Genome Size Evolution in Cheirolophus

Total Page:16

File Type:pdf, Size:1020Kb

Genome Size Evolution in Cheirolophus Cytogenetic insights into plant diversification: Asteraceae as a case study J. Pellicer, O. Hidalgo, D. Vitales, J. Vallès, A. Santos- Guerra, A. García, S. Siljak-Yakovlev Talk outline: • The genus Cheirolophus Cass. • Phylogenetics and diversification patterns across the Mediterranean basin and Macaronesia • Evolution of cytogenetic traits in Cheirolophus: • Chromosome data • Genome size • Ribosomal DNA loci Why Cheirolophus ? Vitales et al. 2014, 14: 118 Vitales et al. 2015, 85-100 PHYLOGENETICS Garnatje et al. 2007, 264: 117-134 Vitales et al. 2014, 9: e113207 PHYLOGEOGRAPHY Cheirolophus Cass. Vitales et al. 2015, in press. Vitales et al. 2014, 14: 118 Vitales et al. 2015, 85-100 Vitales et al. 2013, 32: 21-31 PHYLOGENETICS REPRODUCTION Garnatje et al. 2007, 264: 117-134 BIOLOGY Vitales et al. 2014, 9: e113207 PHYLOGEOGRAPHY Cheirolophus Cass. Vitales et al. 2015, in press. Garnatje et al. 1998, 213: 57-70 POPULATION GENETICS Vitales et al. 2015, 179: 157-171 Vitales et al. 2014, 14: 118 Vitales et al. 2015, 85-100 Vitales et al. 2013, 32: 21-31 PHYLOGENETICS REPRODUCTION Garnatje et al. 2007, 264: 117-134 BIOLOGY Vitales et al. 2014, 9: e113207 Garnatje et al. 2007, 264: PHYLOGEOGRAPHY Cheirolophus Cass. 117-134 Vitales et al. 2015, in press. Hidalgo et al. submitted CYTOGENETICS Garnatje et al. 1998, 213: 57-70 Garnatje et al. 2012, 55: POPULATION 529-235 GENETICS KARYOLOGY Vitales et al. 2015, 179: 157-171 Hidalgo et al. submitted Vitales et al. 2014, 14: 118 Vitales et al. 2015, 85-100 PHYLOGENETICS Garnatje et al. 2007, 264: 117-134 Vitales et al. 2014, 9: e113207 PHYLOGEOGRAPHY Cheirolophus Cass. Vitales et al. 2015, in press. Vitales et al. 2014, 14: 118 Vitales et al. 2015, 85-100 PHYLOGENETICS Garnatje et al. 2007, 264: 117-134 Vitales et al. 2014, 9: e113207 Garnatje et al. 2007, 264: PHYLOGEOGRAPHY Cheirolophus Cass. 117-134 Hidalgo et al. submitted Vitales et al. 2015, in press. CYTOGENETICS Garnatje et al. 2012, 55: 529-235 Cheirolophus Cass.: c. 28 spp Cheirolophus Cass.: c. 28 spp Cheirolophus Cass.: c. 28 spp Cheirolophus crassifolius Cheirolophus Cass.: c. 28 spp Cheirolophus intybaceus Cheirolophus crassifolius Cheirolophus Cass.: c. 28 spp Cheirolophus uliginosus Cheirolophus intybaceus Cheirolophus sempervirens Cheirolophus crassifolius Cheirolophus Cass.: c. 28 spp Cheirolophus uliginosus Cheirolophus intybaceus Cheirolophus sempervirens Cheirolophus crassifolius Cheirolophus tananicus, Ch. benoistii and Ch. mauritanicus Cheirolophus Cass.: c. 28 spp Cheirolophus Cass.: c. 28 spp Cheirolophus burchardii Cheirolophus satarataensis Cheirolophus falcisectus Cheirolophus Cass.: Phylogenetics and diversification Phylogenetics and diversification of Cheirolophus • ITS and ETS provides resolution at the backbone of the tree. • Monophyly of the genus and early- diverged position of Ch. crassifolius from Malta. • Early-branching of the Iberian hemicryptophyte Ch. uliginosus, but not entirely resolved. • Well defined Mediterranean clade, reflecting morphologic and geographic affinities among the species. • Macaronesian clade poorly resolved. Vitales et al. 2014, 14: 118 Phylogenetics and diversification of Cheirolophus • ITS and ETS provides resolution at the backbone of the tree. • Monophyly of the genus and early- diverged position of Ch. crassifolius from Malta. • Early-branching of the Iberian hemicryptophyte Ch. uliginosus, but not entirely resolved. • Well defined Mediterranean clade, reflecting morphologic and geographic affinities among the species. • Macaronesian clade poorly resolved. • Plastid DNA shows less variability and resolution at the backbone of the tree. • More variability and better resolution within the Canarian lineage than ITS- ETS. Vitales et al. 2014, 14: 118 Phylogenetics and diversification of Cheirolophus i) Origin of the genus: mid- late Miocene 10.37 Ma 24.51 Ma; Barres et al. 2013. Vitales et al. 2014, 14: 118 Phylogenetics and diversification of Cheirolophus i) Origin of the genus: mid- late Miocene ii) Gap in diversification during 5 My. 10.37 Ma 24.51 Ma; Barres et al. 2013. Vitales et al. 2014, 14: 118 Phylogenetics and diversification of Cheirolophus i) Origin of the genus: mid- late Miocene ii) Gap in diversification during 5 My. iii) New burst of diversification after 3 Ma. (Mediterranean) 10.37 Ma 3.08 Ma 24.51 Ma; Barres et al. 2013. Vitales et al. 2014, 14: 118 Phylogenetics and diversification of Cheirolophus i) Origin of the genus: mid- 1.74 Ma late Miocene ii) Gap in diversification during 5 My. iii) New burst of diversification after 3 Ma. (Mediterranean) 10.37 Ma 3.08 Ma iv) New burst of accelerated diversification after 1.7 Ma. (Macaronesia) 24.51 Ma; Barres et al. 2013. Vitales et al. 2014, 14: 118 Phylogenetics and diversification of Cheirolophus Multiple processes involved in radiation: – Colonisation between islands – Intra-island allopatric speciation – Incipient ecological adaptation – Hybridisation signals Vitales et al. 2014, 14: 118 Phylogenetics and diversification of Cheirolophus • Mul%ple colonizaons intra- and inter-islands • Sporadic long distance dispersal ability Phylogenetics and diversification of Cheirolophus • Mul%ple colonizaons intra- and inter-islands • Sporadic long distance dispersal ability Ch. intybaceus; Garnatje et al. (2012) Calonectris diomedea Cheirolophus Cass.: Chromosome evolution Chromosome evolution in Cheirolophus Chromosome numbers • Chromosome counts for c. 25 spp. 2n = 30,32 Chromosome evolution in Cheirolophus Chromosome numbers • Chromosome counts for c. 25 spp. 2n = 30,32 • The chromosome number 2n = 32 is more frequent than previously reported. • The ancestral chromosome number in Cheirolophus is 2n = 32, appearing 2n = 30 several independent times in the evolutionary history of the genus. Chromosome evolution in Cheirolophus Chromosome numbers • Chromosome counts for c. 25 spp. 2n = 30,32 • The chromosome number 2n = 32 is more frequent than previously reported. • The ancestral chromosome number in Cheirolophus is 2n = 32, appearing 2n = 30 several independent times in the evolutionary history of the genus. Chromosome evolution in islands Chromosome evolution in islands Oceanic islands STASIS... Chromosome evolution in islands Oceanic islands STASIS... ENDEMICS Stuessy & Crawford 1998, 307-321 Chromosome evolution in islands Oceanic islands STASIS... ENDEMICS NON-ENDEMICS Stuessy & Crawford 1998, 307-321 Cheirolophus Cass.: Nuclear DNA contents Genome size evolution in Cheirolophus 2C-values: 1.30-1.80 pg • New data confirm that of Garnatje et al. (2007), where significant differences in GS among Mediterranean and Macaronesian species were observed • Ch. crassifolius shows the highest value of DNA amount, indicating a progressive decline of GS since the origin of the diversification of the genus. Genome size evolution in Cheirolophus 2C-values: 1.30-1.80 pg • New data confirm that of Garnatje et al. (2007), where significant differences in GS among Mediterranean and Macaronesian species were observed • Ch. crassifolius shows the highest value of DNA amount, indicating a progressive decline of GS since the origin of the diversification of the genus. • The descending pattern would be particularly strong in the oceanic islands, consistent with the results found in other plant groups. Genome size evolution in Cheirolophus 2C-values: 1.30-1.80 pg • New data confirm that of Garnatje et al. (2007), where significant differences in GS among Mediterranean and Macaronesian species were observed MRCA: • Ch. crassifolius shows the highest value of DNA amount, 1.59-1.65 pg/ indicating a progressive decline of GS since the origin of the 2C diversification of the genus. • The descending pattern would be particularly strong in the oceanic islands, consistent with the results found in other plant groups. Genome size evolution: island colonisations Artemisia Hawaii Hobbs & Baldwin 2013, 40: 442-454 ) pg Genome size 1Cx ( Continental Hawaii Macaronesia Pellicer et al. (unpublished) Genome size evolution: island colonisations Artemisia Hawaii Macaronesia Hobbs & Baldwin 2013, 40: 442-454 ) pg Genome size 1Cx ( Continental Hawaii Macaronesia Pellicer et al. (unpublished) Genome size evolution: island colonisations Hawaiian Schiedea ...“Unexpectedly, genomes of Schiedea species appeared to be relatively compact (1.41 to 3.74 pg/ cell), compared to Honckenya (8.57 to 10.66 pg/ cell)”... GS (Kapralov & Filatov, 2009, 2:77-83) Genome size evolution: island colonisations Hawaiian Schiedea ...“Unexpectedly, genomes of Schiedea species appeared to be relatively compact (1.41 to 3.74 pg/ cell), compared to Honckenya (8.57 to 10.66 pg/ cell)”... GS (Kapralov & Filatov, 2009, 2:77-83) Genome size evolution: island colonisations Hawaiian Schiedea ...“Unexpectedly, genomes of Schiedea species appeared to be relatively compact (1.41 to 3.74 pg/ cell), compared to Honckenya (8.57 to 10.66 pg/ cell)”... YES, but... GS (Kapralov & Filatov, 2009, 2:77-83) Genome size evolution: island colonisations • Radiation processes only takes place involving species with smaller genome sizes Genome size evolution: island colonisations • Radiation processes only takes place involving species with smaller genome sizes • Genome downsizing has a direct impact in facilitating/enhancing the radiation process Genome size evolution: island colonisations • Radiation processes only takes place involving species with smaller genome sizes • Genome downsizing has a direct impact in facilitating/enhancing the radiation process • Genome downsizing is just a consequence of the radiation,
Recommended publications
  • Nature & Biodiversity
    Nature & Biodiversity LIFE PROJECTS 2013 LIFE Nature Environment Introduction to LIFE+ Nature & Biodiversity 2013 LIFE+ Nature & Biodiversity 2013: Commission funds 92 new projects in 25 countries with €133.9 million The European Commission has approved funding for 92 new projects in 25 countries under the LIFE+ Nature & Biodiversity programme 2013. These projects will demonstrate new methods and techniques for dealing with a wide range of problems affecting species, habitats and biodiversity in Europe. The projects are led by ‘beneficiaries’, or project promoters, based in Austria, Belgium, Bulgaria, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, the Netherlands, Poland, Portugal, Romania, Slovak Republic, Slovenia, Spain, Sweden and the UK. They represent a total investment of €233.9 million, of which the EU will provide some €133.9 million. LIFE Nature & Biodiversity in 2013 LIFE+ Nature & Biodiversity is one of three the- matic components under the LIFE programme. The LIFE+ Nature & Biodiversity projects aim to improve other two components, LIFE+ Environment Policy & the conservation status of endangered species and Biodiversity and LIFE+ Information & Communication, habitats. Of the 342 proposals received under the focus respectively on supporting pilot projects that 2013 call for proposals, the Commission selected 92 contribute to the development of innovative policy projects for funding. These projects will be carried ideas, technologies, methods and instruments; and out by partnerships of conservation bodies, govern- on disseminating information and raising the profile ment authorities and other parties located across 25 of environmental issues, or providing training and Member States. In total, they represent an investment awareness-raising for the prevention of forest fires.
    [Show full text]
  • Proceedings Amurga Co
    PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 Coordination: Juli Caujapé-Castells Funded and edited by: Fundación Canaria Amurga Maspalomas Colaboration: Faro Media Cover design & layout: Estudio Creativo Javier Ojeda © Fundación Canaria Amurga Maspalomas Gran Canaria, December 2013 ISBN: 978-84-616-7394-0 How to cite this volume: Caujapé-Castells J, Nieto Feliner G, Fernández Palacios JM (eds.) (2013) Proceedings of the Amurga international conferences on island biodiversity 2011. Fundación Canaria Amurga-Maspalomas, Las Palmas de Gran Canaria, Spain. All rights reserved. Any unauthorized reprint or use of this material is prohibited. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author / publisher. SCIENTIFIC EDITORS Juli Caujapé-Castells Jardín Botánico Canario “Viera y Clavijo” - Unidad Asociada CSIC Consejería de Medio Ambiente y Emergencias, Cabildo de Gran Canaria Gonzalo Nieto Feliner Real Jardín Botánico de Madrid-CSIC José María Fernández Palacios Universidad de La Laguna SCIENTIFIC COMMITTEE Juli Caujapé-Castells, Gonzalo Nieto Feliner, David Bramwell, Águedo Marrero Rodríguez, Julia Pérez de Paz, Bernardo Navarro-Valdivielso, Ruth Jaén-Molina, Rosa Febles Hernández, Pablo Vargas. Isabel Sanmartín. ORGANIZING COMMITTEE Pedro
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Natural Triploidy in Centaurea and Cheirolophus (Asteraceae)
    Natural triploidy in Centaurea and Cheirolophus (Asteraceae) Autor(en): Garnatje, Teresa / Garcia-Jacas, Núria / Vilatersana, Roser Objekttyp: Article Zeitschrift: Botanica Helvetica Band (Jahr): 111 (2001) Heft 1 PDF erstellt am: 27.09.2021 Persistenter Link: http://doi.org/10.5169/seals-73897 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Bot. Helv. Ill (2001 ):25—29 0253-1453/01/010025-05 $ 1.50+0.20/0 © Birkhäuser Verlag, Basel, 2001 Ißotanica Helvetica Natural triploidy in Centaurea and Cheirolophus (Asteraceae) Teresa Garnatje*, Nuria Garcia-Jacas and Roser Vilatersana Institut Botànic de Barcelona (CSIC-Ajuntament de Barcelona), Av. Muntanyans, s.n.
    [Show full text]
  • Filogeografia Genètica De Poblacions I Citogenètica Molecular Del Gènere Cheirolophus (Asteraceae, Cardueae)
    Filogeografia genètica de poblacions i citogenètica molecular del gènere Cheirolophus (Asteraceae, Cardueae) Daniel Vitales Serrano ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • The Explosive Radiation of Cheirolophus
    Vitales et al. BMC Evolutionary Biology 2014, 14:118 http://www.biomedcentral.com/1471-2148/14/118 RESEARCH ARTICLE Open Access The explosive radiation of Cheirolophus (Asteraceae, Cardueae) in Macaronesia Daniel Vitales1*, Teresa Garnatje2, Jaume Pellicer3, Joan Vallès1, Arnoldo Santos-Guerra4 and Isabel Sanmartín5* Abstract Background: Considered a biodiversity hotspot, the Canary Islands have been the key subjects of numerous evolutionary studies concerning a large variety of organisms. The genus Cheirolophus (Asteraceae) represents one of the largest plant radiations in the Canarian archipelago. In contrast, only a few species occur in the Mediterranean region, the putative ancestral area of the genus. Here, our main aim was to reconstruct the phylogenetic and biogeographic history of Cheirolophus with special focus on explaining the origin of the large Canarian radiation. Results: We found significant incongruence in phylogenetic relationships between nuclear and plastid markers. Each dataset provided resolution at different levels in Cheirolophus: the nuclear markers resolved the backbone of the phylogeny while the plastid data provided better resolution within the Canarian clade. The origin of Cheirolophus was dated in the Mid-Late Miocene, followed by rapid diversification into the three main Mediterranean lineages and the Macaronesian clade. A decrease in diversification rates was inferred at the end of the Miocene, with a new increase in the Late Pliocene concurrent with the onset of the Mediterranean climate. Diversification within the Macaronesian clade started in the Early-Mid Pleistocene, with unusually high speciation rates giving rise to the extant insular diversity. Conclusions: Climate-driven diversification likely explains the early evolutionary history of Cheirolophus in the Mediterranean region.
    [Show full text]
  • Application of Internal Transcribed Spacer of Nuclear Ribosomal Dna for Identification of Echinops Mandavillei Kit Tan Fahad M
    Bangladesh J. Plant Taxon. 21(1): 33-42, 2014 (June) © 2014 Bangladesh Association of Plant Taxonomists APPLICATION OF INTERNAL TRANSCRIBED SPACER OF NUCLEAR RIBOSOMAL DNA FOR IDENTIFICATION OF ECHINOPS MANDAVILLEI KIT TAN 1 2 3 FAHAD M.A. AL-HEMAID, M. AJMAL ALI , JOONGKU LEE , GÁBOR GYULAI 4 AND ARUN K. PANDEY Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia Keywords: Echinops mandavillei; Asteraceae; ITS; nrDNA; Endemic; Saudi Arabia. Abstract The present study explored the use of internal transcribed spacers (ITS) sequences (ITS1-5.8S-ITS2) of nuclear ribosomal DNA (nrDNA) for identification of Echinops mandavillei Kit Tan, an endemic species to Saudi Arabia. The sequence similarity search using Basic Local Alignment Search Tool (BLAST) and phylogenetic analyses of the ITS sequence of E. mandavillei Kit Tan showed high level of sequence similarity (98%) with E. glaberrimus DC. (section Ritropsis). The novel primary sequence and the secondary structure of ITS2 of E. mandavillei could have a potential use for molecular genotyping. Introduction The genus Echinops L. belonging to the subtribe Echinopsinae of Cynareae, of the family Asteraceae comprise about 120 species (Vidović, 2011), and distributed in tropical Africa, the Mediterranean basin, temperate regions of Eurasia, Central Asia, Mongolia and North-eastern China, with the maximum number of species occurring in the Caucasus and the Middle East (Susanna and Garcia-Jacas, 2007). The genus received considerable interest for establishing natural groups with infrageneric classification (Sánchez-Jiménez et al., 2010). Morphological characters, like the pappus, which is a key taxonomic character of Cynareae, the type and density of indumentum on stems, leaf shapes and phyllaries are considered least significance in dissemination of Echinops species (Mozaffarian, 2006; Sánchez-Jiménez et al., 2010).
    [Show full text]
  • Contribution to the Genome Size Knowledge of New World Species from The
    Contribution to the genome size knowledge of New World species from the Heliantheae alliance (Asteraceae) Alicia Paniego1, Jose L. Panero2, Joan Vallès1, Sònia Garcia3* 1Laboratori de Botànica (UB) – Unitat associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Avinguda Joan XXIII 27-31, 08028 Barcelona. 2Section of Integrative Biology, University of Texas, Austin TX 78712, USA. 3Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Parc de Montjuïc, 08038 Barcelona, Catalonia, Spain. *Corresponding author: [email protected] 1 Abstract This paper contributes first genome size assessments by flow cytometry for 16 species, 12 genera and three tribes from family Asteraceae, mostly belonging to the Heliantheae alliance, an assembly of 13 tribes from subfamily Asteroideae with a large majority of its species in the New World. Most genome sizes are accompanied by their own chromosome counts, confirming in most cases, although not all, previous counts for the species, and revealing possible cases of unknown dysploidy or polyploidy for certain taxa. The data contribute to the pool of knowledge on genome size and chromosome numbers in the family Asteraceae and will further allow deeper studies and a better understanding on the role of dysploidy in the evolution of the Heliantheae alliance. However, we still lack data for tribes Chaenactideae, Neurolaeneae, Polymnieae and Feddeeae (the latter, monospecific) to complete the alliance representation. Key words: chromosome counts, Compositae, C-value, flow cytometry, nuclear DNA amount, nuclear DNA content 2 Introduction Genome size is the amount of nuclear DNA in an organism, and it is a very relevant biological character, with which many biotic and abiotic characters are correlated (Bennett and Leitch 2005).
    [Show full text]
  • Cheirolophus Crassifolius
    The Top 50 Mediterranean Island Plants À Cheirolophus crassifolius Latin name: Cheirolophus crassifolius (Bertoloni) Susanna Synonym: Palaeocyanus crassifolius (Bertoloni) Dostál Common names: Widnet il-Ba’ar (Maltese); Fiordaliso Crassifoglio (Italian); Maltese rock- centaury, Maltese centaury (English) Family: Compositae (daisy family) Status: CRITICALLY ENDANGERED (CR) Where is it found? Endemic to Malta, Cheirolophus crassifolius has a patchy distribution along the north-western and southern cliffs of the ALFRED E. BALDACCHINO islands of Malta, southern Gozo and Fungus Rock. It is confined to coralline limestone seaside cliffs and scree in full sun. attacking the developing fruits. Second, the habitat is under threat from quarrying, as fragile boulder cliffs collapse from the How to recognise it pressure wave of nearby dynamite explosions. Dust pollution This species is a perennial shrub growing up to 50 cm in from quarrying seems to be a minor problem. Third, a number height, occasionally taller and branching towards the top. of sites have been affected by human disturbance, especially Leaves are spatula-shaped and usually smooth and fleshy. those most easily accessible. Finally the species, even at Flowering occurs from May to July. Each stalk bears a single inaccessible sites, is threatened by introduced alien plant flower head, made up of numerous purple tubular florets. The species, particularly Opuntia ficus-indica, Agave americana and bracts, modified leaves surrounding the flower head, are Carpobrotus edulis. These species were originally planted on smooth and without spines or bristles. The plant produces the plateau but are now invading the cliffs. numerous seeds, each equipped with a parachute-like structure to facilitate wind dispersal.
    [Show full text]
  • LIFE and Endangered Plants: Conserving Europe's Threatened Flora
    L I F E I I I LIFE and endangered plants Conserving Europe’s threatened flora colours C/M/Y/K 32/49/79/21 European Commission Environment Directorate-General LIFE (“The Financial Instrument for the Environment”) is a programme launched by the European Commission and coordinated by the Environment Directorate-General (LIFE Unit - E.4). The contents of the publication “LIFE and endangered plants: Conserving Europe’s threatened flora” do not necessarily reflect the opinions of the institutions of the European Union. Authors: João Pedro Silva (Technical expert), Justin Toland, Wendy Jones, Jon Eldridge, Edward Thorpe, Maylis Campbell, Eamon O’Hara (Astrale GEIE-AEIDL, Communications Team Coordinator). Managing Editor: Philip Owen, European Commission, Environment DG, LIFE Unit – BU-9, 02/1, 200 rue de la Loi, B-1049 Brussels. LIFE Focus series coordination: Simon Goss (LIFE Communications Coordinator), Evelyne Jussiant (DG Environment Communications Coordinator). The following people also worked on this issue: Piotr Grzesikowski, Juan Pérez Lorenzo, Frank Vassen, Karin Zaunberger, Aixa Sopeña, Georgia Valaoras, Lubos Halada, Mikko Tira, Michele Lischi, Chloé Weeger, Katerina Raftopoulou. Production: Monique Braem. Graphic design: Daniel Renders, Anita Cortés (Astrale GEIE-AEIDL). Acknowledgements: Thanks to all LIFE project beneficiaries who contributed comments, photos and other useful material for this report. Photos: Unless otherwise specified; photos are from the respective projects. This issue of LIFE Focus is published in English with a print-run of 5,000 copies and is also available online. Attention version papier ajouter Europe Direct is a service to help you find answers to your questions about the European Union. New freephone number: 00 800 6 7 8 9 10 11 Additional information on the European Union is available on the Internet.
    [Show full text]
  • Redalyc.Diversity, Rarity and the Evolution and Conservation of The
    Anales del Jardín Botánico de Madrid ISSN: 0211-1322 [email protected] Consejo Superior de Investigaciones Científicas España Reyes-Betancort, J. Alfredo; Santos Guerra, Arnoldo; Guma, I. Rosana; Humphries, Christopher J.; Carine, Mark A. Diversity, rarity and the evolution and conservation of the Canary Islands endemic flora Anales del Jardín Botánico de Madrid, vol. 65, núm. 1, enero-junio, 2008, pp. 25-45 Consejo Superior de Investigaciones Científicas Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=55665102 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anales del Jardín Botánico de Madrid Vol. 65(1): 25-45 enero-junio 2008 ISSN: 0211-1322 Diversity, rarity and the evolution and conservation of the Canary Islands endemic flora by J. Alfredo Reyes-Betancort1, Arnoldo Santos Guerra1, I. Rosana Guma1, Christopher J. Humphries2 & Mark A. Carine2,3 1 Unidad de Botánica Aplicada, Instituto Canario de Investigaciones Agrarias, Jardín de Aclimatación de La Orotava, c/ Retama n.º 2, 38400 Puerto de La Cruz, Santa Cruz de Tenerife, Spain 2 Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom 3Author for correspondence: [email protected] Abstract Resumen Reyes-Betancort, J.A., Santos Guerra, A., Guma, I.R., Humphries, Reyes-Betancort, J.A., Santos Guerra, A., Guma, R., Humphries, C.J. & Carine, M.A. 2008. Diversity, rarity and the evolution and C.J.
    [Show full text]
  • In the Canary Islands Following the Steps of Dr
    exploring EXPLORING FOR PLANTS in the Canary Islands Following the steps of Dr. David Fairchild on the Spanish archipelago that has “absorbed the fancies of philosophers and scientists for generations.” Brett Jestrow, Ph.D. Arnoldo Santos-Guerra, Ph.D. Aldredo Reyes-Betancort, Ph.D. and Javier Francisco-Ortega, Ph.D. Photos by Brett Jestrow, Ph.D. From the 17th century on, these Spanish volcanic islands were visited by botanical legends such as Alexander von Humboldt (1799) and Joseph Dalton Hooker (1839), who praised them for their unique subtropical flora with a high number of endemic plants. n 1903 and between 1925 and 1927, Dr. David Fairchild made four visits to the Canaries, collecting plant material for the U.S. Department of Agriculture (89 accessions, 73 species) from the islands of Gran Canaria, La Palma Iand Tenerife. In July of 2014, two of us (Jestrow and Francisco- Ortega) followed the steps of Dr. Fairchild, visiting several of the collecting sites that he found during his expeditions to these islands. Our trip aimed to collect plant material for the Garden’s living collections and herbarium, while developing links with one of Spain’s most venerable botanic gardens: The Jardín de Aclimatación de La Orotava on Tenerife. The first part of our trip was devoted to Tenerife, where an official Memorandum of Understanding was signed between Fairchild and The Jardín de Aclimatación de La Orotava. This botanical institution is currently expanding its grounds and developing collaborations to increase its living collections, while exploring new educational and research directions. Dr. Fairchild visited this garden during the 1920s, and today many of the same vistas and plants can be found, including a mature example of the African cycad Encephalartos PREVIOUS PAGE laurentianus, which continues to thrive.
    [Show full text]