Metabolismo De Isoflavonas Y Formación De Equol Por Bacterias Del Tracto Gastrointestinal Humano

Total Page:16

File Type:pdf, Size:1020Kb

Metabolismo De Isoflavonas Y Formación De Equol Por Bacterias Del Tracto Gastrointestinal Humano Programa de Doctorado en Ingeniería Química, Ambiental y Bioalimentaria Metabolismo de isoflavonas y formación de equol por bacterias del tracto gastrointestinal humano. Lucía Vázquez Iglesias Tesis Doctoral Oviedo, 2020 Programa de Doctorado en Ingeniería Química, Ambiental y Bioalimentaria Metabolismo de isoflavonas y formación de equol por bacterias del tracto gastrointestinal humano Lucía Vázquez Iglesias Tesis Doctoral Oviedo, 2020 Este trabajo ha sido realizado en el Instituto de Productos Lácteos de Asturias (IPLA-CSIC) AUTORIZACIÓN PARA LA PRESENTACIÓN DE TESIS DOCTORAL Año Académico: 2019/2020 1.- Datos personales del autor de la Tesis Apellidos: Nombre: Vázquez Iglesias Lucía DNI/Pasaporte/NIE: Teléfono: Correo electrónico: 71668563B 609562520 [email protected] 2.- Datos académicos Programa de Doctorado cursado: Programa en Ingeniería Química, Ambiental y Bioalimentaria Órgano responsable: ) Universidad de Oviedo 8 1 Departamento/Instituto en el que presenta la Tesis Doctoral: 0 2 Departamento de Ingeniería Química y Tecnología del Medio Ambiente . g e Título definitivo de la Tesis R ( Español/Otro Idioma: Inglés: 9 Metabolismo de isoflavonas y formación de 0 0 equol por bacterias del tracto production by bacteria from the human - A gastrointestinal humano. O Rama de conocimiento: V - Ingeniería y Arquitectura T A M 3.- Autorización del Director/es y Tutor de la tesis - R D/Dª: Baltasar Mayo Pérez DNI/Pasaporte/NIE: 10820266-P O Departamento/Instituto: F Departamento de Microbiología y Bioquímica de Productos Lácteos Instituto de Productos Lácteos de Asturias ( IPLA-CSIC) D/Dª: Ana Belén Flórez García DNI/Pasaporte/NIE: 09432953-D Departamento/Instituto/Institución: Departamento de Microbiología y Bioquímica de Productos Lácteos Instituto de Productos Lácteos de Asturias ( IPLA-CSIC) Autorización del Tutor de la tesis D/Dª: Clara González de los Reyes-Gavilán DNI/Pasaporte/NIE: 10594470-A Departamento/Instituto: Departamento de Microbiología y Bioquímica de Productos Lácteos Instituto de Productos Lácteos de Asturias ( IPLA-CSIC) Autoriza la presentación de la tesis doctoral en cumplimiento de lo establecido en el Art. 32 del Reglamento de los Estudios de Doctorado, aprobado por el Consejo de Gobierno, en su sesión del día 20 de julio de 2018 (BOPA del 9 de agosto de 2018) Villaviciosa, 27 Agosto del 2020 Director/es de la Tesis Tutor de la Tesis Fdo.: Baltasar Mayo/ Ana Belén Flórez Fdo.: Clara G. de los Reyes-Gavilán SR. PRESIDENTE DE LA COMISIÓN ACADÉMICA DEL PROGRAMA DE DOCTORADO EN ________________________________________________________________________ ÍNDICE INDEX ÍNDICE/INDEX Lista de abreviaturas i Lista de figuras y tablas iii Resumen/ Summary iv INTRODUCCIÓN /INTRODUCTION 1. ISOFLAVONAS Y EQUOL 1.1 Isoflavonas 1.1.1 Polifenoles y fitoestrógenos 1 1.1.2 Isoflavonas 2 1.1.3 Isoflavonas y soja 3 1.1.4 Metabolismo de isoflavonas 4 1.2 Equol 1.2.1 Características generales 5 1.2.2 Metabolismo de daidzeína y formación de equol 5 1.3 Isoflavonas, equol y salud 1.3.1 Mecanismos de acción 7 1.3.2 Efectos beneficiosos del equol en la salud 8 1.3.2.1 Menopausia 10 1.3.2.2 Sistema cardiovascular 10 1.3.2.3 Salud ósea 11 1.3.2.4 Cánceres hormonodependientes 12 1.3.2.5 Sistema nervioso central 12 1.3.2.6 Otros efectos beneficiosos 13 2. MICROBIOTA INTESTINAL HUMANA 2.1. Composición y enterotipos 13 2.2. Funciones de la microbiota 15 2.2.1. Función metabólica 16 2.2.2. Función inmunológica 17 2.2.3. Función protectora 17 2.3. Factores que influyen en la microbiota 18 2.3.1. Microbiota y dieta 18 2.3.2. Alimentación funcional, probióticos y prebióticos 19 2.4. Métodos de estudio de la microbiota intestinal 20 2.4.1. Modelos intestinales 21 3. MICROBIOTA Y EQUOL 3.1. Fenotipo productor de equol 23 3.1.1. Influencia de la dieta en el fenotipo productor de equol 24 3.2. Microorganismos productores de equol 25 3.3. Caracterización molecular de la formación de equol 28 3.4. Producción biotecnológica de equol 29 3.5. Equol y alimentos funcionales 30 OBJETIVOS/OBJECTIVES 31 TRABAJO EXPERIMENTAL /EXPERIMENTAL WORK CAPÍTULO 1 37 Desarrollo de métodos para identificar y cuantificar poblaciones intestinales involucradas en el metabolismo de las isoflavonas y la producción de equol. CAPÍTULO 2 70 Estudio de las relaciones e interacciones entre isoflavonas, equol y poblaciones bacterianas intestinales. CAPÍTULO 3 100 Caracterización de la producción de equol en muestras fecales y bacterias productoras con el fin de maximizar su síntesis endógena y biotecnológica. DISCUSIÓN/ DISCUSSION 148 CONCLUSIONES/ CONCLUSIONS 162 BIBLIOGRAFÍA/BIBLIOGRAPHY 166 ANEXOS/ANNEXES . Anexo I.- Revisión bibliográfica sobre el equol y sus efectos en la salud humana 186 . Anexo II.- Informe sobre la calidad de los artículos 206 LISTA DE ABREVIATURAS ADN: Ácido desoxirribonucleico FI: Factor de impacto AF: Alimentos funcionales FISH: “Fluorescence in situ hybridization” (Hibridación fluorescente in situ) AGCC: Ácidos grasos de cadena corta FOS: Fructooligosacáridos AOS: Arabinooligosacáridos g: Gramo ARN: Ácido ribonucleico GABA: “Gamma-aminobutyric acid” (Ácido ARNr: Ácido ribonucleico ribosomal gamma-aminobutírico) ATTC: “American Type Culture Collection” GOS: Galactooligosacáridos (Colección Americana de Cultivos Tipo) IgA: Inmunoglobulina A BAL: Bacterias ácido-lácticas ISAPP: “International Scientific Association for CCR: Cáncer colorrectal Probiotics and Prebiotics” (Asociación CIM: Concentración inhibitoria mínima Científica Internacional de Probióticos y cLDL: Colesterol unido a lipoproteínas de baja Prebióticos) densidad Kpb: Kilo pares de bases Ct: “Cycle threshold ” (ciclo umbral en qPCR) L: Litro DGGE: “Denaturing gradient gel electro- mL: Mililitro phoresis” (Electroforesis en geles de gradiente mg: Miligramos desnaturalizantes) MRSA: “Methicillin-resistant Staphylococcus DHD: Dihidrodaidzeína aureus” (S.aureus resistente a la meticilina) DSMZ: “Deutsche Sammlung von Mikroor- NADP(H): Nicotinamida adenina dinucleótido ganismen und Zellkulturen” (Colección fosfato Alemana de Microorganismos y Cultivos Celulares) NGS: “Next-generation sequencing” (Tecnologías de secuenciación masiva) ECV: Enfermedades cardiovasculares nmol: Nanomol EEUU: Estados Unidos de América O-DMA: O-desmetilangolensina EFSA: “European Food Safety Authority” (Autoridad Europea de Seguridad OMS: Organización Mundial de la Salud Alimentaria) ORFs: “Open reading frame” (Pauta abierta de EII: Enfermedad inflamatoria intestinal lectura) EPS: Exopolisacáridos PCR: “Polymerase chain reaction” (Reacción en cadena de la polimerasa) FAD: Flavín adenín dinucleótido Q: Cuartil FAO: “Food and Agriculture Organization of the United Nations” (Organización de las qPCR: “Quantitative polymerase chain Naciones Unidas para la Alimentación y la reaction” (PCR cuantitativa o PCR en tiempo Agricultura) real) FDA: “Food and Drug Administration” R-DHD: R-dihidrodaidzeína (Agencia Americana de Medicamentos y REs: Receptores estrogénicos Alimentación) REα: Receptor estrogénico subtipo alfa Fg: Femtogramo i REβ: Receptor estrogénico subtipo beta Tm: “Melting temperature” (Temperatura de fusión) RT-PCR: “Reverse transcription polymerase chain reaction” (PCR con transcriptasa TNF α: “Tumor necrosis factor alpha” (Factor inversa) de necrosis tumoral alfa) RT-qPCR: “Quantitative reverse TNO: “Nederlandse Organisatie voor Toegepast transcription PCR” (PCR cuantitativa con Natuurwetenschappelijk Onderzoek” transcriptasa inversa) (Organización Holandesa para la Investigación Científica Aplicada) SCI: “ Science citation index” Ufc: Unidades formadoras de colonia S-DHD: S-dihidrodaizeína UHPLC: “Ultra-high-pressure liquid S-THD: S-tetrahidrodaizeína chromatography” (Cromatografía líquida de SHBG: “Sex hormone binding globulin” ultra-alta resolución) (Globulina fijadora de hormonas sexuales) UV: Ultravioleta TGI: Tracto gastrointestinal WHI: “Women’s Health Initiative” THD: Tetrahidrodaidzeína YIT: “Yeoju Institute of technology” (Instituto THS: Terapia hormonal sustitutiva de Tecnología de Yeoju) TIM-2: “The TNO in vitro model of the colon” μ: Tasa específica de crecimiento (Modelo in vitro de colon desarrollado por el TNO) μg: Microgramo ii LISTA DE FIGURAS Y TABLAS Figura/Tabla Título Página Figura 1 Clasificación de los polifenoles según su estructura química: ácidos 1 fenólicos, lignanos, estilbenos y flavonoides, dentro de los cuales se incluyen las isoflavonas. Adaptado de Choi y Shin (2016). Figura 2 Estructura química básica de las isoflavonas glicosiladas y agliconas. Se 3 indican los dos anillos fenólicos y el anillo cromano con las letras A, B y C, respectivamente, así como la numeración de los carbonos y la posición de los radicales cuyos sustituyentes se indican en la tabla adyacente. Figura 3 Metabolismo de la daidzeína y ruta de formación de equol. Se indican las 6 enzimas de la microbiota intestinal humana involucradas en el metabolismo. Adaptado de Mayo et al. (2019). Figura 4 Analogía estructural entre el 17 β-estradiol y el equol. 8 Figura 5 Efectos beneficiosos para la salud humana asociados al consumo de 9 equol. Figura 6 Esquema de la distribución de la composición microbiana a lo largo del 14 tracto gastrointestinal humano en el que se representan los géneros más abundantes, el pH de la sección y la concentración bacteriana aproximada por gramos de contenido fecal. Adaptado de Jandhyala et al. (2015). Figura 7 Esquema del modelo intestinal in vitro TIM-2. El sistema está integrado 22 por: (a) compartimentos con movimientos peristálticos que albergan la materia fecal
Recommended publications
  • The Oral Microbiome of Healthy Japanese People at the Age of 90
    applied sciences Article The Oral Microbiome of Healthy Japanese People at the Age of 90 Yoshiaki Nomura 1,* , Erika Kakuta 2, Noboru Kaneko 3, Kaname Nohno 3, Akihiro Yoshihara 4 and Nobuhiro Hanada 1 1 Department of Translational Research, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan; [email protected] 2 Department of Oral bacteriology, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan; [email protected] 3 Division of Preventive Dentistry, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan; [email protected] (N.K.); [email protected] (K.N.) 4 Division of Oral Science for Health Promotion, Faculty of Dentistry and Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-45-580-8462 Received: 19 August 2020; Accepted: 15 September 2020; Published: 16 September 2020 Abstract: For a healthy oral cavity, maintaining a healthy microbiome is essential. However, data on healthy microbiomes are not sufficient. To determine the nature of the core microbiome, the oral-microbiome structure was analyzed using pyrosequencing data. Saliva samples were obtained from healthy 90-year-old participants who attended the 20-year follow-up Niigata cohort study. A total of 85 people participated in the health checkups. The study population consisted of 40 male and 45 female participants. Stimulated saliva samples were obtained by chewing paraffin wax for 5 min. The V3–V4 hypervariable regions of the 16S ribosomal RNA (rRNA) gene were amplified by PCR.
    [Show full text]
  • Complete Genomic Sequences of Propionibacterium Freudenreichii
    UCLA UCLA Previously Published Works Title Complete genomic sequences of Propionibacterium freudenreichii phages from Swiss cheese reveal greater diversity than Cutibacterium (formerly Propionibacterium) acnes phages. Permalink https://escholarship.org/uc/item/7bf0f2q3 Journal BMC microbiology, 18(1) ISSN 1471-2180 Authors Cheng, Lucy Marinelli, Laura J Grosset, Noël et al. Publication Date 2018-03-01 DOI 10.1186/s12866-018-1159-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California Cheng et al. BMC Microbiology (2018) 18:19 https://doi.org/10.1186/s12866-018-1159-y RESEARCH ARTICLE Open Access Complete genomic sequences of Propionibacterium freudenreichii phages from Swiss cheese reveal greater diversity than Cutibacterium (formerly Propionibacterium) acnes phages Lucy Cheng1,2†, Laura J. Marinelli1,2*†, Noël Grosset3, Sorel T. Fitz-Gibbon4, Charles A. Bowman5, Brian Q. Dang5, Daniel A. Russell5, Deborah Jacobs-Sera5, Baochen Shi6, Matteo Pellegrini4, Jeff F. Miller7,2, Michel Gautier3, Graham F. Hatfull5 and Robert L. Modlin1,2 Abstract Background: A remarkable exception to the large genetic diversity often observed for bacteriophages infecting a specific bacterial host was found for the Cutibacterium acnes (formerly Propionibacterium acnes) phages, which are highly homogeneous. Phages infecting the related species, which is also a member of the Propionibacteriaceae family, Propionibacterium freudenreichii, a bacterium used in production of Swiss-type cheeses, have also been described and are common contaminants of the cheese manufacturing process. However, little is known about their genetic composition and diversity. Results: We obtained seven independently isolated bacteriophages that infect P. freudenreichii from Swiss-type cheese samples, and determined their complete genome sequences.
    [Show full text]
  • The Human Milk Microbiome and Factors Influencing Its
    1 THE HUMAN MILK MICROBIOME AND FACTORS INFLUENCING ITS 2 COMPOSITION AND ACTIVITY 3 4 5 Carlos Gomez-Gallego, Ph. D. ([email protected])1; Izaskun Garcia-Mantrana, Ph. D. 6 ([email protected])2, Seppo Salminen, Prof. Ph. D. ([email protected])1, María Carmen 7 Collado, Ph. D. ([email protected])1,2,* 8 9 1. Functional Foods Forum, Faculty of Medicine, University of Turku, Itäinen Pitkäkatu 4 A, 10 20014, Turku, Finland. Phone: +358 2 333 6821. 11 2. Institute of Agrochemistry and Food Technology, National Research Council (IATA- 12 CSIC), Department of Biotechnology. Valencia, Spain. Phone: +34 96 390 00 22 13 14 15 *To whom correspondence should be addressed. 16 -IATA-CSIC, Av. Agustin Escardino 7, 49860, Paterna, Valencia, Spain. Tel. +34 963900022; 17 E-mail: [email protected] 18 19 20 21 22 23 24 25 26 27 1 1 SUMMARY 2 Beyond its nutritional aspects, human milk contains several bioactive compounds, such as 3 microbes, oligosaccharides, and other substances, which are involved in host-microbe 4 interactions and have a key role in infant health. New techniques have increased our 5 understanding of milk microbiota composition, but little data on the activity of bioactive 6 compounds and their biological role in infants is available. While the human milk microbiome 7 may be influenced by specific factors, including genetics, maternal health and nutrition, mode of 8 delivery, breastfeeding, lactation stage, and geographic location, the impact of these factors on 9 the infant microbiome is not yet known. This article gives an overview of milk microbiota 10 composition and activity, including factors influencing microbial composition and their 11 potential biological relevance on infants' future health.
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for HM-8 Propionibacterium acidifaciens, Oral Taxon Growth Conditions: 191, Strain F0233 Media: Modified Reinforced Clostridial Broth (ATCC® medium 2107) or equivalent Catalog No. HM-8 Tryptic Soy Agar with 5% defibrinated sheep blood or equivalent For research use only. Not for human use. Incubation: Temperature: 37°C Contributor: Atmosphere: Anaerobic (80% N2:10% CO2:10% H2) Jacques Izard, Assistant Member of the Staff, Department of Propagation: Molecular Genetics, The Forsyth Institute, Boston, 1. Keep vial frozen until ready for use, then thaw. Massachusetts 2. Transfer the entire thawed aliquot into a single tube of broth. Manufacturer: 3. Use several drops of the suspension to inoculate an BEI Resources agar slant and/or plate. 4. Incubate the tube, slant and/or plate at 37°C for 48 to Product Description: 72 hours. Bacteria Classification: Propionibacteriaceae, Propionibacterium Citation: Species: Propionibacterium acidifaciens Acknowledgment for publications should read “The following Subtaxon: Oral Taxon 191 reagent was obtained through BEI Resources, NIAID, NIH as Strain: F0233 part of the Human Microbiome Project: Propionibacterium Original Source: Propionibacterium acidifaciens (P. acidifaciens, Oral Taxon 191, Strain F0233, HM-8.” acidifaciens), Oral Taxon 191, strain F0233 was isolated in March 1983 from the subgingival plaque of a 53-year-old Biosafety Level: 2 black male patient with moderate periodontitis.1,2 Appropriate safety procedures should always be used with Comments: P. acidifaciens, Oral Taxon 191, strain F0233 this material. Laboratory safety is discussed in the following (HMP ID 0682) is a reference genome for The Human publication: U.S. Department of Health and Human Microbiome Project (HMP).
    [Show full text]
  • INFECTIOUS DISEASES NEWSLETTER May 2017 T. Herchline, Editor LOCAL NEWS ID Fellows Our New Fellow Starting in July Is Dr. Najmus
    INFECTIOUS DISEASES NEWSLETTER May 2017 T. Herchline, Editor LOCAL NEWS ID Fellows Our new fellow starting in July is Dr. Najmus Sahar. Dr. Sahar graduated from Dow Medical College in Pakistan in 2009. She works in Dayton, OH and completed residency training from the Wright State University Internal Medicine Residency Program in 2016. She is married to Dr. Asghar Ali, a hospitalist in MVH and mother of 3 children Fawad, Ebaad and Hammad. She spends most of her spare time with family in outdoor activities. Dr Alpa Desai will be at Miami Valley Hospital in May and June, and at the VA Medical Center in July. Dr Luke Onuorah will be at the VA Medical Center in May and June, and at Miami Valley Hospital in July. Dr. Najmus Sahar will be at MVH in July. Raccoon Rabies Immune Barrier Breach, Stark County Two raccoons collected this year in Stark County have been confirmed by the Centers of Disease Control and Prevention to be infected with the raccoon rabies variant virus. These raccoons were collected outside the Oral Rabies Vaccination (ORV) zone and represent the first breach of the ORV zone since a 2004 breach in Lake County. In 1997, a new strain of rabies in wild raccoons was introduced into northeastern Ohio from Pennsylvania. The Ohio Department of Health and other partner agencies implemented a program to immunize wild raccoons for rabies using an oral rabies vaccine. This effort created a barrier of immune animals that reduced animal cases and prevented the spread of raccoon rabies into the rest of Ohio.
    [Show full text]
  • Food Microbial Ecology - Eugenia Bezirtzoglou
    MEDICAL SCIENCES - Food Microbial Ecology - Eugenia Bezirtzoglou FOOD MICROBIAL ECOLOGY Eugenia Bezirtzoglou, Democritus University of Thrace, Faculty of Agricultural Development, Department of Food Science and Technology, Laboratory of Microbiology, Biotechnology and Hygiene and Laboratory of food Processing, Orestiada, Greece Keywords: Food, Microbial Ecology Contents 1. Scope of Microbial Ecology 2. Food Microbial Ecosystem 3. Diversity of Habitat 4. Factors influencing the Growth and Survival of Microorganisms in Foods 5. Food Spoilage and its Microbiology 6. Fermented and Microbial Foods 7. Conclusions Related Chapters Glossary Bibliography Biographical Sketch Summary Microbial ecology is the study of microorganisms in their proper environment and their interactions with it. Microbial ecology can give us answers about our origin, our place in the earth ecosystem as well as on our connection to the great diversity of all other organisms. In this vein, studying microbial ecology questions should help to explain the role of microbes in the environment, in food production, in bioengineering and chemicals items and as result will improve our lives. There is a plethora of microorganisms on our planet, most microorganisms remain unknown. It is estimated that we have knowledge only of 1% of the microbial species on Earth. Multiple studies in intestinal ecology have been greatly hampered by the inaccuracy and limitations of culture methods. Many bacteria are difficult to culture or are unculturable, and often media are not truly specific or are too selective for certain bacteria. Furthermore it is impossible to study and compare complete ecosystems, as they exist in the human body, by culturing methods. Molecular tools introduced in microbial ecology made it possible to study the composition of the microecosystems in a different way, which is not dependent on culture techniques.
    [Show full text]
  • Biodiversity, Dynamics, and Characteristics of Propionibacterium
    Biodiversity, dynamics, and characteristics of Propionibacterium freudenreichii in Swiss Emmentaler PDO cheese Turgay, Irmler, Isolini, Amrein, Fröhlich-Wyder, Berthoud, Wagner, Wechsler To cite this version: Turgay, Irmler, Isolini, Amrein, Fröhlich-Wyder, et al.. Biodiversity, dynamics, and characteristics of Propionibacterium freudenreichii in Swiss Emmentaler PDO cheese. Dairy Science & Technology, EDP sciences/Springer, 2011, 91 (4), pp.471-489. 10.1007/s13594-011-0024-7. hal-00930583 HAL Id: hal-00930583 https://hal.archives-ouvertes.fr/hal-00930583 Submitted on 1 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dairy Sci. & Technol. (2011) 91:471–489 DOI 10.1007/s13594-011-0024-7 ORIGINAL PAPER Biodiversity, dynamics, and characteristics of Propionibacterium freudenreichii in Swiss Emmentaler PDO cheese Meral Turgay & Stefan Irmler & Dino Isolini & Rudolf Amrein & Marie-Therese Fröhlich-Wyder & Hélène Berthoud & Elvira Wagner & Daniel Wechsler Received: 23 September 2010 /Revised: 26 February 2011 /Accepted: 4 March 2011 / Published online: 24 May 2011 # INRA and Springer Science+Business Media B.V. 2011 Abstract Propionibacteria are naturally present in raw milk at low levels, but little is known regarding the influence of these wild-type strains on cheese quality.
    [Show full text]
  • A Review of the Source and Function of Microbiota in Breast Milk
    68 A Review of the Source and Function of Microbiota in Breast Milk M. Susan LaTuga, MD, MSPH1 Alison Stuebe, MD, MSc2,3 Patrick C. Seed, MD, PhD4 1 Department of Pediatrics, Division of Neonatology, Albert Einstein Address for correspondence M. Susan LaTuga, MD, MSPH, Albert College of Medicine, Bronx, New York Einstein College of Medicine, 1601 Tenbroeck Ave, 2nd floor, Bronx, NY 2 Department of Obstetrics and Gynecology, University of North 10461 (e-mail: mlatuga@montefiore.org). Carolina School of Medicine 3 Department of Maternal and Child Health, Gillings School of Global Public Health, Chapel Hill, North Carolina 4 Department of Pediatrics, Division of Infectious Diseases, Duke University, Durham, North Carolina Semin Reprod Med 2014;32:68–73 Abstract Breast milk contains a rich microbiota composed of viable skin and non-skin bacteria. The extent of the breast milk microbiota diversity has been revealed through new culture-independent studies using microbial DNA signatures. However, the extent to which the breast milk microbiota are transferred from mother to infant and the function of these breast milk microbiota for the infant are only partially understood. Here, we appraise hypotheses regarding the formation of breast milk microbiota, including retrograde infant-to-mother transfer and enteromammary trafficking, and we review current knowledge of mechanisms determining the extent of breast milk microbiota transfer from mother to infant. We highlight known functions of constituents in the breast milk microbiota—to enhance immunity, liberate nutrients, synergize with breast Keywords milk oligosaccharides to enhance intestinal barrier function, and strengthen a functional ► enteromammary gut–brain axis. We also consider the pathophysiology of maternal mastitis with respect trafficking to a dysbiosis or abnormal shift in the breast milk microbiota.
    [Show full text]
  • Aestuariimicrobium Ganziense Sp. Nov., a New Gram-Positive Bacterium Isolated from Soil in the Ganzi Tibetan Autonomous Prefecture, China
    Aestuariimicrobium ganziense sp. nov., a new Gram-positive bacterium isolated from soil in the Ganzi Tibetan Autonomous Prefecture, China Yu Geng Yunnan University Jiang-Yuan Zhao Yunnan University Hui-Ren Yuan Yunnan University Le-Le Li Yunnan University Meng-Liang Wen yunnan university Ming-Gang Li yunnan university Shu-Kun Tang ( [email protected] ) Yunnan Institute of Microbiology, Yunnan University https://orcid.org/0000-0001-9141-6244 Research Article Keywords: Aestuariimicrobium ganziense sp. nov., Chemotaxonomy, 16S rRNA sequence analysis Posted Date: February 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-215613/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Archives of Microbiology on March 12th, 2021. See the published version at https://doi.org/10.1007/s00203-021-02261-2. Page 1/11 Abstract A novel Gram-stain positive, oval shaped and non-agellated bacterium, designated YIM S02566T, was isolated from alpine soil in Shadui Towns, Ganzi County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, PR China. Growth occurred at 23–35°C (optimum, 30°C) in the presence of 0.5-4 % (w/v) NaCl (optimum, 1%) and at pH 7.0–8.0 (optimum, pH 7.0). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain YIM S02566T was most closely related to the genus Aestuariimicrobium, with Aestuariimicrobium kwangyangense R27T and Aestuariimicrobium soli D6T as its closest relative (sequence similarities were 96.3% and 95.4%, respectively). YIM S02566T contained LL-diaminopimelic acid in the cell wall.
    [Show full text]
  • Vliv Přípravků S Rostlinnými Kanabinoidy Na Orální Mikrobiom
    Vliv přípravků s rostlinnými kanabinoidy na orální mikrobiom Bc. Klaudie Mátéová Diplomová práce 2021 ABSTRAKT Předložená diplomová práce se zabývá vlivem preparátů s kanabinoidy (potravinový doplněk Cannasan IMUNO, zubní pasta Cannasan) na orální mikrobiom. Literární rešerše pojednává zejména o složení orálního mikrobiomu a faktorech, jenž ho ovlivňují. Následuje přehled metod používaných k identifikaci orální mikroflóry a charakteristika kanabinoidů se zaměřením na jejich využití. V experimentální části byly zhodnoceny výsledky testovaných preparátů. Kultivační metodou byla po užívání preparátů Cannasan posuzována změna počtu aerobních a anaerobních mikroorganismů. Dále byla k hodnocení antibakteriálních účinků těchto preparátů využita disková difúzní metoda. Taxonomická analýza mikrobiálních společenstev před a po užívání preparátů Cannasan byla realizována metodou sekvenování nové generace (NGS) na platformě Illumina. U zubní pasty Cannasan byl sledován také vliv na změnu barvy zubů, který nebyl potvrzen. Z dosažených výsledků studie je patrné, že vliv na orální mikroflóru lze přisuzovat výhradně potravinovému doplňku Cannasan IMUNO. Klíčová slova: ústní dutina, orální mikrobiom, konopí, kanabinoidy, NGS ABSTRACT This thesis investigates the effect of cannabinoid preparations (Cannasan IMUNO food supplement, Cannasan toothpaste) on the oral microbiome. Literature search focuses mainly on the oral microbiome composition and the factors influencing it. Consequently, the works outlines a review of methods used for identifying the oral microflora and a characterization of cannabinoids with a focus on their use. The experimental part presents an evaluation of results from the tested preparations. The change in the number of aerobic and anaerobic microorganisms after using Cannasan preparations was assessed using the culture method. Furthermore, the disc diffusion method was used to evaluate the antibacterial effects of these preparations.
    [Show full text]
  • Downloaded from the NBCI FTP Server As Genbank files and Consisted of Two Strains of P
    G C A T T A C G G C A T genes Article A Pan-Genome Guided Metabolic Network Reconstruction of Five Propionibacterium Species Reveals Extensive Metabolic Diversity Tim McCubbin 1, R. Axayacatl Gonzalez-Garcia 1, Robin W. Palfreyman 1 , Chris Stowers 2, Lars K. Nielsen 1 and Esteban Marcellin 1,* 1 Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; [email protected] (T.M.); [email protected] (R.A.G.-G.); [email protected] (R.W.P.); [email protected] (L.K.N.) 2 Corteva Agriscience, Indianapolis, IN 46268, USA; [email protected] * Correspondence: [email protected] Received: 31 July 2020; Accepted: 10 September 2020; Published: 23 September 2020 Abstract: Propionibacteria have been studied extensively since the early 1930s due to their relevance to industry and importance as human pathogens. Still, their unique metabolism is far from fully understood. This is partly due to their signature high GC content, which has previously hampered the acquisition of quality sequence data, the accurate annotation of the available genomes, and the functional characterization of genes. The recent completion of the genome sequences for several species has led researchers to reassess the taxonomical classification of the genus Propionibacterium, which has been divided into several new genres. Such data also enable a comparative genomic approach to annotation and provide a new opportunity to revisit our understanding of their metabolism. Using pan-genome analysis combined with the reconstruction of the first high-quality Propionibacterium genome-scale metabolic model and a pan-metabolic model of current and former members of the genus Propionibacterium, we demonstrate that despite sharing unique metabolic traits, these organisms have an unexpected diversity in central carbon metabolism and a hidden layer of metabolic complexity.
    [Show full text]
  • MICRO-ORGANISMS and RUMINANT DIGESTION: STATE of KNOWLEDGE, TRENDS and FUTURE PROSPECTS Chris Mcsweeney1 and Rod Mackie2
    BACKGROUND STUDY PAPER NO. 61 September 2012 E Organización Food and Organisation des Продовольственная и cельскохозяйственная de las Agriculture Nations Unies Naciones Unidas Organization pour организация para la of the l'alimentation Объединенных Alimentación y la United Nations et l'agriculture Наций Agricultura COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE MICRO-ORGANISMS AND RUMINANT DIGESTION: STATE OF KNOWLEDGE, TRENDS AND FUTURE PROSPECTS Chris McSweeney1 and Rod Mackie2 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO or its Members. 1 Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, 306 Carmody Road, St Lucia Qld 4067, Australia. 2 University of Illinois, Urbana, Illinois, United States of America. This document is printed in limited numbers to minimize the environmental impact of FAO's processes and contribute to climate neutrality. Delegates and observers are kindly requested to bring their copies to meetings and to avoid asking for additional copies. Most FAO meeting documents are available on the Internet at www.fao.org ME992 BACKGROUND STUDY PAPER NO.61 2 Table of Contents Pages I EXECUTIVE SUMMARY .............................................................................................. 5 II INTRODUCTION ............................................................................................................ 7 Scope of the Study ...........................................................................................................
    [Show full text]