The Union of Quantum Field Theory and Non-Equilibrium Thermodynamics

Total Page:16

File Type:pdf, Size:1020Kb

The Union of Quantum Field Theory and Non-Equilibrium Thermodynamics The Union of Quantum Field Theory and Non-equilibrium Thermodynamics Thesis by Anthony Bartolotta In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 24, 2018 ii c 2018 Anthony Bartolotta ORCID: 0000-0003-4971-9545 All rights reserved iii Acknowledgments My time as a graduate student at Caltech has been a journey for me, both professionally and personally. This journey would not have been possible without the support of many individuals. First, I would like to thank my advisors, Sean Carroll and Mark Wise. Without their support, this thesis would not have been written. Despite entering Caltech with weaker technical skills than many of my fellow graduate students, Mark took me on as a student and gave me my first project. Mark also granted me the freedom to pursue my own interests, which proved instrumental in my decision to work on non-equilibrium thermodynamics. I am deeply grateful for being provided this priviledge and for his con- tinued input on my research direction. Sean has been an incredibly effective research advisor, despite being a newcomer to the field of non-equilibrium thermodynamics. Sean was the organizing force behind our first paper on this topic and connected me with other scientists in the broader community; at every step Sean has tried to smoothly transition me from the world of particle physics to that of non-equilibrium thermody- namics. My research would not have been nearly as fruitful without his support. I would also like to thank the other two members of my thesis and candidacy com- mittees, John Preskill and Keith Schwab. Both took time out of their busy schedules to attend my defenses and provide insightful comments on my research. Throughout my graduate career, I had the support of a wonderful set of collab- orators, without whom many projects would not have been possible. I would like to thank: Sean Carroll, Sebastian Deffner, Stefan Leichenauer, Dibyendu Mandal, Jason Pollack, Michael Ramsey-Musolf, and Nicole Yunger-Halpern. Coming from a particle physics background, I am an interloper in the non-equilibrium thermodynamics community. Despite this fact, I was quickly welcomed by the commu- nity. I would like to thank the many participants of the annual “Information Engines at the Frontiers of Nanoscale Thermodynamics” workshop at the Telluride Science Re- search Conference, for providing such a welcoming environment and making me feel at home in a field that was not my own. While I cannot thank everyone individually, I would like to extend my deep graditude to Sebastian Deffner. Without Sebastian, I never would have met the wider non-equilibrium thermodynamics community. Fur- iv thermore, Sebastian has been an indispensible source of career advice and support as I transition out of graduate school. I would like to thank the wonderful community in the Caltech High-Energy Theory group. Clifford Cheung for answering all of my questions about the analytic properties of field theories, and Carol Silberstein for maintaining a semblance of order in the group. I would also like to thank the many PhD students and postdocs in the group for making my time here far more enjoyable: Ning Bao, Charles Cao, Aidan Chatwin- Davies, Enrico Herrmann, Matt Heydeman, Murat Kologlu, Stefan Leichenauer, Jason Pollack, Grant Remmen, Alexander Ridgway, Chia-Hsien Shen, and Ashmeet Singh. I would especially like to thank my long-time officemate Jason Pollack for putting up with my incessant stream of physics questions, and more importantly, for not completely giving up on me after I accidentally glued myself to the printer. For keeping me grounded, and constantly foiling my plans as DM, I would like to thank the Friday night dinner and D&D group: Dustin Anderson, Kevin Barkett, Daniel Brooks, Jeremy Brouillet, and Jason Pollack. For reminding me that there is a world outside of physics and that it is not the only possible topic of conversation, I would like to thank my friends in other departments: Ania Baetica, Thomas Catanach, Niangjun Chen, Albert Chern, Ioannis Filippidis, Yorie Nakahira, and Yong Sheng Soh. For supporting my decision to pursue a career in science since before I can re- member, I would like to thank my parents, Gene and Andrea Bartolotta, and brother, Vince Bartolotta. I would also like to express my deep gratitude to my parents for their continued support in spite of the damage I caused to the house and yard with my “experiments”. Finally, I would like to thank my incredible wife, Yoke Peng Leong. Without her support (and occasional nagging to take a break), graduate school would have been a far different experience. Even in the darkest times of graduate school, Yoke Peng supported me and was a calm voice of reason to my anxiety. I am deeply grateful for her help in getting though graduate school and cannot imagine anyone else I would rather have at my side going forward. My work was supported in part by the Walter Burke Institute for Theoretical Physics at Caltech and by the United States Department of Energy under Grant DE- SC0011632. v Abstract Quantum field theory is the language used to describe nature at its most fundamen- tal scales; while thermodynamics is a framework to describe the collective behavior of macroscopic systems. Recent advances in non-equilibrium thermodynamics have enabled this framework to be applied to smaller systems operating out of thermal equi- librium. This thesis is concerned with both quantum field theory and non-equilibrium thermodynamics independently and with their intersection. First, a purely phenomenological application of quantum field theory is explored in the context of the upcoming Mu2E experiment. This experiment will look for rare decays which would indicate the presence of physics beyond the Standard Model. Using the language of effective field theories, a next-to-leading order analysis of the conversion rate is performed. The focus then shifts to an apparent paradox in the Bayesian interpretation of sta- tistical mechanics. For a Bayesian observer making measurements of an open system, the Shannon entropy decreases, in apparent violation of the Second Law of Thermody- namics. It is shown that rather than utilizing the entropy, which can decrease under Bayesian updates, the Second Law for a Bayesian observer can be rephrased in terms of a cross-entropy which is always non-negative. Finally, the intersection of quantum field theory and non-equilibrium thermody- namics is examined. Using quantum work fluctuation theorems, an investigation of how these frameworks can be applied to a driven quantum field theory is performed. For a time-dependent variant of λφ4, analytic expressions for the work distribution functions at one-loop order are derived. These expressions are shown to satisfy the quantum Jarzynski equality and Crooks fluctuation theorem. vi Published Content and Contributions With the exception of the Introduction, the body of this thesis is adapted from articles that originally appeared in other forms. All articles are available as arXiv preprints. All authors contributed equally. • A. Bartolotta and M. J. Ramsey-Musolf, Coherent µ − e Conversion at Next-to- Leading Order, arXiv:1710.0212 • A. Bartolotta, S. M. Carroll, S. Leichenauer, and J. Pollack, Bayesian second law of thermodynamics, Phys. Rev. E 94 (Aug, 2016) 022102, [arXiv:1508.0242] • A. Bartolotta and S. Deffner, Jarzynski equality for driven quantum field theories, Phys. Rev. X 8 (Feb, 2018) 011033, [arXiv:1710.0082] vii Contents Acknowledgments iii Abstractv Published Content and Contributions vi Contents vii List of Figures and Tables ix Introduction1 Coherent µ − e Conversion at Next-to-Leading Order4 2.1 Introduction5 2.2 Quark-Level CLFV Lagrangian 10 2.3 Chiral Power Counting and Chiral Lagrangians 11 2.4 Scalar-Mediated Conversion 13 2.5 Approximate One-body Interaction 17 2.6 Vector-Mediated Conversion 19 2.7 Hadronic Uncertainties 20 2.8 Wavefunctions of the Muon and Electron 21 2.9 Nuclear Density Distributions 23 2.10 Calculation of the Branching Ratio 24 2.11 Discussion and Analysis 26 2.12 Conclusions 28 2.A Chiral Lagrangian 31 2.B Low-Energy Constants of the Isoscalar Strange Operators 34 2.C Values of Low-Energy Constants and Physical Quantities 36 2.D Momentum Dependence of Approximate One-Body Interaction 37 2.E Nuclear Density Parameters 40 2.F Model Independent Overlap Integrals 42 2.G Formula for the Branching Ratio 45 viii The Bayesian Second Law of Thermodynamics 46 3.1 Introduction 47 3.2 Setup 51 3.2.1 The System and Evolution Probabilities 51 3.2.2 Measurement and Bayesian Updating 53 3.2.3 The Reverse Protocol and Time Reversal 57 3.2.4 Heat Flow 59 3.3 Second Laws from Relative Entropy 60 3.3.1 The Ordinary Second Law from Positivity of Relative Entropy 60 3.3.2 A Refined Second Law from Monotonicity of Relative Entropy 62 3.4 The Bayesian Second Law 63 3.4.1 Cross-Entropy Formulation of the BSL 64 3.4.2 Alternate Formulations of the BSL 66 3.4.3 A Refined BSL from Monotonicity of Relative Entropy 68 3.5 Bayesian Integral Fluctuation Theorems 69 3.6 Applications 73 3.6.1 Special Cases 73 3.6.2 Diffusion of a Gaussian in n Dimensions. 75 3.6.3 Randomly Driven Harmonic Oscillator 76 3.7 Discussion 79 3.A Oscillator Evolution 83 Jarzynski Equality for Driven Quantum Field Theories 86 4.1 Introduction 87 4.2 Preliminaries: Two-Time Measurement Formalism 90 4.3 Restricted Field Theories 91 4.4 Projection Operators And Finite-Time Transitions 93 4.5 Renormalization of time-dependent
Recommended publications
  • Path Integral and Asset Pricing
    Path Integral and Asset Pricing Zura Kakushadze§†1 § Quantigicr Solutions LLC 1127 High Ridge Road #135, Stamford, CT 06905 2 † Free University of Tbilisi, Business School & School of Physics 240, David Agmashenebeli Alley, Tbilisi, 0159, Georgia (October 6, 2014; revised: February 20, 2015) Abstract We give a pragmatic/pedagogical discussion of using Euclidean path in- tegral in asset pricing. We then illustrate the path integral approach on short-rate models. By understanding the change of path integral measure in the Vasicek/Hull-White model, we can apply the same techniques to “less- tractable” models such as the Black-Karasinski model. We give explicit for- mulas for computing the bond pricing function in such models in the analog of quantum mechanical “semiclassical” approximation. We also outline how to apply perturbative quantum mechanical techniques beyond the “semiclas- sical” approximation, which are facilitated by Feynman diagrams. arXiv:1410.1611v4 [q-fin.MF] 10 Aug 2016 1 Zura Kakushadze, Ph.D., is the President of Quantigicr Solutions LLC, and a Full Professor at Free University of Tbilisi. Email: [email protected] 2 DISCLAIMER: This address is used by the corresponding author for no purpose other than to indicate his professional affiliation as is customary in publications. In particular, the contents of this paper are not intended as an investment, legal, tax or any other such advice, and in no way represent views of Quantigic Solutions LLC, the website www.quantigic.com or any of their other affiliates. 1 Introduction In his seminal paper on path integral formulation of quantum mechanics, Feynman (1948) humbly states: “The formulation is mathematically equivalent to the more usual formulations.
    [Show full text]
  • Critical Notice: the Quantum Revolution in Philosophy (Richard Healey; Oxford University Press, 2017)
    Critical notice: The Quantum Revolution in Philosophy (Richard Healey; Oxford University Press, 2017) DAVID WALLACE Richard Healey’s The Quantum Revolution in Philosophy is a terrific book, and yet I disagree with nearly all its main substantive conclusions. The purpose of this review is to say why the book is well worth your time if you have any interest in the interpretation of quantum theory or in the general philosophy of science, and yet why in the end I think Healey’s ambitious project fails to achieve its full goals. The quantum measurement problem is the central problem in philosophy of quantum mechanics, and arguably the most important issue in philosophy of physics more generally; not coincidentally, it has seen some of the field’s best work, and some of its most effective engagement with physics. Yet the debate in the field largely now appears deadlocked: the last few years have seen developments in our understanding of many of the proposed solutions, but not much movement in the overall dialectic. This is perhaps clearest with a little distance: metaphysicians who need to refer to quantum mechanics increasingly tend to talk of “the three main interpretations” (they mean: de Broglie and Bohm’s hidden variable theory; Ghirardi, Rimini and Weber’s (‘GRW’) dynamical-collapse theory; Everett’s many- universes theory) and couch their discussions so as to be, as much as possible, equally valid for any of those three. It is not infrequent for philosophers of physics to use the familiar framework of underdetermination of theory by evidence to discuss the measurement problem.
    [Show full text]
  • Keldysh Field Theory for Dissipation-Induced States of Fermions
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Electronic Thesis and Dissertation Archive - Università di Pisa Department of Physics Master Degree in Physics Curriculum in Theoretical Physics Keldysh Field Theory for dissipation-induced states of Fermions Master Thesis Federico Tonielli Candidate: Supervisor: Federico Tonielli Prof. Dr. Sebastian Diehl University of Koln¨ Graduation Session May 26th, 2016 Academic Year 2015/2016 UNIVERSITY OF PISA Abstract Department of Physics \E. Fermi" Keldysh Field Theory for dissipation-induced states of Fermions by Federico Tonielli The recent experimental progress in manipulation and control of quantum systems, together with the achievement of the many-body regime in some settings like cold atoms and trapped ions, has given access to new scenarios where many-body coherent and dissipative dynamics can occur on an equal footing and the generators of both can be tuned externally. Such control is often guaranteed by the toolbox of quantum optics, hence a description of dynamics in terms of a Markovian Quantum Master Equation with the corresponding Liouvillian generator is sufficient. This led to a new state preparation paradigm where the target quantum state is the unique steady state of the engineered Liouvillian (i.e. the system evolves towards it irrespective of initial conditions). Recent research addressed the possibility of preparing topological fermionic states by means of such dissipative protocol: on one hand, it could overcome a well-known difficulty in cooling systems of fermionic atoms, making easier to induce exotic (also paired) fermionic states; on the other hand dissipatively preparing a topological state allows us to discuss the concept and explore the phenomenology of topological order in the non-equilibrium context.
    [Show full text]
  • The Path Integral Approach to Quantum Mechanics Lecture Notes for Quantum Mechanics IV
    The Path Integral approach to Quantum Mechanics Lecture Notes for Quantum Mechanics IV Riccardo Rattazzi May 25, 2009 2 Contents 1 The path integral formalism 5 1.1 Introducingthepathintegrals. 5 1.1.1 Thedoubleslitexperiment . 5 1.1.2 An intuitive approach to the path integral formalism . .. 6 1.1.3 Thepathintegralformulation. 8 1.1.4 From the Schr¨oedinger approach to the path integral . .. 12 1.2 Thepropertiesofthepathintegrals . 14 1.2.1 Pathintegralsandstateevolution . 14 1.2.2 The path integral computation for a free particle . 17 1.3 Pathintegralsasdeterminants . 19 1.3.1 Gaussianintegrals . 19 1.3.2 GaussianPathIntegrals . 20 1.3.3 O(ℏ) corrections to Gaussian approximation . 22 1.3.4 Quadratic lagrangians and the harmonic oscillator . .. 23 1.4 Operatormatrixelements . 27 1.4.1 Thetime-orderedproductofoperators . 27 2 Functional and Euclidean methods 31 2.1 Functionalmethod .......................... 31 2.2 EuclideanPathIntegral . 32 2.2.1 Statisticalmechanics. 34 2.3 Perturbationtheory . .. .. .. .. .. .. .. .. .. .. 35 2.3.1 Euclidean n-pointcorrelators . 35 2.3.2 Thermal n-pointcorrelators. 36 2.3.3 Euclidean correlators by functional derivatives . ... 38 0 0 2.3.4 Computing KE[J] and Z [J] ................ 39 2.3.5 Free n-pointcorrelators . 41 2.3.6 The anharmonic oscillator and Feynman diagrams . 43 3 The semiclassical approximation 49 3.1 Thesemiclassicalpropagator . 50 3.1.1 VanVleck-Pauli-Morette formula . 54 3.1.2 MathematicalAppendix1 . 56 3.1.3 MathematicalAppendix2 . 56 3.2 Thefixedenergypropagator. 57 3.2.1 General properties of the fixed energy propagator . 57 3.2.2 Semiclassical computation of K(E)............. 61 3.2.3 Two applications: reflection and tunneling through a barrier 64 3 4 CONTENTS 3.2.4 On the phase of the prefactor of K(xf ,tf ; xi,ti) ....
    [Show full text]
  • Quantum Fluctuation
    F EATURE Kavli IPMU Principal Investigator Eiichiro Komatsu Research Area: Theoretical Physics Quantum Fluctuation The 20th century has seen the remarkable is not well known to the public. This ingredient development of the Standard Model of elementary is not contained in the name of ΛCDM, but is particles and elds. The last piece, the Higgs particle, an indispensable part of the Standard Model of was discovered in 2012. In the 21st century, we are cosmology. It is the idea that our ultimate origin is witnessing the similarly remarkable development the quantum mechanical uctuation generated in of the Standard Model of cosmology. In his 2008 the early Universe. However remarkable it may sound, book on“ Cosmology” Steven Weinberg, who led this idea is consistent with all the observational data the development of particle physics, wrote“: This that have been collected so far for the Universe. new excitement in cosmology came as if on cue Furthermore, the evidence supporting this idea keeps for elementary particle physicists. By the 1980s the accumulating and is strengthened as we collect more Standard Model of elementary particles and elds data! It is likely that all the structures we see today in had become well established. Although signicant the Universe, such as galaxies, stars, planets, and lives, theoretical and experimental work continued, there ultimately originated from the quantum uctuation was now little contact between experiment and new in the early Universe. theoretical ideas, and without this contact, particle physics lost much of its liveliness. Cosmology now Borrowing energy from the vacuum offered the excitement that particle physicists had experienced in the 1960s and 1970s.” In quantum mechanics, we can borrow energy The Standard Model of cosmology is known from the vacuum if we promise to return it as the“ ΛCDM model”.
    [Show full text]
  • Quantum-Zeno Fermi Polaron in the Strong Dissipation Limit
    PHYSICAL REVIEW RESEARCH 3, 013086 (2021) Quantum-Zeno Fermi polaron in the strong dissipation limit Tomasz Wasak ,1 Richard Schmidt,2 and Francesco Piazza1 1Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany 2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany (Received 20 January 2020; accepted 24 December 2020; published 28 January 2021) The interplay between measurement and quantum correlations in many-body systems can lead to novel types of collective phenomena which are not accessible in isolated systems. In this work, we merge the Zeno paradigm of quantum measurement theory with the concept of polarons in condensed-matter physics. The resulting quantum-Zeno Fermi polaron is a quasiparticle which emerges for lossy impurities interacting with a quantum-degenerate bath of fermions. For loss rates of the order of the impurity-fermion binding energy, the quasiparticle is short lived. However, we show that in the strongly dissipative regime of large loss rates a long-lived polaron branch reemerges. This quantum-Zeno Fermi polaron originates from the nontrivial interplay between the Fermi surface and the surface of the momentum region forbidden by the quantum-Zeno projection. The situation we consider here is realized naturally for polaritonic impurities in charge-tunable semiconductors and can be also implemented using dressed atomic states in ultracold gases. DOI: 10.1103/PhysRevResearch.3.013086 I. INTRODUCTION increasing the measurement rate of a closed quantum many- body system, a phase transition from a volume-law entangled The effect of measurement on the time evolution of a phase to a quantum Zeno phase with area-law entanglement system is one of the most puzzling aspects of quantum dy- can take place [11,13].
    [Show full text]
  • Electronic Zero-Point Fluctuation Forces Inside Circuit Components Arxiv
    Electronic zero-point fluctuation forces inside circuit components Ephraim Shahmoon1 and Ulf Leonhardt2 1Department of Physics, Harvard University, Cambridge MA 02138, USA 2Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 761001, Israel May 1, 2018 One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluc- tuations of the electromagnetic field. Here we study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results re- veal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route to- wards the exploration of Casimir-like fluctuation potentials, namely, by char- acterizing and measuring them as a function of parameters of the environ- ment. Such tunable potentials may be useful for future nanoelectromechanical and quantum technologies. arXiv:1612.03250v2 [quant-ph] 29 Apr 2018 Introduction Understanding the role of quantum phenomena in electrical circuits has opened numerous pos- sibilities in quantum information and optics (1, 2). In this article we show how conceptually simple systems, such as linear electrical circuits, provide a new direction in the study and appli- cation of quantum fluctuation phenomena, in analogy to the van der Waals (vdW) and Casimir forces (3, 4, 5). A key element of the ensuing discussion is the generalization of the familiar Casimir force in three aspects; namely, the source of the quantum fluctuations, the physical effect they entail and, most importantly, how the effect is measured and manipulated.
    [Show full text]
  • Keldysh Approach for Nonequilibrium Phase Transitions in Quantum Optics: Beyond the Dicke Model in Optical Cavities
    Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Torre, Emanuele, Sebastian Diehl, Mikhail Lukin, Subir Sachdev, and Philipp Strack. 2013. “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities.” Physical Review A 87 (2) (February 21). doi:10.1103/ PhysRevA.87.023831. http://dx.doi.org/10.1103/PhysRevA.87.023831. Published Version doi:10.1103/PhysRevA.87.023831 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11688797 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Keldysh approach for non-equilibrium phase transitions in quantum optics: beyond the Dicke model in optical cavities 1, 2, 3 1 1 1 Emanuele G. Dalla Torre, ⇤ Sebastian Diehl, Mikhail D. Lukin, Subir Sachdev, and Philipp Strack 1Department of Physics, Harvard University, Cambridge MA 02138 2Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria 3Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria (Dated: January 16, 2013) We investigate non-equilibrium phase transitions for driven atomic ensembles, interacting with a cavity mode, coupled to a Markovian dissipative bath. In the thermodynamic limit and at low-frequencies, we show that the distribution function of the photonic mode is thermal, with an e↵ective temperature set by the atom-photon interaction strength.
    [Show full text]
  • From the Keldysh Formalism to the Boltzmann Equation for Spin Drift and Diffusion
    Ismael Ribeiro de Assis From the Keldysh formalism to the Boltzmann equation for spin drift and diffusion Uberlândia, Minas Gerais, Brasil 29 de julho de 2019 Ismael Ribeiro de Assis From the Keldysh formalism to the Boltzmann equation for spin drift and diffusion Dissertação apresentada ao Programa de Pós- graduação em Física da Universidade Fed- eral de Uberlândia, como requisito parcial para obtenção do título de mestre em Física Teórica. Área de Concentração: Física da Matéria Condensada. Universidade Federal de Uberândia – UFU Insituto de Física - INFIS Programa de Pós-Graduação Orientador: Prof. Dr. Gerson Ferreira Junior Uberlândia, Minas Gerais, Brasil 29 de julho de 2019 Ficha Catalográfica Online do Sistema de Bibliotecas da UFU com dados informados pelo(a) próprio(a) autor(a). A848 Assis, Ismael Ribeiro de, 1994- 2019 From the Keldysh formalism to the Boltzmann equation for spin drift and diffusion [recurso eletrônico] / Ismael Ribeiro de Assis. - 2019. Orientador: Gerson Ferreira Júnior. Dissertação (Mestrado) - Universidade Federal de Uberlândia, Pós-graduação em Física. Modo de acesso: Internet. Disponível em: http://dx.doi.org/10.14393/ufu.di.2019.2247 Inclui bibliografia. 1. Física. I. Ferreira Júnior, Gerson , 1982-, (Orient.). II. Universidade Federal de Uberlândia. Pós-graduação em Física. III. Título. CDU: 53 Bibliotecários responsáveis pela estrutura de acordo com o AACR2: Gizele Cristine Nunes do Couto - CRB6/2091 Nelson Marcos Ferreira - CRB6/3074 Dedico à minha família Acknowledgements Gostaria de agradecer as pessoas próximas que fazem com que minha carreira seja possível. Especialmente minha família, minha mãe June, meu pai Anísio e minha irmã Geovana, que durante os anos desta jornada tem me apoiado emocionalmente e financeiramente.
    [Show full text]
  • Quantum Fluctuations of Vector Fields and the Primordial Curvature Perturbation in the Universe
    Quantum Fluctuations of Vector Fields and the Primordial Curvature Perturbation in the Universe Mindaugas Karčiauskas MSc, BSc December 2009 This thesis is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. No part of this thesis has been previously submitted for the award of a higher degree. arXiv:1009.1779v1 [astro-ph.CO] 9 Sep 2010 “What he [a scientist] is really seeking is to learn something new that has a cer- tain fundamental kind of significance: a hitherto unknown lawfulness in the order of nature, which exhibits unity in a broad range of phenomena. Thus, he wishes to find in the reality in which he lives a cer- tain oneness and totality, or wholeness, constituting a kind of harmony that is felt to be beautiful. In this respect, the scientist is perhaps not basically differ- ent from the artist, the architect, the music composer, etc., who all want to create this sort of thing in their work.” David Bohm Acknowledgments This thesis is a culmination of more than three years spend in England as a PhD student, which signify not only my scientific achievements but also people I met and moments experienced together. Although written by me, these pages include contributions from all these people without whom this would be just a collection of blank paper. Some of contributions are too subtle to put into words, but each of them is essential and invaluable. It is impossible to name everyone, so I sincerely apologize those whose name is not mentioned here. First and foremost I want to say thank you to Milda Beišyt˙e.
    [Show full text]
  • On Heisenberg Uncertainty Relationship, Its Extension, and the Quantum Issue of Wave-Particle Duality
    Int. J. Mol. Sci. 2010, 11, 4124-4139; doi:10.3390/ijms11104124 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article On Heisenberg Uncertainty Relationship, Its Extension, and the Quantum Issue of Wave-Particle Duality Mihai V. Putz 1,2 1 Laboratory of Computational and Structural Physical Chemistry, Chemistry Department, West University of Timişoara, Pestalozzi Street No.16, Timişoara, RO-300115, Romania; E-Mail: [email protected] or [email protected]; Tel.: ++40-256-592-633; Fax: ++40-256-592-620; Web: www.mvputz.iqstorm.ro 2 Theoretical Physics Institute, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany Received: 11 August 2010; in revised form: 27 September 2010 / Accepted: 17 October 2010 / Published: 22 October 2010 Abstract: Within the path integral Feynman formulation of quantum mechanics, the fundamental Heisenberg Uncertainty Relationship (HUR) is analyzed in terms of the quantum fluctuation influence on coordinate and momentum estimations. While introducing specific particle and wave representations, as well as their ratio, in quantifying the wave-to-particle quantum information, the basic HUR is recovered in a close analytical manner for a large range of observable particle-wave Copenhagen duality, although with the dominant wave manifestation, while registering its progressive modification with the factor 1 n2 , in terms of magnitude n0,1 of the quantum fluctuation, for the free quantum evolution around the exact wave-particle equivalence. The practical implications of the present particle-to-wave ratio as well as of the free-evolution quantum picture are discussed for experimental implementation, broken symmetry and the electronic localization function.
    [Show full text]
  • Quantum Fluctuations, Decoherence of the Mean Field, and Structure
    Quantum Fluctuations, Decoherence of the Mean Field, and Structure Formation in the Early Universe E. Calzetta IAFE and FCEN, University of Buenos Aires, Argentina B. L. Hu Department of Physics, University of Maryland, College Park, MD 20742, USA School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA (IASSNS-HEP-95/38, UMDPP 95-083, May 9, 1995) arXiv:gr-qc/9505046v1 24 May 1995 1 1 Introduction and Summary In this paper we shall examine, starting from first principles, under what circumstances the fluctuations of a quantum field transmute into classical, stochastic fluctuations. To do so we shall analyze the relationship between the phenomena of dissipation, fluctuation, noise and decoherence [1], first in an interacting scalar field theory in flat space time [2], and then in the more complex but realistic case of a scalar field interacting with gravitons in an expanding Universe. The main motivation for this work is to develop the necessary tools to analyze the quan- tum to classical transition of primordial density fluctuations in the early universe. Indeed, this is the third of a series of papers by the authors and collaborators on the quantum statistical theory of structure formation. The first one [3] calls into question conventional treatments of this issue, and focuses on decoherence and the quantum origin of noise in stochastic inflation. The second one [4] explains how noise and fluctuations originate from particle creation in semiclassical gravity, and casts doubt on the conventional practise of simplistically identifying quantum and classical fluctuations. In this paper we will discuss how a quantum mean field can be decohered by its own quantum fluctuations, turning into a classical stochastic field.
    [Show full text]