2009) combined the mid- A single-channel 2.2 µm survey of the region infrared Spitzer surveys of Gutermuth et al. (2004) was carried out by Strom et al. (1976), here- and Muzerolle et al. (2004) with a shallow 22 ks after SVS, in a search for an embedded popula- Chandra Advanced CCD Imaging Spectrometer tion of newly formed stars. Although none were (ACIS) X-ray observation of the region. From the identified, the detection limit of the survey was Spitzer infrared excess sources and the 59 Chandra marginally close to the expected brightness of an X-ray detections, they define a sample of 26 Class average T Tauri star. Cohen & Schwartz (1983) II and 25 Class III cluster members, estimated to identified four new infrared sources in the region, be complete to ∼0.5 M⊙. The disk fraction of one of which was V350 Cep, an M2-type T Tauri the least biased sub-sample composed of lightly +24 star that brightened dramatically between 1970 extincted sources is ∼33−19%. and 1976. Ibryamov et al. (2014) present a photo- While NGC 7129 has been studied extensively metric study for this source that includes a long- at millimeter, micron, and X-ray wavelengths, term light curve constructed from archival data. it remains poorly characterized in the optical. Gutermuth et al. (2004) used the Two Micron Hartigan & Lada (1985) obtained V RC IC and All Sky Survey (2MASS), the FLAMINGOS spec- narrowband Hα CCD imaging of two regions in trograph on the Multiple Mirror Telescope, and NGC 7129 which include most sources from the the Infrared Array Camera (IRAC) onboard the infrared surveys of Cohen & Schwartz (1983) and Spitzer Space Telescope to complete an extensive SVS. V RC IC photometry is provided for about 30 1.2 to 8.0 µm survey of the cluster, ultimately de- sources in these two fields. Magakian et al. (2004) termining a disk fraction of 54±14% within the identified 22 Hα emission stars in the central and 2 northeast cluster regions, complete to V ∼20 us- V350 Cep; in Section 4 the stellar population of ing slitless spectroscopy. V RI− band photometry NGC 7129 is examined to include the early-type for about 100 sources was also obtained, but not stars, the Hα emission sources, and the X-ray de- provided in the published analysis. Magakian et tected sources. We present in tabular form pho- al. (2004) concluded that most of the detected Hα tometry and spectral types determined at optical emission sources were T Tauri stars. Vilnius 7- wavelengths for two subsets of stars: 1) those ex- color photometry down to V =18.8 is provided by hibiting Hα and/or X-ray emission, and 2) others Straiˇzys et al. (2014) for 159 stars in the cluster in the field, some of which exhibit infrared excess. region. The photometric data was used to clas- In Section 5 we discuss the color-magnitude di- sify about half of the detected sources, assign- agram of the pre-main sequence population, the ing spectral types, luminosity classes and deriv- average extinction suffered by those stars with as- ing extinction estimates. The extinction across a signed spectral types, the ages and masses of the 23′×23′ area varies between 0.6 and 2.8 mag, but cluster members, and the infrared color-color dia- in the densest parts of the molecular cloud, AV grams.
Recommended publications
  • Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
    Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars.
    [Show full text]
  • Filter Performance Comparisons for Some Common Nebulae
    Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3.
    [Show full text]
  • Übersicht NGC-Objektauswahl Cepheus Zur Übersichtskarte
    NGC-Objektauswahl Cepheus NGC 40 NGC 7055 NGC 7354 NGC 188 NGC 7076 NGC 7380 NGC 1184 NGC 7129 NGC 7419 NGC 1544 NGC 7139 NGC 7423 NGC 2276 NGC 7142 NGC 7429 NGC 2300 NGC 7160 NGC 7510 NGC 6939 NGC 7226 NGC 7538 NGC 6949 NGC 7235 NGC 7708 NGC 6951 NGC 7261 NGC 7762 NGC 7023 NGC 7281 NGC 7822 Sternbild- Übersicht Zur Objektauswahl: Nummer anklicken Zur Übersichtskarte: Objekt anklicken Sternbildübersicht Auswahl NGC 40_7708 Aufsuchkarte Auswahl NGC 188_Aufsuchkarte 2 UMi 2 Auswahl NGC 1184 Aufsuchkarte Auswahl NGC 1544_2276_2300 Aufsuchkarte Auswahl NGC 6939 Aufsuchkarte Auswahl NGC 6949_6951 Aufsuchkarte Auswahl NGC 7023 Aufsuchkarte Auswahl NGC 7055 Aufsuchkarte Auswahl NGC 7076 Aufsuchkarte Auswahl NGC 7129_7142 Aufsuchkarte Auswahl NGC 7139_7160 Aufsuchkarte Auswahl NGC 7226_7235 Aufsuchkarte Auswahl N 7261_7281 Aufsuchkarte Auswahl NGC 7354_7419_7429_7510_7538 Aufsuchkarte Auswahl NGC 7380_7423 Aufsuchkarte Auswahl NGC 7762_7822 Aufsuchkarte Auswahl NGC 40 Übersichtskarte Aufsuch- Auswahl karte NGC 188 Übersichtskarte Aufsuch- Auswahl karte NGC 1184 Übersichtskarte Aufsuch- Auswahl karte NGC 1544 Übersichtskarte Aufsuch- Auswahl karte N 2276_N 2300 Übersichtskarte Aufsuch- Auswahl karte NGC 6939 Übersichtskarte Aufsuch- Auswahl karte NGC 6949 Übersichtskarte Aufsuch- Auswahl karte NGC 6951 Übersichtskarte Aufsuch- Auswahl karte NGC 7023 Übersichtskarte Aufsuch- Auswahl karte NGC 7055 Übersichtskarte Aufsuch- Auswahl karte NGC 7076 Übersichtskarte Aufsuch- Auswahl karte NGC 7129_7142 Übersichtskarte Aufsuch- Auswahl karte NGC 7139
    [Show full text]
  • Newsletter Archive the Skyscraper October 2018
    the vol. 45 no. 10 Skyscraper October 2018 AMATEUR ASTRONOMICAL SOCIETY OF RHODE ISLAND 47 PEEPTOAD ROAD NORTH SCITUATE, RHODE ISLAND 02857 WWW.THESKYSCRAPERS.ORG In This Issue: 2 Upcoming Meetings 2 Skyscrapers Library Update 3 Moon Maps 4 Observe the Moon 5 The Sun, Moon & Planets in October 6 October Meteor Showers & Still Time to Observe Mars and Saturn 7 On the Change of Seasons 8 NGC 7129 : Cluster & Nebula in Cepheus Saturday, October 20, 7:00pm 9 August Reports at Seagrave Observatory 9 My First Telescope: A Every year, astronomers dedicate one night to really concentrate on our Family Program only natural satellite, the Moon. Observatories around the world will be enjoying the sight of the Moon, in its waxing gibbous phase. Seagrave Memorial Observatory will have its beautiful 1878 8-inch Clark refractor and other telescopes open for the evening. Members of Skyscrap- ers, Inc., guardians of Seagrave Memorial Observatory, will be available to interpret your observations, to make your visit truly a night to remember. Come and be a part of a worldwide effort to introduce, and appreciate, our Phases of the Moon nearest celestial neighbor. Last Quarter Moon October 2 09:45 New Moon October 9 03:47 Seagrave Memorial First Quarter Moon Observatory October 16 18:02 Open Nights Full Hunter's Moon October 24 16:45 Saturdays st 7:00 pm Last Quarter Moon weather permitting October 31 16:40 Upcoming Meetings Skyscrapers Library Update Friday, November 2: Seagrave Observatory Thanks to member Roger Forsythe for his donation of books to Diana Hannikainen: "Stepping Through the Cosmos" our library a couple of months ago.
    [Show full text]
  • SAC's 110 Best of the NGC
    SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Herschel II Lista Di Herschel II
    Herschel II Lista di Herschel II Oltre i 400 Pagina 1 Gabriele Franzo Herschel II Chart R.A. Dec. Size Size Object OTHER Type Con. Mag. SUBR Class NGC Description No. ( h m ) ( o ' ) max min 61 NGC 23 UGC 89 GALXY PEG 00 09.9 +25 55 12 13 2.5 m 1.6 m SBa 3 S st + neb 109 NGC 24 ESO 472-16 GALXY SCL 00 09.9 -24 58 11,6 13,7 6.1 m 1.4 m Sc vF,cL,mE,gbm 85 NGC 125 UGC 286 GALXY PSC 00 28.8 +02 50 12,1 13 1.8 m 1.6 m Sa Ring vF,S,bM,D * sp 85 NGC 151 NGC 153 GALXY CET 00 34.0 -09 42 11,6 13,4 3.8 m 1.6 m SBbc pF,pL,lE 90 degrees,vglbM 109 NGC 175 NGC 171 GALXY CET 00 37.4 -19 56 12,2 13,5 2.1 m 1.9 m SBab pB,pL,E,gbM,r 85 NGC 198 UGC 414 GALXY PSC 00 39.4 +02 48 13,1 13,4 1.1 m 1.1 m Sc F,S,vgbM 37 NGC 206 G+C+N AND 00 40.5 +40 44 99,9 99,9 Pec vF,vL,mE 0 degrees 61 NGC 214 UGC 438 GALXY AND 00 41.5 +25 30 12,3 13,1 1.9 m 1.5 m SBc pF,pS,gvlbM,R 85 NGC 217 MCG - 2- 2- 85 GALXY CET 00 41.6 -10 01 13.5p 99,9 2.7 m 0.6 m Sa F,S,lE 90 degrees,glbM 61 NGC 315 UGC 597 GALXY PSC 00 57.8 +30 21 11,2 13,2 3 m 2.5 m E-SO pB,pL,R,gbM,* 9 nf 3' 85 NGC 337 MCG - 1- 3- 53 GALXY CET 00 59.8 -07 35 11,6 13,3 3 m 1.8 m SBcd pF,L,E,glbM,* 10 f 21 sec 84 NGC 357 MCG - 1- 3- 81 GALXY CET 01 03.4 -06 20 12 13,4 2.5 m 1.7 m SBO-a F,S,iR,sbM,* 14 nf 20'' 60 NGC 410 UGC 735 GALXY PSC 01 11.0 +33 09 11,5 12,7 2.3 m 1.8 m SB0 pB,pL,nf of 2 84 NGC 428 UGC 763 GALXY CET 01 12.9 +00 59 11,5 14,1 4 m 2.9 m Scp F,L,R,bM,er 60 NGC 499 IC 1686 GALXY PSC 01 23.2 +33 28 12,1 12,8 1.7 m 1.3 m E-SO pB,pL,R,3rd of 3 60 NGC 513 UGC 953 GALXY AND 01 24.4 +33 48 12,9 11,1 0.7 m
    [Show full text]
  • The Eldorado Star Party 2013 Binocular and Telescope Observing
    The Eldorado Star Party 2013 Binocular and Telescope Observing Clubs by Bill Flanagan Houston Astronomical Society (in collaboration with Blackie Bolduc and Brad Walter) Purpose and Rules Welcome to the Annual ESP Binocular and Telescope Clubs! The main purpose of these clubs is to give you an opportunity to observe some of the showpiece objects of the fall season under the pristine skies of Southwest Texas. In addition, we have included a few objects in the observing lists that may challenge you to observe some fainter and more obscure objects that present themselves at their very best under the dark skies of ESP. The rules are simple. Just observe the required number of objects listed for each program while you are at the Eldorado Star Party to receive a club badge. Binocular Club The binocular club program is a list consisting of 24 objects called “Great Balls of Fire”. All of the objects in this list are globular clusters and should be observable from the Eldorado Star Party with a good pair of binoculars. You need to observe only 15 out of the 24 objects to qualify for the Binocular Observing Club badge. Cheat sheets for finding these objects are available on the ESP website. Telescope Club The telescope program is a list consisting of 26 objects, all located in the constellations of Cepheus and Cassiopeia. The title of this program is “Ransack the Palace,” and of course the goal of this program is to bag the most precious and beautiful jewels from the palace of King Cepheus and Queen Cassiopeia.
    [Show full text]
  • SPITZER OBSERVATIONS of NGC 2362: PRIMORDIAL DISKS at 5 Myr S
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors - Main The Astronomical Journal, 133:2072Y2086, 2007 May A # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. SPITZER OBSERVATIONS OF NGC 2362: PRIMORDIAL DISKS AT 5 Myr S. E. Dahm1 and L. A. Hillenbrand1 Received 2006 August 6; accepted 2006 December 14 ABSTRACT We present results from a mid-infrared imaging survey of the 5 Myr old cluster NGC 2362 carried out with the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope. The archival mid-infrared data were merged with extant H emission data, optical and near-infrared photometry, and moderate-resolution optical spectroscopy to identify the remnant disk-bearing population of the cluster and to estimate the fraction of stars that still retain pri- mordial circumstellar disks. The principal sample of 232 suspected cluster members with masses ranging from 10 Y to 0.3 M (B2 M5 spectral types) was drawn from known H emission stars, X-ray-detected stars from a single 100 ks archival Chandra observation, and established lithium-rich stars. A second sample of 153 stars over a similar mass range whose membership status was based on optical photometry alone was also examined. Measured fluxes in the op- tical and infrared passbands were fitted with synthetic, low-resolution spectra created using the NextGen atmospheric models, permitting the detection of infrared excesses relative to predicted stellar photospheric fluxes. Using the mea- sured slope of the stellar spectral energy distribution through the four IRAC channels to characterize disk emission for the 195 out of 232 activity/lithium-selected stars and the 105 out of 153 photometric membership candidates having complete IRAC photometry, we derive an upper limit for the primordial, optically thick disk fraction of NGC 2362 of 7% Æ 2%, with another 12% Æ 3% of suspected members exhibiting infrared excesses indicative of weak or op- tically thin disk emission.
    [Show full text]
  • Recent Results from the Spitzer Space Telescope: a New View of the Infrared Universe
    RECENT RESULTS FROM THE SPITZER SPACE TELESCOPE: A NEW VIEW OF THE INFRARED UNIVERSE Giovanni G. Fazio Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Abstract The Spitzer Space Telescope, NASA’s Great Observatory for infrared explo- ration, was launched on August 25, 2003, and is returning excellent scientific data. Combining the intrinsic sensitivity obtained with a cooled telescope in space and the imaging and spectroscopic power of modern array detectors, huge gains have been achieved in exploring the infrared universe. This paper de- scribes the Spitzer Space Telescope and its focal-plane instruments and summa- rizes some of the spectacular images and new scientific results that have been obtained. Keywords: infrared – galaxy classification – interstellar dust – star formation – interacting galaxies – active galactic nuclei – planetary nebula 1. Introduction Infrared astronomy, which covers the wavelength region from 1 to 1000 m, is concerned primarily with the study of relatively cold objects in the universe with temperatures ranging from a few degrees Kelvin to about 2000 K. One principal source of infrared radiation in the interstellar medium is dust, which absorbs optical and ultraviolet radiation and reradiates at infrared wavelengths. Infrared observations can also penetrate dust-enshrouded sources, which are invisible to optical and ultraviolet radiation. Observations of the early universe at infrared wavelengths have the advantage of seeing galaxies whose optical light has been redshifted into the infrared. However, when using ground-based telescopes, most of the infrared spec- trum in invisible because of atmospheric absorption (Figure 1). Only a few windows from 1 to 30 m wavelength are available.
    [Show full text]
  • October 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting October 12th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: Tom Field, President of Field Tested Systems and Contributing Editor for Sky & Telescope Magazine. His presentation is on Astronomical Spectra. What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Great Martian Opposition Uranian Opposition Lunar Halloween Party Edge of Night Observing Notes: Cepheus – The King Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society BRAS YouTube Channel Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 October 2020 President’s Message Happy October. I hope everybody has been enjoying this early cool front and the taste of fall that comes with it. More to our interests, I hope everybody has been enjoying the longer evenings thanks to our entering Fall. Soon, those nights will start even earlier as Daylight Savings time finally ends for the year— unfortunately, it may be the last Standard Time for some time. Legislation passed over the summer will mandate Louisiana doing away with Standard time if federal law allows, and a bill making it’s way through the US senate right not aims to do just that: so, if you prefer earlier sunsets, take the time to write your congressmen before it’s too late.
    [Show full text]
  • Filter Type and Score Name/Description SB LP UHC OIII
    Filter Performance Comparison based on David Knisely's http://www.cloudynights.com/item.php?item_id=1520 and on http://dso-browser.com/ PN: Planetary Nebula, BN: Bright (diffuse emission) Nebula, CN: Cluster with Nebulosity, SNR: Supernova Remnant Filter type and score N = 10" f/5.6 Object Name/Description Const. Type RA Dec. Size Mg. SB LP UHC OIII H-β S = 9.25" SCT IC 1396 Elephant Trunk Nebula CEP CN 21h39m05s +57º30'00'' 1.5º 3.5 22.14 2 4 3 1 N 52x; S 59x NGC 2264 Cone Nebula MON CN 6h41m00s +9º53'59'' 20' 3.9 19.30 2 3 2 1 N 52x M42 Orion Nebula ORI CN 5h35m17s -5º22'59'' 1.5ºx1º 4.0 22.22 3 5 4 3 N 52x, 71x NGC 7000 North America Nebula CYG BN 21h01m48s +44º12'00'' 2ºx30' 4.0 21.78 2 4 4 3 100mm f/6: 22x NGC 1499 California Nebula PER BN 4h03m11s +36º21'59'' 2.7ºx40' 5.0 23.41 2 2 1 4 100mm f/6: 22x; S 59x M8 Lagoon Nebula SGR CN 18h03m41s -24º22'59'' 45'x30' 5.0 21.72 3 5 5 2 N 52x NGC 2237-9 Rosette Nebula MON CN 6h30m53s +5º03'00'' 1.3ºx1º 5.5 23.59 2 5 5 1 100mm f/6: 22x M17 Swan (Omega) Nebula SGR CN 18h20m47s -16º10'59'' 11' 6.0 20.10 3 4 5 1 N 52x M16 Eagle Nebula SER CN 18h18m48s -13º47'00'' 7' 6.0 19.12 2 4 4 2 N 52x M20 Trifid Nebula SGR CN 18h02m42s -22º58'00'' 28' 6.3 22.43 2 4 3 4 N 52x, 71x NGC 7293 Helix Nebula AQR PN 22h29m36s -20º50'00'' 16'x12' 6.3 20.90 2 4 5 0 N 52x, 71x IC 1805 Heart Nebula CAS CN 2h25m29s +62º00'59'' 1º 6.5 24.28 3 4 4 1 N 52x IC 1848 Soul (Baby) Nebula CAS CN 2h51m23s +60º25'00'' 40'x10' 6.5 21.90 2 4 4 1 8" f/5: 32x; N 52x; S 59x Sh2-276 Barnard's Loop ORI BN 5h54m24s -1º00'00'' 10ºx1º 7.0 27.28 1 2 0 3 100mm f/6: 15x; naked eye M43 De Mairan's Nebula ORI BN 5h35m30s -5º16'00'' 20'x15' 7.0 22.08 3 3 2 4 N 52x, 71x NGC 6960-95 Veil Nebula CYG SNR 20h45m38s +30º42'30'' 3º 7.0 21.29 3 4 5 1 N 52x NGC 7023 Iris Nebula CEP CN 21h01m35s +68º09'59'' 5' 7.1 19.49 3 2 2 1 N 52x Sh2-142 Wizard Nebula (nr.
    [Show full text]