New Theoretical Approaches for Correlated Systems in Nonequilibrium
Eur. Phys. J. Special Topics 180, 217–235 (2010) c EDP Sciences, Springer-Verlag 2010 THE EUROPEAN DOI: 10.1140/epjst/e2010-01219-x PHYSICAL JOURNAL SPECIAL TOPICS Review New theoretical approaches for correlated systems in nonequilibrium M. Eckstein1,A.Hackl2, S. Kehrein3, M. Kollar4,M.Moeckel5, P. Werner1, and F.A. Wolf4 1 Institute of Theoretical Physics, ETH Z¨urich, Wolfgang-Pauli-Str. 27, 8093 Z¨urich, Switzerland 2 Institute of Theoretical Physics, Universit¨atzu K¨oln,Z¨ulpicher Str. 77, 50937 K¨oln,Germany 3 Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Physics Department, Ludwig-Maximilians-Universit¨at M¨unchen, Theresienstr. 37, 80333 M¨unchen, Germany 4 Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, Universit¨at Augsburg, 86135 Augsburg, Germany 5 Max Planck Institute of Quantum Optics, Hans-Kopfermann-Str. 1, 85748 Garching, Germany Abstract. We review recent developments in the theory of interacting quan- tum many-particle systems that are not in equilibrium. We focus mainly on the nonequilibrium generalizations of the flow equation approach and of dynamical mean-field theory (DMFT). In the nonequilibrium flow equation approach one first diagonalizes the Hamiltonian iteratively, performs the time evolution in this diagonal basis, and then transforms back to the original basis, thereby avoiding a direct perturbation expansion with errors that grow linearly in time. In non- equilibrium DMFT, on the other hand, the Hubbard model can be mapped onto a time-dependent self-consistent single-site problem. We discuss results from the flow equation approach for nonlinear transport in the Kondo model, and further applications of this method to the relaxation behavior in the ferromagnetic Kondo model and the Hubbard model after an interaction quench.
[Show full text]