Bis(Chloromethyl) Ether

Total Page:16

File Type:pdf, Size:1020Kb

Bis(Chloromethyl) Ether Bis(chloromethyl) Ether sc-210941 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Bis(chloromethyl) Ether STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY3 HEALTH4 HAZARD INSTABILITY1 SUPPLIER Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 PRODUCT USE ■ The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation. Formerly used for chloromethylations. As an intermediate in preparation of strongly-basic anion ion exchange resins of the quaternary ammonium type. Byproduct generated in production and use of chloromethyl methyl ether. CMME CARE: Small amounts form in mixtures of formaldehyde and hydrogen chloride HCl gas and also in formaldehyde solutions containing chloride ions. SYNONYMS C2-H4-C12-O, BCME, "bis(chloromethyl) ether", bis-CME, chloro(chloromethoxy)methane, "chloromethyl ether", dichlorodimethylaether, "sym-dichloro-dimethyl ether", "1, 1' -dichlorodimethyl ether", "1, 1' -dichlorodimethyl ether", "dichlorodimethyl ether, symmetrical", "sym-dichloromethyl ether", "dimethyl-1, 1' -dichloroether", "dimethyl-1, 1' -dichloroether", "methane-1, 1' dichloroether", oxybis(chloromethane) Section 2 - HAZARDS IDENTIFICATION CANADIAN WHMIS SYMBOLS EMERGENCY OVERVIEW RISK Harmful if swallowed. Toxic in contact with skin. Very toxic by inhalation. May cause CANCER. HARMFUL - May cause lung damage if swallowed. Flammable. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. ■ Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733). ■ Ingestion of formaldehyde may cause immediate severe abdominal pain, with vomiting, nausea, diarrhoea, anuria, dizziness, followed by unconsciousness, convulsions and may result in death. The methanol stabiliser in solutions is a cause of visual impairment and possible permanent blindness. ■ Ingestion of alkyl ethers may produce stupor, blurred vision, headache, dizziness and irritation of the nose and throat. Respiratory distress and asphyxia may result. EYE ■ There is some evidence to suggest that this material can causeeye irritation and damage in some persons. ■ Eye contact with alkyl ethers (vapor or liquid) may produce irritation,redness and tears. SKIN ■ Skin contact with the material may produce toxic effects; systemic effectsmay result following absorption. ■ There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons. ■ Alkyl ethers may defat and dehydrate the skin producing dermatoses. Absorption may produce headache, dizziness, and central nervous system depression. ■ Minor regular skin contact with formaldehyde results in hardening of skin - tanning. Formaldehyde is a sensitising agent capable of inducing contact dermatitis. Episodes of contact dermatitis have been observed amongst workers exposed to formaldehyde in hospitals, in the production of formaldehyde resins, textiles, shampoos and laminated furniture. Contact urticaria has also been reported as a result of dermal exposure. ■ Open cuts, abraded or irritated skin should not be exposed to this material. ■ Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. INHALED ■ Inhalation of vapors or aerosols (mists, fumes), generated by the material during the course of normal handling, may produce severely toxic effects; these may be fatal. ■ Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. ■ There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. ■ Acute exposure of rats and hamsters to bis(chloromethyl)ether resulted in pulmonary oedema, haemorrhage and necrotising bronchitis. In rats, the acute inhalation LC50 for a 7-hour exposure has been estimated to be 7 ppm. The cause of death was acute lung irritation that resulted in congestion, edema and hemorrhage. ■ Hydrogen chloride (HCl) vapour or fumes present a hazard from a single acute exposure. Exposures of 1300 to 2000 ppm have been lethal to humans in a few minutes. Inhalation of HCl may cause choking, coughing, burning sensation and may cause ulceration of the nose, throat and larynx. Fluid on the lungs followed by generalised lung damage may follow. Breathing of HCl vapour may aggravate asthma and inflammatory or fibrotic pulmonary disease. High concentrations cause necrosis of the tracheal and bronchial epithelium, pulmonary oedema, atelectasis and emphysema and damage to the pulmonary blood vessels and liver. ■ Following inhalation, ethers cause lethargy and stupor. Inhaling lower alkyl ethers results in headache, dizziness, weakness, blurred vision, seizures and possible coma. Low blood pressure, slow heartbeat and cardiovascular collapse may be seen with throat irritation, irregular breathing, pulmonary edema and respiratory arrest. Nausea, vomiting and salivation may be seen. There have been deaths reported, and convulsions and paralysis can be found in severe cases. Massive exposures can cause damage to the kidney and liver. ■ Inhalation of vapour at relatively low concentrations may cause a tingling sensation in the nose and upper respiratory tract. Slightly higher concentrations may cause a burning sensation, headache.High vapour concentrations of formaldehyde are capable of causing chest constriction, bronchiopneumonia, dysphagia, oedema, spasms of the larynx and dyspnoea. ■ Inhalation of the vapor is hazardous and may even be fatal. CHRONIC HEALTH EFFECTS ■ There is sufficient evidence to suggest that this materialdirectly causes cancer in humans. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. In humans, exposure to vapors of chloromethyl methyl ether (CME) containing bis(chloromethyl)ether BCME as a contaminant lead to increased incidence of chronic bronchitis, manifest as chronic cough and impaired respiratory function BCME was found to be a potent alkylating carcinogen for mouse skin and a highly potent inducer of tumours of the respiratory tract in mice and rats. Repeated daily exposures of mice to 1 ppm BCME produced increased numbers of pulmonary adenomas. In rats daily exposure to 0.1 ppm BCME produced squamous cell carcinomas of the lung and esthesio- neuroepitheliomas of the olfactory epithelium. Nine epidemiological studies have demonstrated that exposed workers have an increased risk of lung cancer with the relative risk being 10-fold in heavily exposed workers. The risk increases with duration and cumulative exposure. Histological evaluation indicates that exposure results primarily in cancers of the small-cell type. The maximum relative risk appears to occur 15-20 years after the first exposure and latency is shortened among workers with heavier exposure. Chronic minor exposure to hydrogen chloride (HCl) vapour or fume may cause discolouration or erosion of the teeth, bleeding of the nose and gums; and ulceration of the nasal mucous membranes. Repeated exposures of animals to concentrations of about 34 ppm HCl produced no immediate toxic effects. Workers exposed to hydrochloric acid suffered from gastritis and a number of cases of chronic bronchitis have also been reported. Repeated or prolonged exposure to dilute solutions of HCl may cause dermatitis. Chronic exposure to alkyl ethers may result in loss of appetite, excessivethirst, fatigue, and weight loss. When administered by inhalation, formaldehyde induced squamous cell carcinomas of the nasal cavity in rats of both sexes. Although excess occurrence of a number of cancers has been reported in humans, the evidence for a possible involvement of formaldehyde is strongest for nasal and nasopharangeal cancer. The occurrence of these cancers showed an exposure- response gradient in more than one study, but the numbers of exposed cases were often small and some studies did not show excesses In humans. Formaldehyde exposure has been associated with cancers of the lung, nasopharynx and oropharynx and nasal passages. Several investigations have concluded that specific respiratory sensitisation occurs based on positive bronchial provocation tests amongst formaldehyde-exposed workers. These studies have been criticised for methodological reasons. One large study however revealed that 5% of persons exposed to formaldehyde and had asthma-like symptoms met the study criteria for formaldehyde-induced asthma; this included a positive response on a bronchial provocation test with 2.5 mg/m3 formaldehyde.
Recommended publications
  • Toxicological Profile for Formaldehyde
    TOXICOLOGICAL PROFILE FOR FORMALDEHYDE U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry July 1999 FORMALDEHYDE ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. FORMALDEHYDE iii UPDATE STATEMENT Toxicological profiles are revised and republished as necessary, but no less than once every three years. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, E-29 Atlanta, Georgia 30333 FORMALDEHYDE vii QUICK REFERENCE FOR HEALTH CARE PROVIDERS Toxicological Profiles are a unique compilation of toxicological information on a given hazardous substance. Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation of available toxicologic and epidemiologic information on a substance. Health care providers treating patients potentially exposed to hazardous substances will find the following information helpful for fast answers to often-asked questions. Primary Chapters/Sections of Interest Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating patients about possible exposure to a hazardous substance. It explains a substance’s relevant toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of the general health effects observed following exposure. Chapter 2: Health Effects: Specific health effects of a given hazardous compound are reported by route of exposure, by type of health effect (death, systemic, immunologic, reproductive), and by length of exposure (acute, intermediate, and chronic).
    [Show full text]
  • Formaldehyde Product-Type 02 (Disinfectants and Algaecides Not Intended for Direct Application to Humans Or Animals)
    Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products Evaluation of active substances Assessment Report Formaldehyde Product-type 02 (Disinfectants and algaecides not intended for direct application to humans or animals) October 2017 eCA: Germany Formaldehyde Product type 2 November 2017 CONTENTS 1. STATEMENT OF SUBJECT MATTER AND PURPOSE ............................................... 3 1.1. Procedure followed ................................................................................................................................ 3 1.2. Purpose of the assessment report .................................................................................................. 3 2. OVERALL SUMMARY AND CONCLUSIONS ................................................................... 3 2.1. Presentation of the Active Substance ........................................................................................... 3 2.1.1. Identity, Physico-Chemical Properties & Methods of Analysis ................................................... 3 2.1.2. Intended Uses and Efficacy ..................................................................................................................... 4 2.1.3. Classification and Labelling ..................................................................................................................... 5 2.2. Summary of the Risk Assessment ................................................................................................... 8 2.2.1. Human Health
    [Show full text]
  • Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008
    Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 William A. Rutala, Ph.D., M.P.H.1,2, David J. Weber, M.D., M.P.H.1,2, and the Healthcare Infection Control Practices Advisory Committee (HICPAC)3 1Hospital Epidemiology University of North Carolina Health Care System Chapel Hill, NC 27514 2Division of Infectious Diseases University of North Carolina School of Medicine Chapel Hill, NC 27599-7030 1 Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 3HICPAC Members Robert A. Weinstein, MD (Chair) Cook County Hospital Chicago, IL Jane D. Siegel, MD (Co-Chair) University of Texas Southwestern Medical Center Dallas, TX Michele L. Pearson, MD (Executive Secretary) Centers for Disease Control and Prevention Atlanta, GA Raymond Y.W. Chinn, MD Sharp Memorial Hospital San Diego, CA Alfred DeMaria, Jr, MD Massachusetts Department of Public Health Jamaica Plain, MA James T. Lee, MD, PhD University of Minnesota Minneapolis, MN William A. Rutala, PhD, MPH University of North Carolina Health Care System Chapel Hill, NC William E. Scheckler, MD University of Wisconsin Madison, WI Beth H. Stover, RN Kosair Children’s Hospital Louisville, KY Marjorie A. Underwood, RN, BSN CIC Mt. Diablo Medical Center Concord, CA This guideline discusses use of products by healthcare personnel in healthcare settings such as hospitals, ambulatory care and home care; the recommendations are not intended for consumer use of the products discussed. 2
    [Show full text]
  • Aliphatic Halide-Carbonyl Condensations by Means of Sodium by Edgar A
    U . S. Department of Commerce Research Paper RPl909 National Bureau of Standards Volume 41, August 1948 Part of the Journal of Research of the National Burea u of Standards Aliphatic Halide-Carbonyl Condensations by Means of Sodium By Edgar A. Cadwallader, Abraham Fookson, Thomas W. Mears, and Frank 1. Howard As a part of an in vestigation of the synthesis of highly branched ali phatic hydrocarbons that is being conducted at the National Bureau of Standa rds for the National Advisory Committee for Aeronautics, the l\'avy Bureau of Aeronautics, and t he Army Air Forces, se veral compounds have been prepared by interaction of alkyl halid es a nd various carbonyl compo unds in the presence of sod ium. This reaction makes possible the sy nthesis of ce rtain highly branched compound s not easily obtain able by other m eans. L Introduction cooling of the reaction mixture was effected by application of hot or cold oil baths. In some The usc of the GrignaI'd reaction for synthesis cases, particularly with low-boiling solvents, both of highly branched compounds is limited by un­ small necks of the flask were fitted with reflux I desirable side reactions, which become progres­ condensers with the elimination of the thermom­ . sively more pronounced as the degree of branching eter. of the reactan ts is increased. These side reactions Sodium sand was prepared batch-wise by heat­ involve the l'eclu ction and enolization of the adduct ing a weighed amount of sodium in a purified ligh t rather than the desired addition of the alkyl group.
    [Show full text]
  • Sample Preparation for Fluorescence Microscopy: an Introduction Concepts and Tips for Better Fixed Sample Imaging Results
    White Paper Sample Preparation for Fluorescence Microscopy: An Introduction Concepts and Tips for Better Fixed Sample Imaging Results By Paul Held, Laboratory Manager, Applications Dept., BioTek Instruments, Inc. Products: Cytation 3 and Cytation 5 Multiple processing steps are required to prepare tissue culture cells for fluorescence microscopy. Experiments are generally classified as being either live or fixed cell microscopy. Fluorescence microscopy of live cells uses either genetically encoded fluorescent proteins (e.g. GFP, mcherry, YFP, RFP, etc.) or cell membrane-permeable, non-toxic fluorescent stains. Fluorescence microscopy of fixed cells uses a fixative agent that renders the cells dead, but maintains cellular structure, allowing the use of specific antibodies and dyes to investigate cell morphology and structure. Appropriate sample preparation is necessary to ensure high quality images are captured. Here we describe a number of concepts and considerations regarding the sample preparation process that can assist with automated digital fluorescence microscopy of fixed cells. Cell Fixation The goal of fixation is to maintain cellular structure as much as possible to that of the native or unfixed state during the processing steps and subsequent imaging. There are a number of fixation methods suitable for fluorescence microscopy that fall into two basic categories: aldehyde fixatives and alcohol fixatives. Organic solvents such as alcohols and acetone remove lipids and dehydrate the cells, while precipitating the proteins on the cellular architecture. Cross-linking aldehyde reagents form intermolecular bridges, normally through free amino groups, creating a network of linked antigens. Cross-linkers preserve cell structure better than organic solvents, but may reduce the antigenicity of some cell components, and require a permeabilization step to allow the antibody access to the specimen.
    [Show full text]
  • Mechanistic Study for the Formation of Polyoxymethylene Dimethyl Ethers Promoted by Sulfonic Acid-Functionalized Ionic Liquids
    Journal of Molecular Catalysis A: Chemical 408 (2015) 228–236 Contents lists available at ScienceDirect Journal of Molecular Catalysis A: Chemical journal homepage: www.elsevier.com/locate/molcata Mechanistic study for the formation of polyoxymethylene dimethyl ethers promoted by sulfonic acid-functionalized ionic liquids Fang Wang, Gangli Zhu, Zhen Li, Feng Zhao, Chungu Xia ∗, Jing Chen State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China article info abstract Article history: Polyoxymethylene dimethyl ethers (DMMn), which are ideal additives for diesel fuel, are mainly syn- Received 5 February 2015 thesized from the condensation of methanol (MeOH) or dimethoxymethane (DMM) with 1,3,5-trioxane Received in revised form 14 July 2015 (TOX) or paraformaldehyde (PF) promoted by different acid catalysts. However, up to date, few studies Accepted 24 July 2015 have been reported to examine the formation mechanism of DMMn which is essential in understand- Available online 31 July 2015 ing the reaction and valuable in designing improved catalysts. In this work, using the density functional theory (DFT) calculations combined with experiment studies, we evaluate the formation mechanism of Keywords: DMMn which is promoted by sulfonic acid-functionalized ionic liquids (SO H-FILs). Our calculated results Polyoxymethylene dimethyl ethers 3 Sulfonic acid-functionalized ionic liquids indicate TOX and PF should dissociate into formaldehyde monomers firstly and then to react with MeOH Mechanism or DMM. However, their decomposition process is different where the dissociation of TOX proceeds along DFT a two-step mechanism while it follows a one-step mechanism for PF dissociation.
    [Show full text]
  • Pesticides EPA 739-R-08-004 Environmental Protection and Toxic Substances June 2008 Agency (7510P)
    US Environmental Protection Agency Office of Pesticide Programs Reregistration Eligibility Decision for Formaldehyde and Paraformaldehyde June 2008 United States Prevention, Pesticides EPA 739-R-08-004 Environmental Protection and Toxic Substances June 2008 Agency (7510P) Reregistration Eligibility Decision for Formaldehyde and Paraformaldehyde (Case 0556) UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES CERTIFIED MAIL Dear Registrant: This is to inform you that the Environmental Protection Agency (hereafter referred to as EPA or the Agency) has completed its review of the available data and public comments received related to the preliminary risk assessments for the antimicrobial formaldehyde and paraformaldehyde. The enclosed Reregistration Eligibility Decision (RED) document was approved on June 30, 2008. Based on its review, EPA is now publishing its Reregistration Eligibility Decision (RED) and risk management decision for formaldehyde and paraformaldehyde and their associated human health and environmental risks. A Notice of Availability will be published in the Federal Register announcing the publication of the RED. The RED and supporting risk assessments for formaldehyde and paraformaldehyde are available to the public on EPA’s Pesticide Docket at: www.regulations.gov. The docket number is EPA-HQ-OPP-2008-0121. The formaldehyde and paraformaldehyde RED was developed through EPA’s public participation process, published in the Federal Register on September 10, 2004, which provides opportunities for public involvement in the Agency’s pesticide tolerance reassessment and reregistration programs. Developed in partnership with USDA and with input from EPA’s advisory committees and others, the public participation process encourages robust public involvement starting early and continuing throughout the pesticide risk assessment and risk mitigation decision making process.
    [Show full text]
  • Paraformaldehyde Products
    Paraformaldehyde products Paraformaldehyde is used as a disinfectant, hardening agent and waterproofing agent. It is also used to prepare adhesives, resins and in dentistry as an antiseptic. It is also employed as a thermoplastic. In addition, it is used in the preparation of formalin fixatives for tissues or cells, particularly when the samples are subjected to florescence studies. Application Focus areas: Agricultural chemicals, paint industry, pharmaceutical & chemical industry, organic chemical syntheses, fertilizers, pharmaceuticals, printing & photography, fluorescent lights, consumer goods, cleaning products, personal care products and intermediate additives and compounds. Applications One of the most important uses of our paraformaldehyde solutions is as formalin fixatives for tissues or cells. Paraformaldehyde is also used as a source of formaldehyde groups in the production of many thermosetting resins, together with phenol, urea, melamine, resorcinol and other similar reagents. These resins are used as moulding powders; in the wood industry as glues for chipboard, plywood and furniture; as bonding resins for brakes, abrasives and foundry dyes; as finishing resins for paper and textiles; as driers and glossing agents for paints; as insulating varnishes for electrical parts. Some additional typical formulations for the production of such resins starting from paraformaldehyde include dichloroethyl formal, methyl phenol, disinfectants, insecticides, pharmaceuticals such as vitamin A, embalming preparations, dyestuff and special plasticizers. New products have been added to our extensive paraformaldehyde portfolio to ensure that we have suitable products for all customer applications. These new products are most commonly used as fixatives in cell culture studies, and are conveniently packaged in 10mL ampoules for customer convenience and to ensure product is fresh for each use.
    [Show full text]
  • The Reactions Between Acid Halides and Aldehydes
    L. H. Ulich The R eacfions bef^vreen /\cid Hali'oles cinc( Aldehydes THE REACTIONS BETWEEN ACID HALIDES AND ALDEHYDES BY LYNNE HERMAN ULICH B. S. Grinnell College, 1914 M. S. University of Illinois, 19 18 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN CHEMISTRY IN THE GRADUATE SCHOOL OF THE UNIVERSITY OF ILLINOIS 1920 UNIVERSITY OF ILLINOIS THE GRADUATE SCHOOL May 11 i9g0 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY. Lynne Herman Ulioh ENTITLED THE REACTION S BETWEEN ACID HAL IDES AND ALDEHYDES BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE of Doctor of Philosophy In Charge of Thesis V Head of Department Recommendation concurred in* Committee on Final Examination* ^Required for doctor's degree but not for master's TABLE 0._F CONTENTS Page No. ACCTOWLEDG .1 TUT I. INTRODUCTION 1 II. HISTORICAL PART 3 III. THEORETICAL PART 11 IV. EXPERIMENTAL P'PT 23 A. Reactions of Aliphatic Acid Halides and Aliphatic Aldehyde$35 1. With Para Formaldehyde 35 2. With Paraldehyde 30 3. With Ieo-ontyl Aldehyde 35 4. Tith Iso-v^leryl Aldehyde 39 5. With Hfptaldehyde 41 B. Reactions of Aromatic Acid Halides and Aliphatic Aldehydes^ 1 . With Par a For maid ehyd a 43 2. With Paraldehyde 45 3. With n -Butyl Aldehyde 45 4. With Iso-valeryl -Aldehyde 46 5. mth Heptaldehyde 47 0. Reactions of the Addition Compounds 49 1. With Ammonia and Amines 49 3. ir ith T-Vater 52 3. With Solid Potassium Hydroxide 52 4.
    [Show full text]
  • Asian Journal of Chemistry Asian Journal of Chemistry
    Asian Journal of Chemistry; Vol. 27, No. 6 (2015), 2149-2153 ASIAN JOURNAL OF CHEMISTRY http://dx.doi.org/10.14233/ajchem.2015.17822 Synthesis of Polyoxymethylene Dimethyl Ethers Catalyzed by Rare Earth Compounds * GAO-FENG SHI , JIAN MIAO, GUO-YING WANG, JIN-MEI SU and HAI-XIAO LIU School of Petro-chemical Engineering, Lanzhou University of Technology, Lanzhou 730000, Gansu Province, P.R. China *Corresponding author: E-mail: [email protected] Received: 15 April 2014; Accepted: 30 June 2014; Published online: 17 March 2015; AJC-16982 Polyoxymethylene dimethyl ethers (PODMEn) have been synthesized in moderate yields by the reaction of methylal (PODME1) and paraformaldehyde catalyzed by rare earth compounds. The activities of catalyst in the reaction were investigated and the results show that 3+ 2- La /SO4 has a high value. The influencing factors of reaction such as catalyst amount, reaction temperature, time, pressure and mole ratio of methylal (PODME1) to paraformaldehyde were also investigated. The appropriate reaction conditions i.e., n(paraformaldehyde)/ n(methylal) = 1.60, catalyst amount of 1 %, 130 °C, 6 h and 0.5 MPa. Under the above conditions, methylal conversion rate and selectivity of PODME2-8 is 81.6 and 75.5 %, respectively. In addition to, the combustion and emission characteristics of PODME2-8 added diesel was compared with the diesel, polyoxymethylene dimethyl ethers (PODME2-8) not only improved the combustion characteristics of diesel, but improved the low temperature fluidity. Keywords: Rare earth compounds, Polyoxymethylene dimethyl ethers, Methylal, Paraformaldehyde. INTRODUCTION acidic ion exchange resins as catalyst, BP produced PODME3-8 by conversion of dimethyl ether with formaldehyde through a 10,12 Polyoxymethylene dimethyl ethers (PODMEn) are impor- complicated process .
    [Show full text]
  • 3. Chemical and Physical Information
    FORMALDEHYDE 267 3. CHEMICAL AND PHYSICAL INFORMATION 3.1 CHEMICAL IDENTITY Information regarding the chemical identity of formaldehyde is located in Table 3-1. 3.2 PHYSICAL AND CHEMICAL PROPERTIES Information regarding the physical and chemical properties of formaldehyde is located in Table 3-2. FORMALDEHYDE 268 3. CHEMICAL AND PHYSICAL INFORMATION Table 3-1. Chemical Identity of Formaldehyde Characteristic Information Reference Chemical name Formaldehyde Lide and Frederikse 1996 Synonym(s) Formic aldehyde, methanal, methyl Budavari et al. 1989 aldehyde, methylene oxide Registered trade name(s) For 37% aqueous solutiona Formalin, Formol, Morbicid, Veracur Budavari et al. 1989 For polymeric formb Paraformaldehyde, Polyoxymethylene, Budavari et al. 1989 Paraform, Formagene Chemical formula CH2O Aster 1995 Chemical structure O Lide and Frederikse 1996 H C H Identification numbers: CAS Registry 50-00-0 Aster 1995 NIOSH RTECS LP8925000 HSDB 1995 EPA Hazardous Waste U122 HSDB 1995 OHM/TADS 7216732 HSDB 1995 DOT/UN/NA/IMCO CLASS 3/UN1198/IMCO 3.2 NFPA 1994 HSDB 164 HSDB 1999 NCI No data HSDB 1999 a Aqueous solutions of formaldehyde available commercially often contain 10-15% methanol to inhibit polymerization. b Paraformaldehyde is a polymer of formaldehyde and has the formula (CH2O)n. CAS = Chemical Abstracts Services; DOT/UN/NA/IMCO = Department of Transportation/United Nations/North America/International Maritime Dangerous Goods Code; EPA = Environmental Protection Agency; HSDB = Hazardous Substance Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for Occupational Safety and Health; OHM/TADS = Oil and Hazardous Materials/Technical Assistance Data System; RTECS = Registry of Toxic Effects of Chemical Substances FORMALDEHYDE 269 3.
    [Show full text]
  • Applications of Tannin Resin Adhesives in the Wood Industry Xiaojian Zhou and Guanben Du
    Chapter Applications of Tannin Resin Adhesives in the Wood Industry Xiaojian Zhou and Guanben Du Abstract Tannin is extracted from natural sustainable materials. It is widely used to prepare tannin resin adhesives owing to its naturally occurring phenolic structure. This chapter aims to introduce the resources and structures of tannin, existing reactions that are involved in the synthesis of tannin resin, and the applications of tannin resin adhesives in the wood industry. Additionally, the advancements in the research based on the use of tannin resins in manufacturing plywood, par- ticleboard, wood preservation, decoration paper impregnation, structural glulam, impregnated fibers, and other wooden products are reviewed. Herein, the main limitations encountered during the application of tannin resin adhesives and the future key research points are identified. Finally, the potential applications of tan- nin resin adhesives in the wood industry have been discussed. Keywords: tannins, resins, adhesives, wood industry, applications 1. Introduction The use of adhesives dates back to approximately 3000 years ago. Several types of adhesives based on specific applications have been developed, particularly for the manufacturing of wood and paper products, among other products. Therefore, thousands of adhesive products have been developed. Factors that affect the selec- tion of the adhesives are cost, assembly process, bonding strength, and durability. The fabrication of wood-based panel products involves a “preparation and recombination of wood unit” process wherein wood adhesives play a crucial role. Adhesives play a vital role in wood processing because their quality has a direct impact on the performance of the final wood product. Synthetic and natural resins are the most commonly used adhesives in the wood industry.
    [Show full text]