New Routes for Efficient and Sustainable Oxymethylene Ethers Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

New Routes for Efficient and Sustainable Oxymethylene Ethers Synthesis Fakultät für Maschinenwesen Lehrstuhl für Anlagen- und Prozesstechnik New Routes for Efficient and Sustainable Oxymethylene Ethers Synthesis Mohamed Kamal Ouda Salem Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigten Dissertation. Vorsitzende(r): Prof. Dr.-Ing. Georg Wachtmeister Prüfer der Dissertation: 1. Prof. Dr.-Ing. Harald Klein 2. Prof. Dr.-Ing. Matthias Kraume Die Dissertation wurde am 03.07.2019 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 04.12.2019 angenommen. “The first step to knowledge is to know we are ignorant” Socrates 470 to 390 B.C. This cumulative thesis is composed from the following peer reviewed research articles as first author . Paper 1: Ouda, M.; Yarce, G.; White, R. J.; Hadrich, M.; Himmel, D.; Schaadt, A.; Klein, H. et al. (2017): Poly(oxymethylene) dimethyl ether synthesis – a combined chemical equilibrium investigation towards an increasingly efficient and potentially sustainable synthetic route. In: React. Chem. Eng. 2017, 2, S. 50–59. DOI: 10.1039/C6RE00145A. Paper 2: Ouda, M.; Mantei, F. K.; Elmehlawy, M.; White, R. J.; Klein, H.; Fateen, S.-E. K. (2018): Describing oxymethylene ether synthesis based on the application of non-stoichiomsetric Gibbs minimisation. In: React. Chem. Eng. 2018, 3, S. 277- 292. DOI: 10.1039/C8RE00006A. Paper 3: Ouda, M.; Mantei, F. K.; Hesterwerth, K.; Bargiacchi, E; Klein, H.; White, R. J. (2018): A hybrid description and evaluation of Oxymethylene dimethyl ethers synthesis based on endothermic dehydrogenation of methanol. In: React. Chem. Eng. 2018, 3, S. 676-695. DOI: 10.1039/C8RE00100F. Foreword This thesis was written during my time as a scientific assistant at the Fraunhofer institute for solar energy systems ISE and as PhD student at the institute of plant and process technology at the technical University of Munich APT-TUM. A lot of people in both institutes contributed directly and indirectly to this work. I would like to express my appreciation and gratitude for everyone of them. Special thanks to my supervisor Prof. Dr.-Ing. Harald Klein for his trust to supervise this work and his support along this journey which will impact my whole life. His presence and readness to help was something to learn besides the scientific exchange that I enjoyed. Thanks for Prof. Dr.-Ing. Matthias Kraume for taking over the second supervision. Thanks for Dr. Achim Schaadt and Dr. Robin White for their supervision at the Fraunhofer institute for Solar energy systems ISE and for their continouos support and orientation. Many thanks to Dr. Christopher Hebling, the head of Hydrogen- technologies division at Fraunhofer ISE for the trust and support on the personal and professional levels. Many thanks to all the co-authors and my students who did great work and gave me the chance to learn new things and widen my horizons. Special thanks to my colleagues and friends Christoph Hank, Valentine Leible, Lara Theiss, Kläre Chlinsmann, Max Hadrich, Florian Rümmeler, Robert Szolak, Anand Kakadyia, Johannes Full, Florian Nestler, Malte Otromke, Monika Bosilij and Tom Smolinka for their support: Working with you was more than great. My partner and very special supporter Carla: very grateful for your sincere care and support in the good and very hard times. Freiburg, den 01.07.2019 M. Ouda Kurzfassung Die C1-Oxygenate Oxymethylendimethylether (OME) sind ein interessanter Dieselersatz, der bei der Verbrennung in Dieselmotoren auch unter realen Fahrbedingungen eine deutliche Reduzierung der PM-Emissionen ermöglicht. OME werden auch als attraktive "grüne" Lösungsmittel und CO2-Absorber untersucht. Sie werden auf Basis von Methanol (MeOH) hergestellt, so dass ein auf fossilen oder erneuerbaren Energiequellen basierender Rohstoff verwendet werden kann. In dieser Arbeit wird ein einfaches, skalierbares und praktikables OME-Syntheseverfahren (im weiteren Textverlauf bezeichnet als direkte OME-Synthese) eingeführt, welches ausschließlich auf dem Rohstoff MeOH basiert. Die Synthese erfolgt in zwei Schritten, der endothermen katalytischen Dehydrierung von MeOH zu wasserfreiem Formaldehyd (FA) und Wasserstoff (H2). Dieses wasserfreie Produkt wird in einem zweiten Schritt direkt in den -1 OME-Synthesereaktor eingeführt, was zu einer sehr hohen Ausbeute von 14% g g product führt. Die Prozesssimulation wurde in einer hybriden Simulationsplattform implementiert, die die Vorteile der Verwendung von selbst entwickelten Reaktormodellen mit kommerziell verfügbaren Algorithmen kombiniert. Das kombinierte chemische und Phasengleichgewicht der OME-Synthesereaktion wurde durch die Lösung der Gleichgewichtsbeziehungen mit dem Newton-Raphson- Ansatz beschrieben. Versuche im Batch-Autoklaven mit MeOH und para-Formaldehyd (p-FA) wurden mit DW50X2 und Amberlyst 36 Katalysatoren bei unterschiedlichen Temperaturen und Feedverhältnissen durchgeführt. Die Ergebnisse wurden für die Validierung des in Matlab® implementierten OME-Reaktormodells verwendet. Parametrische Studienergebnisse zeigten, dass eine sehr hohe OME3-5 Ausbeute bei einem FA/MeOH-Molverhältnis von 1,8-2, einer Temperatur von 60 °C und dem geringsten Wassergehalt im Feed erreicht werden konnte. Die Ergebnisse zeigten zudem, dass die Temperatur die Gleichgewichtsreaktion nicht wesentlich beeinflusst. Basierend auf den bisherigen Ergebnissen wurde die Prozessleistung des wichtigsten Prozessschrittes, der endothermen MeOH-Dehydrierung zu FA und H2, definiert. Zur Prüfung der Dehydrierungsreaktion wurde eine kontinuierliche Versuchsanlage aufgebaut. Für dieses kinetisch gesteuerte Reaktionssystem wurde ein ringförmiger Gegenstromreaktor entwickelt. Die Tests wurden mit Na2CO3 bei T = 650-700 °C, mit einer MeOH-Feedkonzentration <10 vol.% und GHSV zwischen 7-35×103 h-1 durchgeführt. Die beste Prozessleistung wurde mit 40% MeOH-Umsatz bei >90% FA- Selektivität erzielt. Diese Prozessleistung lag in der Nähe der gewünschten Ergebnisse. Jedoch verringerte sich die Katalysatorselektivität gegenüber FA nach einigen Stunden im Betrieb, während die MeOH-Umsatz zunahm. Die Katalysatorentwicklungen für dieses Reaktionssystem und die Skalierung der innovativen Reaktorkonzepte sollen weiter untersucht werden. Dennoch wurden die Ergebnisse aus den stationären Tests dieser Reaktion zur Ermittlung experimenteller Reaktionsratenkonstanten bei 690 °C verwendet und ein einfaches globales kinetisches Modell dieses Reaktionssystems abgeleitet. Die Ausbeute an OME-Produkten wird durch das chemische Gleichgewicht und die Rückführung von Nicht-Reaktanten begrenzt. Zudem werden andere OME-Fraktionen als die des gewünschten OME-Wunschproduktes für eine zufriedenstellende Prozessausbeute unerlässlich. Die Modellierung dieses komplexen Reaktionsgleichgewichtssystems mit 32 Komponenten, die an 29 gleichzeitigen Reaktionen teilnehmen, unter Berücksichtigung der Rückführung ist herausfordernd. Die OME-Gleichgewichtszusammensetzung unter Berücksichtigung der Rückführung wurde dann durch die Anwendung des nicht-stöchiometrischen Gibbs-Ansatzes zur ungehinderten Minimierung unter Verwendung eines stochastischen globalen Optimierers beschrieben. Dieses Modell wurde mit Hilfe von Trioxan (TRI) und Methylal (OME1) als Feed über den Amberlyst 36 Katalysator validiert. Die Modellergebnisse ermöglichten es das optimale FA/MeOH-Feedmolverhältnis von 1,8 zu definieren, was die gewünschte endgültige OME3-5-Produktverteilung bei einer sehr hohen Ausbeute von 80,3 Gew.% (MeOH zu OME3-5) und einem minimalen Rückführungsverhältnis von -1 ca. 2,8 molrecycle mol feed ergibt. Die Ergebnisse des OME-Reaktionsgleichgewichtsmodells wurden zusammen mit den Ergebnissen des globalen kinetischen Reaktormodells der FA-Synthese sowohl in der Matlab®-Software implementiert als auch in eine CHEMCAD®-Plattform integriert, in der alle Komponenten des Prozessfließbildes enthalten sind. Die Integration erfolgte durch die Einbindung eines benutzerdefinierten Excel®-VBA-Blocks in CHEMCAD®, welcher die beiden Programme miteinander kommunizieren lässt. Ein physikalisches Stoffdatenmodell wurde in CHEMCAD® implementiert und die rigorosen Destillationskolonnen-Algorithmen zur Trennung der OME-Produktmischung verwendet. Die Integration der Prozesswärme erfolgte mit der Software PinCH 2.0. Für die Datenaufbereitung der PinCH-Ergebnisse wurde ein VBA- Code zur Stromdatenextraktion, Prozessstromsegmentierung nach Phasenänderung und Wärmekapazitätsauswertung entwickelt. Schließlich wurde ein einfaches Produktionskostenmodell implementiert und die Prozesskennzahlen definiert. Nach der Integration der Prozesswärme konnte der Dampfverbrauch um 16,1% und der Kühlwasserverbrauch um 30,4% gesenkt werden. Bei einer jährlichen Produktionskapazität von 35 kt OME3-5 beträgt die Gesamtprozessausbeute MeOH bis OME3-5 80,3%, die Prozessenergieeffizienz 71,7%, der spezifische Dampfverbrauch 2,31 MWh pro t OME3-5 und die Produktionskosten 903 US$ pro t OME3-5 (0,16 €ct./kWh). Die MeOH-Kosten sind mit 47% des Produktionskostenanteils der größte Anteil, gefolgt von den Energiekosten mit 22,3% und der Produktionskapazität. Bei einer großen jährlichen Produktionskapazität von 1000 kt und MeOH-Feedkosten von 300 US$ pro t betragen die geschätzten Produktionskosten nach dem in dieser Arbeit beschriebenen Verfahren 599 US$ pro t OME3-5 (0,10 €ct./kWh). Dies stellt die niedrigsten Produktionskosten im Vergleich zum verfügbaren Literaturprozess dar und zeigt das Potenzial des vorgestellten
Recommended publications
  • Toxicological Profile for Formaldehyde
    TOXICOLOGICAL PROFILE FOR FORMALDEHYDE U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry July 1999 FORMALDEHYDE ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. FORMALDEHYDE iii UPDATE STATEMENT Toxicological profiles are revised and republished as necessary, but no less than once every three years. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, E-29 Atlanta, Georgia 30333 FORMALDEHYDE vii QUICK REFERENCE FOR HEALTH CARE PROVIDERS Toxicological Profiles are a unique compilation of toxicological information on a given hazardous substance. Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation of available toxicologic and epidemiologic information on a substance. Health care providers treating patients potentially exposed to hazardous substances will find the following information helpful for fast answers to often-asked questions. Primary Chapters/Sections of Interest Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating patients about possible exposure to a hazardous substance. It explains a substance’s relevant toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of the general health effects observed following exposure. Chapter 2: Health Effects: Specific health effects of a given hazardous compound are reported by route of exposure, by type of health effect (death, systemic, immunologic, reproductive), and by length of exposure (acute, intermediate, and chronic).
    [Show full text]
  • Bis(Chloromethyl) Ether
    Bis(chloromethyl) Ether sc-210941 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Bis(chloromethyl) Ether STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY3 HEALTH4 HAZARD INSTABILITY1 SUPPLIER Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 PRODUCT USE ■ The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation. Formerly used for chloromethylations. As an intermediate in preparation of strongly-basic anion ion exchange resins of the quaternary ammonium type. Byproduct generated in production and use of chloromethyl methyl ether. CMME CARE: Small amounts form in mixtures of formaldehyde and hydrogen chloride HCl gas and also in formaldehyde solutions containing chloride ions. SYNONYMS C2-H4-C12-O, BCME, "bis(chloromethyl) ether", bis-CME, chloro(chloromethoxy)methane, "chloromethyl ether", dichlorodimethylaether, "sym-dichloro-dimethyl ether", "1, 1' -dichlorodimethyl ether", "1, 1' -dichlorodimethyl ether", "dichlorodimethyl ether, symmetrical", "sym-dichloromethyl ether", "dimethyl-1, 1' -dichloroether", "dimethyl-1, 1' -dichloroether", "methane-1, 1' dichloroether", oxybis(chloromethane) Section 2 - HAZARDS IDENTIFICATION CANADIAN WHMIS SYMBOLS EMERGENCY OVERVIEW RISK Harmful if swallowed. Toxic in contact with skin. Very toxic by inhalation.
    [Show full text]
  • Formaldehyde Product-Type 02 (Disinfectants and Algaecides Not Intended for Direct Application to Humans Or Animals)
    Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products Evaluation of active substances Assessment Report Formaldehyde Product-type 02 (Disinfectants and algaecides not intended for direct application to humans or animals) October 2017 eCA: Germany Formaldehyde Product type 2 November 2017 CONTENTS 1. STATEMENT OF SUBJECT MATTER AND PURPOSE ............................................... 3 1.1. Procedure followed ................................................................................................................................ 3 1.2. Purpose of the assessment report .................................................................................................. 3 2. OVERALL SUMMARY AND CONCLUSIONS ................................................................... 3 2.1. Presentation of the Active Substance ........................................................................................... 3 2.1.1. Identity, Physico-Chemical Properties & Methods of Analysis ................................................... 3 2.1.2. Intended Uses and Efficacy ..................................................................................................................... 4 2.1.3. Classification and Labelling ..................................................................................................................... 5 2.2. Summary of the Risk Assessment ................................................................................................... 8 2.2.1. Human Health
    [Show full text]
  • Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008
    Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 William A. Rutala, Ph.D., M.P.H.1,2, David J. Weber, M.D., M.P.H.1,2, and the Healthcare Infection Control Practices Advisory Committee (HICPAC)3 1Hospital Epidemiology University of North Carolina Health Care System Chapel Hill, NC 27514 2Division of Infectious Diseases University of North Carolina School of Medicine Chapel Hill, NC 27599-7030 1 Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 3HICPAC Members Robert A. Weinstein, MD (Chair) Cook County Hospital Chicago, IL Jane D. Siegel, MD (Co-Chair) University of Texas Southwestern Medical Center Dallas, TX Michele L. Pearson, MD (Executive Secretary) Centers for Disease Control and Prevention Atlanta, GA Raymond Y.W. Chinn, MD Sharp Memorial Hospital San Diego, CA Alfred DeMaria, Jr, MD Massachusetts Department of Public Health Jamaica Plain, MA James T. Lee, MD, PhD University of Minnesota Minneapolis, MN William A. Rutala, PhD, MPH University of North Carolina Health Care System Chapel Hill, NC William E. Scheckler, MD University of Wisconsin Madison, WI Beth H. Stover, RN Kosair Children’s Hospital Louisville, KY Marjorie A. Underwood, RN, BSN CIC Mt. Diablo Medical Center Concord, CA This guideline discusses use of products by healthcare personnel in healthcare settings such as hospitals, ambulatory care and home care; the recommendations are not intended for consumer use of the products discussed. 2
    [Show full text]
  • Aliphatic Halide-Carbonyl Condensations by Means of Sodium by Edgar A
    U . S. Department of Commerce Research Paper RPl909 National Bureau of Standards Volume 41, August 1948 Part of the Journal of Research of the National Burea u of Standards Aliphatic Halide-Carbonyl Condensations by Means of Sodium By Edgar A. Cadwallader, Abraham Fookson, Thomas W. Mears, and Frank 1. Howard As a part of an in vestigation of the synthesis of highly branched ali phatic hydrocarbons that is being conducted at the National Bureau of Standa rds for the National Advisory Committee for Aeronautics, the l\'avy Bureau of Aeronautics, and t he Army Air Forces, se veral compounds have been prepared by interaction of alkyl halid es a nd various carbonyl compo unds in the presence of sod ium. This reaction makes possible the sy nthesis of ce rtain highly branched compound s not easily obtain able by other m eans. L Introduction cooling of the reaction mixture was effected by application of hot or cold oil baths. In some The usc of the GrignaI'd reaction for synthesis cases, particularly with low-boiling solvents, both of highly branched compounds is limited by un­ small necks of the flask were fitted with reflux I desirable side reactions, which become progres­ condensers with the elimination of the thermom­ . sively more pronounced as the degree of branching eter. of the reactan ts is increased. These side reactions Sodium sand was prepared batch-wise by heat­ involve the l'eclu ction and enolization of the adduct ing a weighed amount of sodium in a purified ligh t rather than the desired addition of the alkyl group.
    [Show full text]
  • Sample Preparation for Fluorescence Microscopy: an Introduction Concepts and Tips for Better Fixed Sample Imaging Results
    White Paper Sample Preparation for Fluorescence Microscopy: An Introduction Concepts and Tips for Better Fixed Sample Imaging Results By Paul Held, Laboratory Manager, Applications Dept., BioTek Instruments, Inc. Products: Cytation 3 and Cytation 5 Multiple processing steps are required to prepare tissue culture cells for fluorescence microscopy. Experiments are generally classified as being either live or fixed cell microscopy. Fluorescence microscopy of live cells uses either genetically encoded fluorescent proteins (e.g. GFP, mcherry, YFP, RFP, etc.) or cell membrane-permeable, non-toxic fluorescent stains. Fluorescence microscopy of fixed cells uses a fixative agent that renders the cells dead, but maintains cellular structure, allowing the use of specific antibodies and dyes to investigate cell morphology and structure. Appropriate sample preparation is necessary to ensure high quality images are captured. Here we describe a number of concepts and considerations regarding the sample preparation process that can assist with automated digital fluorescence microscopy of fixed cells. Cell Fixation The goal of fixation is to maintain cellular structure as much as possible to that of the native or unfixed state during the processing steps and subsequent imaging. There are a number of fixation methods suitable for fluorescence microscopy that fall into two basic categories: aldehyde fixatives and alcohol fixatives. Organic solvents such as alcohols and acetone remove lipids and dehydrate the cells, while precipitating the proteins on the cellular architecture. Cross-linking aldehyde reagents form intermolecular bridges, normally through free amino groups, creating a network of linked antigens. Cross-linkers preserve cell structure better than organic solvents, but may reduce the antigenicity of some cell components, and require a permeabilization step to allow the antibody access to the specimen.
    [Show full text]
  • Mechanistic Study for the Formation of Polyoxymethylene Dimethyl Ethers Promoted by Sulfonic Acid-Functionalized Ionic Liquids
    Journal of Molecular Catalysis A: Chemical 408 (2015) 228–236 Contents lists available at ScienceDirect Journal of Molecular Catalysis A: Chemical journal homepage: www.elsevier.com/locate/molcata Mechanistic study for the formation of polyoxymethylene dimethyl ethers promoted by sulfonic acid-functionalized ionic liquids Fang Wang, Gangli Zhu, Zhen Li, Feng Zhao, Chungu Xia ∗, Jing Chen State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China article info abstract Article history: Polyoxymethylene dimethyl ethers (DMMn), which are ideal additives for diesel fuel, are mainly syn- Received 5 February 2015 thesized from the condensation of methanol (MeOH) or dimethoxymethane (DMM) with 1,3,5-trioxane Received in revised form 14 July 2015 (TOX) or paraformaldehyde (PF) promoted by different acid catalysts. However, up to date, few studies Accepted 24 July 2015 have been reported to examine the formation mechanism of DMMn which is essential in understand- Available online 31 July 2015 ing the reaction and valuable in designing improved catalysts. In this work, using the density functional theory (DFT) calculations combined with experiment studies, we evaluate the formation mechanism of Keywords: DMMn which is promoted by sulfonic acid-functionalized ionic liquids (SO H-FILs). Our calculated results Polyoxymethylene dimethyl ethers 3 Sulfonic acid-functionalized ionic liquids indicate TOX and PF should dissociate into formaldehyde monomers firstly and then to react with MeOH Mechanism or DMM. However, their decomposition process is different where the dissociation of TOX proceeds along DFT a two-step mechanism while it follows a one-step mechanism for PF dissociation.
    [Show full text]
  • Pesticides EPA 739-R-08-004 Environmental Protection and Toxic Substances June 2008 Agency (7510P)
    US Environmental Protection Agency Office of Pesticide Programs Reregistration Eligibility Decision for Formaldehyde and Paraformaldehyde June 2008 United States Prevention, Pesticides EPA 739-R-08-004 Environmental Protection and Toxic Substances June 2008 Agency (7510P) Reregistration Eligibility Decision for Formaldehyde and Paraformaldehyde (Case 0556) UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES CERTIFIED MAIL Dear Registrant: This is to inform you that the Environmental Protection Agency (hereafter referred to as EPA or the Agency) has completed its review of the available data and public comments received related to the preliminary risk assessments for the antimicrobial formaldehyde and paraformaldehyde. The enclosed Reregistration Eligibility Decision (RED) document was approved on June 30, 2008. Based on its review, EPA is now publishing its Reregistration Eligibility Decision (RED) and risk management decision for formaldehyde and paraformaldehyde and their associated human health and environmental risks. A Notice of Availability will be published in the Federal Register announcing the publication of the RED. The RED and supporting risk assessments for formaldehyde and paraformaldehyde are available to the public on EPA’s Pesticide Docket at: www.regulations.gov. The docket number is EPA-HQ-OPP-2008-0121. The formaldehyde and paraformaldehyde RED was developed through EPA’s public participation process, published in the Federal Register on September 10, 2004, which provides opportunities for public involvement in the Agency’s pesticide tolerance reassessment and reregistration programs. Developed in partnership with USDA and with input from EPA’s advisory committees and others, the public participation process encourages robust public involvement starting early and continuing throughout the pesticide risk assessment and risk mitigation decision making process.
    [Show full text]
  • Paraformaldehyde Products
    Paraformaldehyde products Paraformaldehyde is used as a disinfectant, hardening agent and waterproofing agent. It is also used to prepare adhesives, resins and in dentistry as an antiseptic. It is also employed as a thermoplastic. In addition, it is used in the preparation of formalin fixatives for tissues or cells, particularly when the samples are subjected to florescence studies. Application Focus areas: Agricultural chemicals, paint industry, pharmaceutical & chemical industry, organic chemical syntheses, fertilizers, pharmaceuticals, printing & photography, fluorescent lights, consumer goods, cleaning products, personal care products and intermediate additives and compounds. Applications One of the most important uses of our paraformaldehyde solutions is as formalin fixatives for tissues or cells. Paraformaldehyde is also used as a source of formaldehyde groups in the production of many thermosetting resins, together with phenol, urea, melamine, resorcinol and other similar reagents. These resins are used as moulding powders; in the wood industry as glues for chipboard, plywood and furniture; as bonding resins for brakes, abrasives and foundry dyes; as finishing resins for paper and textiles; as driers and glossing agents for paints; as insulating varnishes for electrical parts. Some additional typical formulations for the production of such resins starting from paraformaldehyde include dichloroethyl formal, methyl phenol, disinfectants, insecticides, pharmaceuticals such as vitamin A, embalming preparations, dyestuff and special plasticizers. New products have been added to our extensive paraformaldehyde portfolio to ensure that we have suitable products for all customer applications. These new products are most commonly used as fixatives in cell culture studies, and are conveniently packaged in 10mL ampoules for customer convenience and to ensure product is fresh for each use.
    [Show full text]
  • The Reactions Between Acid Halides and Aldehydes
    L. H. Ulich The R eacfions bef^vreen /\cid Hali'oles cinc( Aldehydes THE REACTIONS BETWEEN ACID HALIDES AND ALDEHYDES BY LYNNE HERMAN ULICH B. S. Grinnell College, 1914 M. S. University of Illinois, 19 18 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN CHEMISTRY IN THE GRADUATE SCHOOL OF THE UNIVERSITY OF ILLINOIS 1920 UNIVERSITY OF ILLINOIS THE GRADUATE SCHOOL May 11 i9g0 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY. Lynne Herman Ulioh ENTITLED THE REACTION S BETWEEN ACID HAL IDES AND ALDEHYDES BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE of Doctor of Philosophy In Charge of Thesis V Head of Department Recommendation concurred in* Committee on Final Examination* ^Required for doctor's degree but not for master's TABLE 0._F CONTENTS Page No. ACCTOWLEDG .1 TUT I. INTRODUCTION 1 II. HISTORICAL PART 3 III. THEORETICAL PART 11 IV. EXPERIMENTAL P'PT 23 A. Reactions of Aliphatic Acid Halides and Aliphatic Aldehyde$35 1. With Para Formaldehyde 35 2. With Paraldehyde 30 3. With Ieo-ontyl Aldehyde 35 4. Tith Iso-v^leryl Aldehyde 39 5. With Hfptaldehyde 41 B. Reactions of Aromatic Acid Halides and Aliphatic Aldehydes^ 1 . With Par a For maid ehyd a 43 2. With Paraldehyde 45 3. With n -Butyl Aldehyde 45 4. With Iso-valeryl -Aldehyde 46 5. mth Heptaldehyde 47 0. Reactions of the Addition Compounds 49 1. With Ammonia and Amines 49 3. ir ith T-Vater 52 3. With Solid Potassium Hydroxide 52 4.
    [Show full text]
  • Asian Journal of Chemistry Asian Journal of Chemistry
    Asian Journal of Chemistry; Vol. 27, No. 6 (2015), 2149-2153 ASIAN JOURNAL OF CHEMISTRY http://dx.doi.org/10.14233/ajchem.2015.17822 Synthesis of Polyoxymethylene Dimethyl Ethers Catalyzed by Rare Earth Compounds * GAO-FENG SHI , JIAN MIAO, GUO-YING WANG, JIN-MEI SU and HAI-XIAO LIU School of Petro-chemical Engineering, Lanzhou University of Technology, Lanzhou 730000, Gansu Province, P.R. China *Corresponding author: E-mail: [email protected] Received: 15 April 2014; Accepted: 30 June 2014; Published online: 17 March 2015; AJC-16982 Polyoxymethylene dimethyl ethers (PODMEn) have been synthesized in moderate yields by the reaction of methylal (PODME1) and paraformaldehyde catalyzed by rare earth compounds. The activities of catalyst in the reaction were investigated and the results show that 3+ 2- La /SO4 has a high value. The influencing factors of reaction such as catalyst amount, reaction temperature, time, pressure and mole ratio of methylal (PODME1) to paraformaldehyde were also investigated. The appropriate reaction conditions i.e., n(paraformaldehyde)/ n(methylal) = 1.60, catalyst amount of 1 %, 130 °C, 6 h and 0.5 MPa. Under the above conditions, methylal conversion rate and selectivity of PODME2-8 is 81.6 and 75.5 %, respectively. In addition to, the combustion and emission characteristics of PODME2-8 added diesel was compared with the diesel, polyoxymethylene dimethyl ethers (PODME2-8) not only improved the combustion characteristics of diesel, but improved the low temperature fluidity. Keywords: Rare earth compounds, Polyoxymethylene dimethyl ethers, Methylal, Paraformaldehyde. INTRODUCTION acidic ion exchange resins as catalyst, BP produced PODME3-8 by conversion of dimethyl ether with formaldehyde through a 10,12 Polyoxymethylene dimethyl ethers (PODMEn) are impor- complicated process .
    [Show full text]
  • 3. Chemical and Physical Information
    FORMALDEHYDE 267 3. CHEMICAL AND PHYSICAL INFORMATION 3.1 CHEMICAL IDENTITY Information regarding the chemical identity of formaldehyde is located in Table 3-1. 3.2 PHYSICAL AND CHEMICAL PROPERTIES Information regarding the physical and chemical properties of formaldehyde is located in Table 3-2. FORMALDEHYDE 268 3. CHEMICAL AND PHYSICAL INFORMATION Table 3-1. Chemical Identity of Formaldehyde Characteristic Information Reference Chemical name Formaldehyde Lide and Frederikse 1996 Synonym(s) Formic aldehyde, methanal, methyl Budavari et al. 1989 aldehyde, methylene oxide Registered trade name(s) For 37% aqueous solutiona Formalin, Formol, Morbicid, Veracur Budavari et al. 1989 For polymeric formb Paraformaldehyde, Polyoxymethylene, Budavari et al. 1989 Paraform, Formagene Chemical formula CH2O Aster 1995 Chemical structure O Lide and Frederikse 1996 H C H Identification numbers: CAS Registry 50-00-0 Aster 1995 NIOSH RTECS LP8925000 HSDB 1995 EPA Hazardous Waste U122 HSDB 1995 OHM/TADS 7216732 HSDB 1995 DOT/UN/NA/IMCO CLASS 3/UN1198/IMCO 3.2 NFPA 1994 HSDB 164 HSDB 1999 NCI No data HSDB 1999 a Aqueous solutions of formaldehyde available commercially often contain 10-15% methanol to inhibit polymerization. b Paraformaldehyde is a polymer of formaldehyde and has the formula (CH2O)n. CAS = Chemical Abstracts Services; DOT/UN/NA/IMCO = Department of Transportation/United Nations/North America/International Maritime Dangerous Goods Code; EPA = Environmental Protection Agency; HSDB = Hazardous Substance Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for Occupational Safety and Health; OHM/TADS = Oil and Hazardous Materials/Technical Assistance Data System; RTECS = Registry of Toxic Effects of Chemical Substances FORMALDEHYDE 269 3.
    [Show full text]