Keldysh Approach for Nonequilibrium Phase Transitions in Quantum Optics: Beyond the Dicke Model in Optical Cavities
Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Torre, Emanuele, Sebastian Diehl, Mikhail Lukin, Subir Sachdev, and Philipp Strack. 2013. “Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities.” Physical Review A 87 (2) (February 21). doi:10.1103/ PhysRevA.87.023831. http://dx.doi.org/10.1103/PhysRevA.87.023831. Published Version doi:10.1103/PhysRevA.87.023831 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11688797 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Keldysh approach for non-equilibrium phase transitions in quantum optics: beyond the Dicke model in optical cavities 1, 2, 3 1 1 1 Emanuele G. Dalla Torre, ⇤ Sebastian Diehl, Mikhail D. Lukin, Subir Sachdev, and Philipp Strack 1Department of Physics, Harvard University, Cambridge MA 02138 2Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria 3Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria (Dated: January 16, 2013) We investigate non-equilibrium phase transitions for driven atomic ensembles, interacting with a cavity mode, coupled to a Markovian dissipative bath. In the thermodynamic limit and at low-frequencies, we show that the distribution function of the photonic mode is thermal, with an e↵ective temperature set by the atom-photon interaction strength.
[Show full text]