Establishment of a Typing Model for Diffuse Large B-Cell Lymphoma Based on B-Cell Receptor Repertoire Sequencing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UNIVERSITY of CALIFORNIA, SAN DIEGO Functional Analysis of Sall4
UNIVERSITY OF CALIFORNIA, SAN DIEGO Functional analysis of Sall4 in modulating embryonic stem cell fate A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular Pathology by Pei Jen A. Lee Committee in charge: Professor Steven Briggs, Chair Professor Geoff Rosenfeld, Co-Chair Professor Alexander Hoffmann Professor Randall Johnson Professor Mark Mercola 2009 Copyright Pei Jen A. Lee, 2009 All rights reserved. The dissertation of Pei Jen A. Lee is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ Co-Chair ______________________________________________________________ Chair University of California, San Diego 2009 iii Dedicated to my parents, my brother ,and my husband for their love and support iv Table of Contents Signature Page……………………………………………………………………….…iii Dedication…...…………………………………………………………………………..iv Table of Contents……………………………………………………………………….v List of Figures…………………………………………………………………………...vi List of Tables………………………………………………….………………………...ix Curriculum vitae…………………………………………………………………………x Acknowledgement………………………………………………….……….……..…...xi Abstract………………………………………………………………..…………….....xiii Chapter 1 Introduction ..…………………………………………………………………………….1 Chapter 2 Materials and Methods……………………………………………………………..…12 -
Building Bonds Between NHGRI and NICHD • NICHD Has Four ABMGG Boarded Clinical Geneticists • Drs
Building Bonds Between NHGRI NICHD Diana W. Bianchi, M.D. Director, NICHD November 8, 2017 A Vision for NICHD’s Future What’s In a Name? NICHD 18% Other Institutes 82% Eunice Kennedy Shriver National Institute of Child Health and Human Development History of Our Mission ". We will look to the National Institute of Child Health and Human Development for a concentrated attack on the unsolved health problems of children and of mother-infant relationships. This legislation will encourage imaginative research into the complex processes of human development from conception to old age. For the first time, we will have an institute to promote studies directed at the entire life process rather than toward specific diseases or illnesses." —John F. Kennedy, October 17, 1962 My Vision for NICHD-I • Define “our brand” (what is our focus?) • Communicate the message • Listen to the Voice of the Patient • Integrate obstetrics and pediatrics research at NICHD; take the long view (DoHaD) • Advocate for personalized medicine in pediatrics, obstetrics and rehabilitative medicine My Vision for NICHD-II • Stress the importance of data science and sharing to leverage our investments • Analyze best way to identify trainees most likely to succeed • Catalyze innovation • Emphasize the “A” (for “Advice”) in the Advisory Council • Build bridges between other NIH Institutes – especially with NHGRI Ensure Representation of NICHD Populations in Trans-NIH Initiatives • Pregnant women can be enrolled in Phase I • Adults with intellectual disabilities can be enrolled once consent issues have been clarified • Children to be enrolled in Phase II Building Bonds Melissa Parisi MD PhD Medical Genetics Branch: Prenatal Genomics and Therapy Section • New Lab at NHGRI • Focus on Prenatal Treatment of Down syndrome • Incidental Findings Following Prenatal DNA Screening Building Bonds Between NHGRI and NICHD • NICHD has four ABMGG boarded clinical geneticists • Drs. -
Genomic and Expression Profiling of Chromosome 17 in Breast Cancer Reveals Complex Patterns of Alterations and Novel Candidate Genes
[CANCER RESEARCH 64, 6453–6460, September 15, 2004] Genomic and Expression Profiling of Chromosome 17 in Breast Cancer Reveals Complex Patterns of Alterations and Novel Candidate Genes Be´atrice Orsetti,1 Me´lanie Nugoli,1 Nathalie Cervera,1 Laurence Lasorsa,1 Paul Chuchana,1 Lisa Ursule,1 Catherine Nguyen,2 Richard Redon,3 Stanislas du Manoir,3 Carmen Rodriguez,1 and Charles Theillet1 1Ge´notypes et Phe´notypes Tumoraux, EMI229 INSERM/Universite´ Montpellier I, Montpellier, France; 2ERM 206 INSERM/Universite´ Aix-Marseille 2, Parc Scientifique de Luminy, Marseille cedex, France; and 3IGBMC, U596 INSERM/Universite´Louis Pasteur, Parc d’Innovation, Illkirch cedex, France ABSTRACT 17q12-q21 corresponding to the amplification of ERBB2 and collinear genes, and a large region at 17q23 (5, 6). A number of new candidate Chromosome 17 is severely rearranged in breast cancer. Whereas the oncogenes have been identified, among which GRB7 and TOP2A at short arm undergoes frequent losses, the long arm harbors complex 17q21 or RP6SKB1, TBX2, PPM1D, and MUL at 17q23 have drawn combinations of gains and losses. In this work we present a comprehensive study of quantitative anomalies at chromosome 17 by genomic array- most attention (6–10). Furthermore, DNA microarray studies have comparative genomic hybridization and of associated RNA expression revealed additional candidates, with some located outside current changes by cDNA arrays. We built a genomic array covering the entire regions of gains, thus suggesting the existence of additional amplicons chromosome at an average density of 1 clone per 0.5 Mb, and patterns of on 17q (8, 9). gains and losses were characterized in 30 breast cancer cell lines and 22 Our previous loss of heterozygosity mapping data pointed to the primary tumors. -
Centre for Arab Genomic Studies a Division of Sheikh Hamdan Award for Medical Sciences
Centre for Arab Genomic Studies A Division of Sheikh Hamdan Award for Medical Sciences The Catalogue for Transmission Genetics in Arabs CTGA Database tRNA Methyltransferase 1, S. Cerevisiae, Homolog of Alternative Names planus. These findings are further bolstered by the TRMT1 fact that mutations in two other RNA- N2,N2-Dimethylguanosine-26 tRNA methyltransferase genes, NSUN2 and FTSJ1, have Methyltransferase been associated with intellectual disability. tRNA(m(2,2)G26)Dimethyltransferase Record Category Molecular Genetics Gene locus The TRMT1 gene is located on the short arm of chromosome 19 and spans a length of 12.6 kb of WHO-ICD DNA. Its coding sequence is spread across 18 N/A to gene loci exons and it encodes a 72.2 kDa protein product comprised of 659 amino acids. An additional 69.3 Incidence per 100,000 Live Births kDa isoform of the TRMT1 protein exists due to an N/A to gene loci alternatively spliced transcript variant. The gene is widely expressed in the human body, particularly in OMIM Number the nervous system, intestine, spleen, kidney and 611669 lung. Mode of Inheritance Epidemiology in the Arab World N/A to gene loci Saudi Arabia Monies et al. (2017) studied the findings of 1000 Gene Map Locus diagnostic panels and exomes carried out at a next 19p13.13 generation sequencing lab in Saudi Arabia. One patient, a 13-year-old male, presented with speech Description delay, intellectual disability, learning disability, The TRMT1 gene encodes a methyltransferase hypotonia and seizures. Using whole exome enzyme that acts on tRNA. This enzyme, which sequencing, a homozygous mutation consists of a zinc finger motif and an (c.1245_1246del, p.L415fs) was identified in exon arginine/proline rich region at its C-terminus, is 10 of the patient’s TRMT1 gene. -
Frequent Loss of Heterozygosity Targeting the Inactive X Chromosome in Melanoma
6476 Vol. 9, 6476–6482, December 15, 2003 Clinical Cancer Research Frequent Loss of Heterozygosity Targeting the Inactive X Chromosome in Melanoma James O. Indsto,1 Najah T. Nassif,2 INTRODUCTION Richard F. Kefford,1 and Graham J. Mann1 Chromosomal deletions and amplification events are fre- 1Westmead Institute for Cancer Research, University of Sydney at quent in advanced neoplasms and provide evidence for the Westmead Millennium Institute, Westmead, New South Wales, existence and location of putative tumor suppressor genes Australia, and 2Department of Cell and Molecular Biology, University (TSGs) and oncogenes. In melanoma, 9p and 10q deletions are of Technology, Sydney, New South Wales, Australia most frequent, and losses on 6q, 11q, 1p, 15p, 17q, and 18q are also frequently found (1, 2). However, no studies have focused on the X chromosome. In the human female, random inactiva- ABSTRACT tion of one copy of an X chromosome by hypermethylation is an After previous preliminary observations of paradoxical early event in embryogenesis, resulting in most tissues being a deletion events affecting the inactive X chromosome in mel- mosaic in terms of X inactivation status. Neoplasms, being anoma, we have surveyed the X chromosome for deletions clonal expansions of single precursor cells, usually share a using 23 polymorphic microsatellite markers in 28 inform- common X inactivation status. This can be conveniently assayed ative (female XX) metastatic melanomas. Ten tumors (36%) using the methylation-sensitive restriction enzyme HpaII, which showed at least one loss of heterozygosity (LOH) event, and has a recognition site within the highly polymorphic exon 1 in two cases an entire chromosome showed LOH at all CAG repeat (ARTR) in the androgen receptor (AR) gene. -
ITRAQ-Based Quantitative Proteomic Analysis of Processed Euphorbia Lathyris L
Zhang et al. Proteome Science (2018) 16:8 https://doi.org/10.1186/s12953-018-0136-6 RESEARCH Open Access ITRAQ-based quantitative proteomic analysis of processed Euphorbia lathyris L. for reducing the intestinal toxicity Yu Zhang1, Yingzi Wang1*, Shaojing Li2*, Xiuting Zhang1, Wenhua Li1, Shengxiu Luo1, Zhenyang Sun1 and Ruijie Nie1 Abstract Background: Euphorbia lathyris L., a Traditional Chinese medicine (TCM), is commonly used for the treatment of hydropsy, ascites, constipation, amenorrhea, and scabies. Semen Euphorbiae Pulveratum, which is another type of Euphorbia lathyris that is commonly used in TCM practice and is obtained by removing the oil from the seed that is called paozhi, has been known to ease diarrhea. Whereas, the mechanisms of reducing intestinal toxicity have not been clearly investigated yet. Methods: In this study, the isobaric tags for relative and absolute quantitation (iTRAQ) in combination with the liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic method was applied to investigate the effects of Euphorbia lathyris L. on the protein expression involved in intestinal metabolism, in order to illustrate the potential attenuated mechanism of Euphorbia lathyris L. processing. Differentially expressed proteins (DEPs) in the intestine after treated with Semen Euphorbiae (SE), Semen Euphorbiae Pulveratum (SEP) and Euphorbiae Factor 1 (EFL1) were identified. The bioinformatics analysis including GO analysis, pathway analysis, and network analysis were done to analyze the key metabolic pathways underlying the attenuation mechanism through protein network in diarrhea. Western blot were performed to validate selected protein and the related pathways. Results: A number of differentially expressed proteins that may be associated with intestinal inflammation were identified. -
3D Interactions with the Growth Hormone Locus in Cellular Signalling and Cancer-Related Pathways
64 4 Journal of Molecular L Jain et al. 3D interactions with the GH locus 64:4 209–222 Endocrinology RESEARCH 3D interactions with the growth hormone locus in cellular signalling and cancer-related pathways Lekha Jain, Tayaza Fadason, William Schierding, Mark H Vickers, Justin M O’Sullivan and Jo K Perry Liggins Institute, University of Auckland, Auckland, New Zealand Correspondence should be addressed to J K Perry or J M O’Sullivan: [email protected] or [email protected] Abstract Growth hormone (GH) is a peptide hormone predominantly produced by the anterior Key Words pituitary and is essential for normal growth and metabolism. The GH locus contains f growth hormone locus five evolutionarily related genes under the control of an upstream locus control region f GH1 that coordinates tissue-specific expression of these genes. Compromised GH signalling f genome and genetic variation in these genes has been implicated in various disorders including f chromosome capture cancer. We hypothesised that regulatory regions within the GH locus coordinate f cancer expression of a gene network that extends the impact of the GH locus control region. We used the CoDeS3D algorithm to analyse 529 common single nucleotide polymorphisms (SNPs) across the GH locus. This algorithm identifies colocalised Hi-C and eQTL associations to determine which SNPs are associated with a change in gene expression at loci that physically interact within the nucleus. One hundred and eighty-one common SNPs were identified that interacted with 292 eGenes across 48 different tissues. One hundred and forty-five eGenes were regulated intrans . -
The Ribose Methylation Enzyme FTSJ1 Has a Conserved Role in Neuron Morphology and Learning Performance
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.06.430044; this version posted July 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The ribose methylation enzyme FTSJ1 has a conserved role in neuron morphology and learning performance Dilyana G Dimitrova1*, Mira Brazane1*, Julien Pigeon2, Chiara Paolantoni3, Tao Ye4, Virginie Marchand5, Bruno Da Silva1, Elise Schaefer6, Margarita T Angelova1, Zornitza Stark7, Martin Delatycki7, Tracy Dudding-Byth8, Jozef Gecz9, Pierre-Yves Placais10, Laure Teysset1, Thomas Preat10, Amélie Piton4, Bassem A. Hassan2, Jean-Yves Roignant3,11, Yuri Motorin12 and Clément Carré1,#. 1Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France. 2Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France. 3Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland. 4Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, 67400 Illkirch, France. 5Université de Lorraine, CNRS, INSERM, EpiRNASeq Core Facility, UMS2008/US40 IBSLor ,F-54000 Nancy, France. 6Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d’Alsace, Strasbourg, France. 7Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia. Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia. 8University of Newcastle, Newcastle, NSW Australia. -
Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis
Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis Ugo Ala1., Rosario Michael Piro1., Elena Grassi1, Christian Damasco1, Lorenzo Silengo1, Martin Oti2, Paolo Provero1*, Ferdinando Di Cunto1* 1 Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy, 2 Department of Human Genetics and Centre for Molecular and Biomolecular Informatics, University Medical Centre Nijmegen, Nijmegen, The Netherlands Abstract Background: Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings: We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion: Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. Citation: Ala U, Piro RM, Grassi E, Damasco C, Silengo L, et al. -
Differentially Expressed Full-Length, Fusion and Novel Isoforms Transcripts-Based Signature of Well-Differentiated Keratinized Oral Squamous Cell Carcinoma
www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 34), pp: 3227-3243 Research Paper Differentially expressed full-length, fusion and novel isoforms transcripts-based signature of well-differentiated keratinized oral squamous cell carcinoma Neetu Singh1,*, Dinesh Kumar Sahu1,*, Ratnesh Kumar Tripathi1,*, Archana Mishra1,2, Hari Shyam1, Pratap Shankar1, Mayank Jain1, Nawazish Alam1, Anil Kumar1, Abhishek Mishra1, Rebecca Chowdhry3, Anjana Singh4, Sameer Gupta5, Divya Mehrotra6, Preeti Agarwal7, Madhu Mati Goel7, Arun Chaturvedi5, Satya Prakash Agarwal8, Manish Bajpai9, Devendra Kumar Gupta10, Madan Lal Brahma Bhatt11 and Ravi Kant12 1Department of Molecular Biology, Center for Advance Research, King George's Medical University, Lucknow, India 2Department of Surgery, King George’s Medical University, Lucknow, India 3Department of Periodontology, All India Institute of Medical Sciences, Rishikesh, India 4Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, India 5Department of Surgical Oncology, King George's Medical University, Lucknow, India 6Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, India 7Department of Pathology, King George's Medical University, Lucknow, India 8Department of Otorhinolaryngology, King George's Medical University, Lucknow, India 9Department of Physiology, King George's Medical University, Lucknow, India 10Department of Pediatric Surgery, Super Speciality Pediatric Hospital and Post Graduate Teaching Institute, Noida, India 11Department of Radiotherapy, King George's Medical University, Lucknow, India 12Department of Surgical Oncology, All India Institute of Medical Sciences, Rishikesh, India *These authors contributed equally to this work Correspondence to: Neetu Singh, email: [email protected] Keywords: oral tongue squamous cell carcinoma; microarray; transcriptomics; integrative bioinformatics; differentially expressed gene Received: May 11, 2020 Accepted: July 14, 2020 Published: August 25, 2020 Copyright: Singh et al. -
5 Zusammenfassung
Zusammenfassung 5 Zusammenfassung Geistige Behinderung ist eine äußerst heterogene Erkrankung. Schwere Formen dieser Erkrankung, charakterisiert durch einen IQ geringer als 50, haben hauptsächlich genetische Ursachen, wobei viele durch einen Defekt in einem einzigen Gen verursacht werden. In letzter Zeit ist der Nachweis einiger dieser genetischen Defekte, hauptsächlich auf dem X Chromosom, gelungen. Trotzdem bleibt die molekulare Ursache von X-chromosomal gekoppelter geistiger Behinderung (XLMR) in vielen Fällen immer noch ungeklärt. Hingegen hat die Identifizierung von autosomalen Genen, die eine Rolle bei der Entwicklung von kognitiven Fähigkeiten spielen, gerade erst begonnen. Das Ziel der vorliegenden Arbeit war es einen Beitrag zur Erweiterung des Verständnisses der molekularbiologischen Ursachen von geistiger Behinderung zu leisten. Diese Erkrankung ist immer noch eines der größten ungelösten Probleme der klinischen Genetik und ein wichtiger Aspekt der Gesundheitsvorsorge. Als Ursache für X-chromosomale nicht-syndromale geistige Behinderung (NS- XLMR) sind bereits mehrere Gene identifiziert worden. Dennoch legt die geringe Mutationshäufigkeit in den bislang identifizierten Genen bei Familien mit NS-XLMR nahe, daß ungefähr 30 bis 100 weitere NS-XLMR Gene existieren (Ropers et al., 2003). Kürzlich konnte durch die Analyse von Kopplungsdaten verschiedener Familien gezeigt werden, daß ungefähr 30% der genetischen Defekte auf dem proximalen Arm des X-Chromosoms lokalisiert sind (Ropers et al., 2003). Im Rahmen der vorliegenden Arbeit wurde eine systematische Analyse von gehirnspezifisch exprimierten Genen, die in dieser Region des X-Chromosoms lokalisiert sind, durchgeführt. Diese Untersuchungen zeigten, daß Mutationen in den X-chromosomalen Genen FTSJ1 und PQBP1 bei männlichen Patienten zu geistiger Behinderung führen. Ebenso konnte gezeigt werden, daß die unterschiedlichen Mutationen in den verschiedenen Familien mit der Erkrankung kosegregiert. -
A Temporally Controlled Sequence of X-Chromosome Inactivation and Reactivation Defines Female Mouse in Vitro Germ Cells with Meiotic Potential
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455976; this version posted August 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A temporally controlled sequence of X-chromosome inactivation and reactivation defines female mouse in vitro germ cells with meiotic potential Jacqueline Severino1†, Moritz Bauer1,9†, Tom Mattimoe1, Niccolò Arecco1, Luca Cozzuto1, Patricia Lorden2, Norio Hamada3, Yoshiaki Nosaka4,5,6, So Nagaoka4,5,6, Holger Heyn2, Katsuhiko Hayashi7, Mitinori Saitou4,5,6 and Bernhard Payer1,8* Abstract The early mammalian germ cell lineage is characterized by extensive epigenetic reprogramming, which is required for the maturation into functional eggs and sperm. In particular, the epigenome needs to be reset before parental marks can be established and then transmitted to the next generation. In the female germ line, reactivation of the inactive X- chromosome is one of the most prominent epigenetic reprogramming events, and despite its scale involving an entire chromosome affecting hundreds of genes, very little is known about its kinetics and biological function. Here we investigate X-chromosome inactivation and reactivation dynamics by employing a tailor-made in vitro system to visualize the X-status during differentiation of primordial germ cell-like cells (PGCLCs) from female mouse embryonic stem cells (ESCs). We find that the degree of X-inactivation in PGCLCs is moderate when compared to somatic cells and characterized by a large number of genes escaping full inactivation.