Programming Languages

Total Page:16

File Type:pdf, Size:1020Kb

Programming Languages Programming Languages VIKEN CHOUCHANIAN California State University Northridge Communication is a vital aspect of any society. The transferring of ideas, thoughts, information, or any other pertinent data could not be possible without a specific form of communication that all parties involved can understand. One form of communication is the use of languages. Humans have been using a variety of formal languages with great success for millennia all over the globe. When the need to communicate with machines arose, humans created programming languages to fully command their creations. The first programming languages actually predate any computers, and existed in the form of punch cards, used to guide textile looms. As humans gave birth to more advanced computers, programming languages also evolved to meet the intricate complexities of these new machines. Thousands of programming languages have been created, and each programmer can choose which language is optimal for his or her, based on their specific programming styles, hardware being used, and genre of the program being created. Some of the most widely used languages are Java, C++, C, PHP, Javascript, and Python, because they are fairly easy to learn and can be applied to a variety of general use programs. Similar to any spoken language, programming languages have certain rules that must be fol- lowed. Syntax can be considered the grammar of a programming language, allowing the computer to understand the vocabulary used by the programmer. Programmers can use the syntax and vocabulary of a language to create almost anything in the virtual world, have machines build a car, produce the next great video game, or create the next great phone application. Categories and Subject Descriptors: D.3 [Programming Languages]: General Terms: Languages Additional Key Words and Phrases: Programming Langugages 1. INTRODUCTION A key factor in the evolution, socialization, and civility of human beings has been communication. From the early grunts of our first homosapian ancestors, to the intricate nuances of the plethora of complex present day languages, mankind has needed a method to transfer ideas and concepts to one another. The invention of writing over 5000 years ago assisted in the transfer of concepts and helped advance human civilization in every aspect of our daily lives. Absence of a common lan- guage would make it nearly impossible to have a person effectively perform any task or explain an idea conceptualized by another. Formal language has evolved into a malleable entity constantly changing to meet the needs of modern humans and has become bridge between 21st century humans and the machines they have cre- ... Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee. c 20YY ACM 0000-0000/20YY/0000-0001 $5.00 ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1{0??. 2 · V. Chouchanian ated. Just as humans have passed on knowledge to each other for millennia, people now have the capacity to fully communicate with their electronic and mechanical creations through formal languages, that certain machines can understand. These languages, known as programming languages, are the key to future of computers, machines, and technology in general. Without these languages many modern day inventions would be reduced to expensive silicon and plastic paperweights. A programming language can be defined as a notational system for describing computation in machine-readable and human-readable form.[2] In simpler terms it is notation for communicating to a computer what you want it to do. Although, through programming languages humans and machines can communicate, there are limitations. Programming languages, unlike human natural languages, can only facilitate communication of algorithmic ideas, and cannot easily express or understand human emotion. Machines read the program, and do what they told, if they understand what is presented. Since the invention of the first complex machines, humans have been devising more intricate ways of communication with their machine to employ more efficient techniques to complete their goals. 2. HISTORY OF PROGRAMMING LANGUAGES The first programming language predates the computer by over 125 years. Pro- gramming languages first appeared as holes placed strategically on punch cards. These punch cards were fed into the Jacquard Looms and player pianos of the early 1800s to control a sequence of operations and created various patterns in the tex- tiles being created. By simply changing out the cards, the operator of the loom could change the pattern on the textile. This similarity to the early 5.25 and 3.5 inch floppy disks is uncanny. The first computer program was created by Charles Babbage in the early 19th century to run his conceptual Analytical Engine. The Analytical Engine would be able to calculate logarithms and trigonometric functions using his computer program. His original ideas, combined with various mathematical works throughout the late 19th century and early 20th century, were used by Alan M. Turing in his Turing Machines.[7] These machines were conceptualized in the late 1930s and they worked by manipulating various symbols written on a tape. These concepts gave birth to the ideas of computer memory, automated machines, and the basic working of the modern day CPU. The last of the primitive programming languages was used in the famous ENIAC and UNIVAC computers of the late 1940s and early 50s. Before 1954 almost all programming was done in assembly language.[6] Modern structured programming languages first appeared in the computers of the 1950s and 60s. The initial modern programming languages FORTRAN, LISP, ALGOL, and COBOL became the basis of the computing world in the middle of the 20th century, and many variations of these languages spawned a multitude of new languages.[1] Modified versions or FORTRAN, LISP, ALGOL and COBOL are still used in 21st century machines. As computers became more efficient and accessible to the public, programming languages were forced to match the increasing complexities associated with the vast increase of technology until the early 1970s. Here is an example of a simple FORTRAN II code: ACM Journal Name, Vol. V, No. N, Month 20YY. · 3 The 1970s brought forth the concept of object-oriented programming. Object oriented programming began using data structures to create computer programs. A multitude of the programming languages developed after this period, incorporated object oriented programming into their basic ideas. Another huge accomplishment during the 70s was the creation of the C programming language. C or some variation of C is arguably the most widely used programming language in the world in 2010. The Internet boom of the 90s gave birth to many of the languages used by pro- grammers today. Scripting languages such as Applescript, Javascript, and Python were born in this era, and paved the way for many other programming languages used for the virtual world of the web. Programming languages are constantly being created, updated, and used. There are currently tens of thousands of programming languages in the world. This is not surprising, because of our dependence on tech- nology and accessibility of powerful computers, designers have free reign to create any language they deem fit to solve any problem. Languages may be created for various reasons ranging from calculating salaries for a corporation to computing the grades of college students. ACM Journal Name, Vol. V, No. N, Month 20YY. 4 · V. Chouchanian 3. HOW PROGRAMMING LANGUAGES WORK The study of any language, natural or artificial, focuses on the two fundamentals of the language: syntax and semantics. Syntax of language takes into account the format, form, and compositional structure of the language. For example the sen- tence: three red dog, is syntactically incorrect. The syntax of a computer language is defined as the form of its expressions, statements, and program units. Semantics on the other hand have to do with the meaning behind what is being expressed. The sentence: Thoughtful body greens instigate butterflies, is syntactically correct, but has no semantic meaning. Semantics, in programming language, refer to the meaning of the expressions, statements, and program units in the syntax of the language. 3.1 Syntax The syntax of a language can help determine popularity and ease of use of a specific programming language. If a programmer finds himself or herself struggling through the syntax of a language, the programmer can easily switch to one of the other languages currently available. Like natural languages, programming languages have symbols called characters. These characters are put together in strings and these strings combine to form sentences. The simplest form of these strings is called a lexeme. Lexemes are also separated into groups, called identifiers, by various criteria. The criteria for separation can include methods, classes, or names of variables. The categories these lexemes belong to are called tokens.[5] For example, the lexeme, index, is in the token named, identifier. These tokens are then parsed. Parsing recognizes the tokens in a sentence and determines its structure relating to the formal grammar of the language. Formal grammar of a language relates to the ACM Journal Name, Vol. V, No. N, Month 20YY. · 5 syntax rules implemented. Formal grammar only relates to form and not content. The following are some lexemes in the C programming language. Grammar of programming languages can be classified into various categories using the Chomsky hierarchy, a system devised by Noam Chomsky in the mid 1950s. The hierarchy consists of 4 classes for grammar; Type-0, Type-1, Type- 2, and Type-3.
Recommended publications
  • Red Hat Enterprise Linux 6 Developer Guide
    Red Hat Enterprise Linux 6 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 6 Dave Brolley William Cohen Roland Grunberg Aldy Hernandez Karsten Hopp Jakub Jelinek Developer Guide Jeff Johnston Benjamin Kosnik Aleksander Kurtakov Chris Moller Phil Muldoon Andrew Overholt Charley Wang Kent Sebastian Red Hat Enterprise Linux 6 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 6 Edition 0 Author Dave Brolley [email protected] Author William Cohen [email protected] Author Roland Grunberg [email protected] Author Aldy Hernandez [email protected] Author Karsten Hopp [email protected] Author Jakub Jelinek [email protected] Author Jeff Johnston [email protected] Author Benjamin Kosnik [email protected] Author Aleksander Kurtakov [email protected] Author Chris Moller [email protected] Author Phil Muldoon [email protected] Author Andrew Overholt [email protected] Author Charley Wang [email protected] Author Kent Sebastian [email protected] Editor Don Domingo [email protected] Editor Jacquelynn East [email protected] Copyright © 2010 Red Hat, Inc. and others. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
    [Show full text]
  • Atmospheric Modelling and HPC
    Atmospheric Modelling and HPC Graziano Giuliani ICTP – ESP Trieste, 1 October 2015 NWP and Climate Codes ● Legacy code from the '60 : FORTRAN language ● Path and Dynamic Libraries ● Communication Libraries ● I/O format Libraries ● Data analysis tools and the data deluge http://clima-dods.ictp.it/Workshops/smr2761 Materials ● This presentation: – atmospheric_models_and_hpc.pdf ● Codes: – codes.tar.gz ● Download both, uncompress codes: – cp codes.tar.gz /scratch – cd /scratch – tar zxvf codes.tar.gz Legacy code ● Numerical Weather Prediction uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. ● MOST of the NWP and climate codes can push their roots back in the 1960-1970 ● The NWP problem was one of the target problem which led to the Computer Era: the ENIAC was used to create the first weather forecasts via computer in 1950. ● Code grows by ACCRETION FORTRAN and FortranXX ● Fortran Programming Language is a general-purpose, imperative programming language that is especially suited to numeric computation and scientific computing. ● Originally developed by IBM in the 1950s for scientific and engineering applications ● Its standard is controlled by an ISO comitee: the most recent standard, ISO/IEC 1539-1:2010, informally known as Fortran 2008, was approved in September 2010. ● Needs a compiler to translate code into executable Fortran Compilers ● http://fortranwiki.org ● Most of the High Performance Compilers are Commercial, and “SuperComputer” vendors usually provide their HIGH OPTIMIZED version of Fortran Compiler. ● Some part of the Standard are left “COMPILER SPECIFIC”, opening for incompatibility among the binary formats produced by different compilers. The Fortran .mod files ● Fortran 90 introduced into the language the modules: module my_mod contains subroutine mysub(a,b) real , intent(in) :: a real , intent(out) :: b end subroutine mysub end module my_mod ● The compiler creates the object file and a .mod file compiling the above code.
    [Show full text]
  • CCPP Technical Documentation Release V3.0.0
    CCPP Technical Documentation Release v3.0.0 J. Schramm, L. Bernardet, L. Carson, G. Firl, D. Heinzeller, L. Pan, and M. Zhang Jun 17, 2019 For referencing this document please use: Schramm, J., L. Bernardet, L. Carson, G. Firl, D. Heinzeller, L. Pan, and M. Zhang, 2019. CCPP Technical Documentation Release v3.0.0. 91pp. Available at https://dtcenter.org/GMTB/v3.0/ccpp_tech_guide.pdf. CONTENTS 1 CCPP Overview 1 1.1 How to Use this Document........................................4 2 CCPP-Compliant Physics Parameterizations7 2.1 General Rules..............................................8 2.2 Input/output Variable (argument) Rules.................................9 2.3 Coding Rules............................................... 10 2.4 Parallel Programming Rules....................................... 11 2.5 Scientific Documentation Rules..................................... 12 2.5.1 Doxygen Comments and Commands.............................. 12 2.5.2 Doxygen Documentation Style................................. 13 2.5.3 Doxygen Configuration..................................... 18 2.5.4 Using Doxygen......................................... 20 3 CCPP Configuration and Build Options 23 4 Constructing Suites 27 4.1 Suite Definition File........................................... 27 4.1.1 Groups............................................. 27 4.1.2 Subcycling........................................... 27 4.1.3 Order of Schemes........................................ 28 4.2 Interstitial Schemes........................................... 28 4.3 SDF Examples.............................................
    [Show full text]
  • EPICS Application Developer's Guide
    1 EPICS Application Developer’s Guide EPICS Base Release 3.15.0.2 17 October 2014 Andrew N. Johnson, Janet B. Anderson, Martin R. Kraimer (Argonne National Laboratory) W. Eric Norum (Lawrence Berkeley National Laboratory) Jeffrey O. Hill (Los Alamos National Laboratory) Ralph Lange, Benjamin Franksen (Helmholtz-Zentrum Berlin) Peter Denison (Diamond Light Source) 2 Contents EPICS Applications Developer’s Guide1 Table of Contents 7 1 Introduction 9 1.1 Overview.................................................9 1.2 Acknowledgments............................................ 11 2 Getting Started 13 2.1 Introduction................................................ 13 2.2 Example IOC Application........................................ 13 2.3 Channel Access Host Example...................................... 15 2.4 iocsh.................................................... 16 2.5 Building IOC components........................................ 16 2.6 makeBaseApp.pl............................................. 19 2.7 vxWorks boot parameters......................................... 22 2.8 RTEMS boot procedure.......................................... 23 3 EPICS Overview 25 3.1 What is EPICS?.............................................. 25 3.2 Basic Attributes.............................................. 26 3.3 IOC Software Components........................................ 26 3.4 Channel Access.............................................. 28 3.5 OPI Tools................................................. 30 3.6 EPICS Core Software..........................................
    [Show full text]
  • Studying the Evolution of Build Systems
    Studying the Evolution of Build Systems by Shane McIntosh A thesis submitted to the School of Computing in conformity with the requirements for the degree of Master of Science Queen's University Kingston, Ontario, Canada January 2011 Copyright c Shane McIntosh, 2011 Abstract As a software project ages, its source code is improved by refining existing features, adding new ones, and fixing bugs. Software developers can attest that such changes often require accompanying changes to the infrastructure that converts source code into executable software packages, i.e., the build system. Intuition suggests that these build system changes slow down development progress by diverting developer focus away from making improvements to the source code. While source code evolution and maintenance is studied extensively, there is little work that focuses on the build system. In this thesis, we empirically study the static and dynamic evolution of build system complexity in proprietary and open source projects. To help counter potential bias of the study, 13 projects with different sizes, domains, build technologies, and release strategies were selected for examination, including Eclipse, Linux, Mozilla, and JBoss. We find that: (1) similar to Lehman's first law of software evolution, Java build system specifications tend to grow unless explicit effort is invested into restructuring them, (2) the build system accounts for up to 31% of the code files in a project, and (3) up to 27% of source code related development tasks require build maintenance. Project managers should include build maintenance effort of this magnitude in their project planning and budgeting estimations. i Co-authorship Earlier versions of the work in this thesis were published as listed below: 1) The Evolution of ANT Build Systems (Chapter 4) Shane McIntosh, Bram Adams, and Ahmed E.
    [Show full text]
  • Impact of Different Compilers and Build Types on Geant4 Simulation Execution Time
    EPJ Web of Conferences 245, 05037 (2020) https://doi.org/10.1051/epjconf/202024505037 CHEP 2019 Impact of different compilers and build types on Geant4 simulation execution time Caterina Marcon1;∗, Oxana Smirnova1, and Servesh Muralidharan2 1Lunds Universitet, Fysiska Institutionen, Box 118, SE - 221 00 Lund, Sweden 2CERN, CH-1211 Geneva 23, Switzerland Abstract. Experimental observations and advanced computer simulations in High Energy Physics (HEP) paved the way for the recent discoveries at the Large Hadron Collider (LHC) at CERN. Currently, Monte Carlo simulations account for a very significant amount of computational resources of the World- wide LHC Computing Grid (WLCG). The current growth in available com- puting performance will not be enough to fulfill the expected demand for the forthcoming High Luminosity run (HL-LHC). More efficient simulation codes are therefore required. This study focuses on evaluating the impact of different build methods on the simulation execution time. The Geant4 toolkit, the standard simulation code for the LHC experiments, consists of a set of libraries which can be either dynam- ically or statically linked to the simulation executable. Dynamic libraries are currently the preferred build method. In this work, three versions of the GCC compiler, namely 4.8.5, 6.2.0 and 8.2.0 have been used. In addition, a comparison between four optimization levels (Os, O1, O2 and O3) has also been performed. Static builds for all the GCC versions considered, exhibit a reduction in ex- ecution times of about 10%. Switching to newer GCC version results in an average of 30% improvement in the execution time regardless of the build type.
    [Show full text]
  • CCPP Technical Documentation Release V4.0.0
    CCPP Technical Documentation Release v4.0.0 J. Schramm, L. Bernardet, L. Carson, G. Firl, D. Heinzeller, L. Pan, and M. Zhang Mar 26, 2020 For referencing this document please use: Schramm, J., L. Bernardet, L. Carson, G. Firl, D. Heinzeller, L. Pan, and M. Zhang, 2020. CCPP Technical Documentation Release v4.0.0. Available at https://dtcenter.org/GMTB/v4.0/ccpp_tech_guidev4.0.pdf. CONTENTS 1 CCPP Overview 1 1.1 How to Use this Document........................................4 2 CCPP-Compliant Physics Parameterizations7 2.1 General Rules..............................................8 2.2 Metadata Rules..............................................9 2.3 Input/output Variable (argument) Rules................................. 11 2.4 Coding Rules............................................... 12 2.5 Parallel Programming Rules....................................... 12 2.6 Scientific Documentation Rules..................................... 13 2.6.1 Doxygen Comments and Commands.............................. 14 2.6.2 Doxygen Documentation Style................................. 14 2.6.3 Doxygen Configuration..................................... 19 2.6.4 Including metadata information................................ 21 2.6.5 Using Doxygen......................................... 22 3 CCPP Configuration and Build Options 23 4 Constructing Suites 27 4.1 Suite Definition File........................................... 27 4.1.1 Groups............................................. 27 4.1.2 Subcycling........................................... 27 4.1.3 Order
    [Show full text]
  • Boost.Build V2 User Manual
    Boost.Build V2 User Manual XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/ Boost.Build V2 User Manual Copyright © 2006-2009 Vladimir Prus Distributed under the Boost Software License, Version 1.0. (See accompanying ®le LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/ Table of Contents How to use this document ........................................................................................................................................ 1 Installation ............................................................................................................................................................ 2 Tutorial ................................................................................................................................................................ 3 Hello, world .................................................................................................................................................. 4 Properties ..................................................................................................................................................... 5 Project Hierarchies ......................................................................................................................................... 7 Dependent Targets .........................................................................................................................................
    [Show full text]
  • Laurie Carson
    CCPP Training College Park, MD, March 12-13, 2019 Building NEMSfv3gfs with CCPP Laurie Carson Global Model Test Bed Building NEMSfv3gfs with CCPP Code repositories and how to get the code Types of builds System requirements, compilers, libraries How-to instructions (see also: Practical Session exercises) 2 Code repositories The repository structure for CCPP development in NEMSfv3gfs mirrors the Vlab repository structure, with the addition of the CCPP repositories FV3 Repository (GMTB development version) Branch name https://github.com/NCAR/NEMSfv3gfs gmtb/ccpp FMS https://github.com/NCAR/FV3 gmtb/ccpp NEMSfv3gfs NEMS https://github.com/NCAR/ccpp-physics master https://github.com/NCAR/ccpp-framework master ccpp/physics https://github.com/NCAR/NEMS gmtb/ccpp https://github.com/NCAR/FMS GFS-FMS ccpp/framework 3 How to get the code The authoritative repositories are located on github.com in the NCAR organizational space Some repositories are private (NEMSfv3gfs, FV3, NEMS) Some repositories are public (ccpp-physics, ccpp-framework, FMS) Send a request to [email protected] to request access to the private repositories Clone a local copy of the repository to begin working, including submodules git clone –-recursive -b emc_training_march_2019 https://github.com/NCAR/NEMSfv3gfs 4 Types of builds Using FV3GFS as the host model, there are several modes of operation Non-CCPP:The code is compiled without CCPP enabled and matches the official NEMSfv3gfs codebase in VLab. Hybrid CCPP:The code is compiled with CCPP enabled and allows users to combine non-CCPP physics and CCPP-compliant physics. Standalone CCPP (non-Hybrid): The code is compiled with CCPP enabled and restricted to CCPP-compliant physics.
    [Show full text]
  • Libflame the Complete Reference ( Version 5.1.0-56 )
    libflame The Complete Reference ( version 5.1.0-56 ) Field G. Van Zee The University of Texas at Austin Copyright c 2011 by Field G. Van Zee. 10 9 8 7 6 5 4 3 2 1 All rights reserved. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, contact either of the authors. No warranties, express or implied, are made by the publisher, authors, and their employers that the programs contained in this volume are free of error. They should not be relied on as the sole basis to solve a problem whose incorrect solution could result in injury to person or property. If the programs are employed in such a manner, it is at the user's own risk and the publisher, authors, and their employers disclaim all liability for such misuse. Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended. Library of Congress Cataloging-in-Publication Data not yet available Draft, November 2008 This \Draft Edition" allows this material to be used while we sort out through what mechanism we will publish the book. Contents 1. Introduction 1 1.1. What's provided...........................................1 1.2. What's not provided.........................................6 1.3. Acknowledgments...........................................7 2. Setup for GNU/Linux and UNIX9 2.1. Before obtaining libflame .....................................9 2.1.1. System software requirements................................9 2.1.2. System hardware support.................................. 10 2.1.3.
    [Show full text]
  • Vxworks Application Programmer's Guide
    VxWorks Application Programmer's Guide VxWorks® APPLICATION PROGRAMMER’S GUIDE 6.2 Copyright © 2005 Wind River Systems, Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the prior written permission of Wind River Systems, Inc. Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc. Any third-party trademarks referenced are the property of their respective owners. For further information regarding Wind River trademarks, please see: http://www.windriver.com/company/terms/trademark.html This product may include software licensed to Wind River by third parties. Relevant notices (if any) are provided in your product installation at the following location: installDir/product_name/3rd_party_licensor_notice.pdf. Wind River may refer to third-party documentation by listing publications or providing links to third-party Web sites for informational purposes. Wind River accepts no responsibility for the information provided in such third-party documentation. Corporate Headquarters Wind River Systems, Inc. 500 Wind River Way Alameda, CA 94501-1153 U.S.A. toll free (U.S.): (800) 545-WIND telephone: (510) 748-4100 facsimile: (510) 749-2010 For additional contact information, please visit the Wind River URL: http://www.windriver.com For information on how to contact Customer Support, please visit the following URL: http://www.windriver.com/support VxWorks Application Programmer’s Guide, 6.2 9 Oct 05 Part #: DOC-15673-ZD-00 Contents
    [Show full text]
  • Red Hat Enterprise Linux 7 Developer Guide
    Red Hat Enterprise Linux 7 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 7 Jacquelynn East Don Domingo Robert Krátký Red Hat Enterprise Linux 7 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 7 Jacquelynn East Red Hat Customer Content Services [email protected] Don Domingo Red Hat Customer Content Services [email protected] Robert Krátký Red Hat Customer Content Services [email protected] Legal Notice Copyright © 2015 Red Hat, Inc. and others. This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
    [Show full text]