Assemblages of Flower-Visiting Insects in Clear-Cuts Are Rich and Dynamic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diptera: Syrphidae
This is a repository copy of The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80035/ Version: Accepted Version Article: Penney, HD, Hassall, C orcid.org/0000-0002-3510-0728, Skevington, JH et al. (2 more authors) (2014) The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae). The American Naturalist, 183 (2). pp. 281-289. ISSN 0003-0147 https://doi.org/10.1086/674612 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae)1 Heather D. Penney, Christopher Hassall, Jeffrey H. Skevington, Brent Lamborn & Thomas N. Sherratt Abstract Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated, or to augment an already close morphological resemblance. -
UNIVERSITY of READING Delivering Biodiversity and Pollination Services on Farmland
UNIVERSITY OF READING Delivering biodiversity and pollination services on farmland: a comparison of three wildlife- friendly farming schemes Thesis submitted for the degree of Doctor of Philosophy Centre for Agri-Environmental Research School of Agriculture, Policy and Development Chloe J. Hardman June 2016 Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Chloe Hardman i Abstract Gains in food production through agricultural intensification have come at an environmental cost, including reductions in habitat diversity, species diversity and some ecosystem services. Wildlife- friendly farming schemes aim to mitigate the negative impacts of agricultural intensification. In this study, we compared the effectiveness of three schemes using four matched triplets of farms in southern England. The schemes were: i) a baseline of Entry Level Stewardship (ELS: a flexible widespread government scheme, ii) organic agriculture and iii) Conservation Grade (CG: a prescriptive, non-organic, biodiversity-focused scheme). We examined how effective the schemes were in supporting habitat diversity, species diversity, floral resources, pollinators and pollination services. Farms in CG and organic schemes supported higher habitat diversity than farms only in ELS. Plant and butterfly species richness were significantly higher on organic farms and butterfly species richness was marginally higher on CG farms compared to farms in ELS. The species richness of plants, butterflies, solitary bees and birds in winter was significantly correlated with local habitat diversity. Organic farms supported more evenly distributed floral resources and higher nectar densities compared to farms in CG or ELS. Compared to maximum estimates of pollen demand from six bee species, only organic farms supplied sufficient pollen in late summer. -
FIT Count Insect Guide
Flower-Insect Timed Count: insect groups identification guide This guide has been developed to support the Flower-Insect Timed Count survey (FIT Count) that forms part of the UK Pollinator Monitoring Scheme (PoMS). Who is organising this project? The FIT Count is part of the Pollinator Monitoring Scheme (PoMS) within the UK Pollinator Monitoring and Research Partnership, co-ordinated by the Centre for Ecology & Hydrology (CEH). It is jointly funded by Defra, the Welsh and Scottish Governments, JNCC and project partners, including CEH, the Bumblebee Conservation Trust, Butterfly Conservation, British Trust for Ornithology, Hymettus, the University of Reading and University of Leeds. PoMS aims to provide much-needed data on the state of the UK’s insect pollinators, especially wild bees and hoverflies, and the role they fulfil in supporting farming and wildlife. For further information about PoMS go to: www.ceh.ac.uk/pollinator-monitoring Defra project BE0125/ NEC06214: Establishing a UK Pollinator Monitoring and Research Partnership This document should be cited as: UK Pollinator Monitoring Scheme. 2019. Flower-Insect Timed Count: insect groups identification guide. Version 4. CEH Wallingford. Bee or wasp (Hymenoptera)? – 1 Honey Bee (family Apidae, species Apis mellifera) A social wasp (family Vespidae, genus Vespula) Photo © Bob Peterson/Wikimedia Commons Photo © Trounce/Wikimedia Commons most bees are more hairy than wasps at rest, wings are rolled up for some wasps (not all) Pollinator Monitoring Scheme: FIT Count FIT Scheme: Monitoring -
Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N. -
Longhorn Beetles (Coleoptera, Cerambycidae) Christian Cocquempot, Ake Lindelöw
Longhorn beetles (Coleoptera, Cerambycidae) Christian Cocquempot, Ake Lindelöw To cite this version: Christian Cocquempot, Ake Lindelöw. Longhorn beetles (Coleoptera, Cerambycidae). Alien terrestrial arthropods of Europe, 4 (1), Pensoft Publishers, 2010, BioRisk, 978-954-642-554-6. 10.3897/biorisk.4.56. hal-02823535 HAL Id: hal-02823535 https://hal.inrae.fr/hal-02823535 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A peer-reviewed open-access journal BioRisk 4(1): 193–218 (2010)Longhorn beetles (Coleoptera, Cerambycidae). Chapter 8.1 193 doi: 10.3897/biorisk.4.56 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Longhorn beetles (Coleoptera, Cerambycidae) Chapter 8.1 Christian Cocquempot1, Åke Lindelöw2 1 INRA UMR Centre de Biologie et de Gestion des Populations, CBGP, (INRA/IRD/CIRAD/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, 34988 Montférrier-sur-Lez, France 2 Swedish university of agricultural sciences, Department of ecology. P.O. Box 7044, S-750 07 Uppsala, Sweden Corresponding authors: Christian Cocquempot ([email protected]), Åke Lindelöw (Ake.Linde- [email protected]) Academic editor: David Roy | Received 28 December 2009 | Accepted 21 May 2010 | Published 6 July 2010 Citation: Cocquempot C, Lindelöw Å (2010) Longhorn beetles (Coleoptera, Cerambycidae). -
Comparative Methods Offer Powerful Insights Into Social Evolution in Bees Sarah Kocher, Robert Paxton
Comparative methods offer powerful insights into social evolution in bees Sarah Kocher, Robert Paxton To cite this version: Sarah Kocher, Robert Paxton. Comparative methods offer powerful insights into social evolution in bees. Apidologie, Springer Verlag, 2014, 45 (3), pp.289-305. 10.1007/s13592-014-0268-3. hal- 01234748 HAL Id: hal-01234748 https://hal.archives-ouvertes.fr/hal-01234748 Submitted on 27 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2014) 45:289–305 Review article * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0268-3 Comparative methods offer powerful insights into social evolution in bees 1 2 Sarah D. KOCHER , Robert J. PAXTON 1Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA 2Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany Received 9 September 2013 – Revised 8 December 2013 – Accepted 2 January 2014 Abstract – Bees are excellent models for studying the evolution of sociality. While most species are solitary, many form social groups. The most complex form of social behavior, eusociality, has arisen independently four times within the bees. -
INSECT SPECIES COMPOSITION on EUROPEAN CHESTNUT (Castanea Sativa Mill.) DURING FLOWERING in SELECTED LOCALITIES in SLOVAKIA
South Western Journal of Vol.10, No.2, 2019 Horticulture, Biology and Environment pp.95-104 P-Issn: 2067- 9874, E-Issn: 2068-7958 Art.no. e19107 INSECT SPECIES COMPOSITION ON EUROPEAN CHESTNUT (Castanea sativa Mill.) DURING FLOWERING IN SELECTED LOCALITIES IN SLOVAKIA Michal PÁSTOR1*, Ján KOLLÁR2 and Ladislav BAKAY2 1. National Forest Centre, Forest Research Institute Zvolen, T. G. Masaryka 22, 960 92 Zvolen, Slovakia. 2. Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Department of Planting Design and Maintenance, Tulipánova 7, 949 76 Nitra, Slovakia. *Corresponding author, M. Pástor, E-mail: [email protected] ABSTRACT. The European chestnut (Castanea sativa Mill.) belongs to first introduced tree species in Slovakia. Despite being not permanent element of the Slovak flora, a different scale of insect species is associated with this plant. The paper presents, for the first time, an investigation of the insect species linked with chestnut trees in Slovakia. The monitoring of insect species composition on chestnut during the phenological growth stage of flowering was carried out in June and July 2014. Trapping and monitoring of insects was accomplished during the blooming period of flowers (catkins) on selected chestnut individuals. The research was conducted on 5 Slovakian localities: Arboretum Mlyňany, Nitra, Modrý Kameň, Dolné Plachtince and Príbelce. We recorded 70 insect species in the selected localities. They belonged to five orders (Coleoptera, Hymenoptera, Diptera, Heteroptera and Lepidoptera) and 33 families. Beetles (order Coleoptera) were the most diverse insect group with 31 species. In terms of number of individuals, orders Hymenoptera (especially Apis mellifera Linnaeus 1758 and genus Bombus sp.) and Diptera were most abundant. -
The Bulletin of Zoological Nomenclature V57 Part02
Volume 57, Part 2, 30 June 2000, pp. 69-136 ISSN 0007-5167 stum The Bulletin of Zoological Nomenclature Original from and digitized by National University of Singapore Libraries THE BULLETIN OF ZOOLOGICAL NOMENCLATURE The Bulletin is published four times a year for the International Commission on Zoological Nomenclature by the International Trust for Zoological Nomenclature, a charity (no. 211944) registered in England. The annual subscription for 2000 is £110 or $200, postage included. All manuscripts, letters and orders should be sent to: The Executive Secretary, International Commission on Zoological Nomenclature, c/o The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. (Tel. 020 7942 5653) (e-mail: [email protected]) (http://www.iczn.org) INTERNATIONAL COMMISSION ON ZOOLOGICAL NOMENCLATURE Officers President Prof A. Minelli {Italy) Vice-President Dr W. N. Eschmeyer (U.S.A.) Executive Secretary Dr P. K. Tubbs (United Kingdom) Members Prof W. J. Bock (U.S.A.; Ornithology) Dr V. Mahnert Prof P. Bouchet (France; Mollusca) (Switzerland; Ichthyology) Prof D. J. Brothers Prof U. R. Martins de Souza (South Africa; Hymenoptera) (Brazil; Coleoptera) Dr L. R. M. Cocks (U.K.; Brachiopoda) Prof S. F. Mawatari (Japan; Bryozoa) DrH.G. Cogger (Australia; Herpetology) Prof A. Minelli (Italy; Myriapoda) Prof C. Dupuis (France; Heteroptera) Dr C. Nielsen (Denmark; Bryozoa) Dr W. N. Eschmeyer Dr L. Papp (Hungary; Diptera) (U.S.A.; Ichthyology) Prof D. J. Patterson (Australia; Protista) Mr D. Heppell (U.K.; Mollusca) Prof W. D. L. Rid^(Australia; Mammalia) Dr I. M. Kerzhner (Russia; Heteroptera) Prof J. M. Savage (U.S. A; Herpetology) Prof Dr O. -
Family Cerambycidae Longhorn Beetles
Family Cerambycidae Longhorn Beetles Diagram adapted from Unwin (1984) References Duffy (1952), Handbooks for the Identification of British Insects Volume 5 Part 12. Reitter (1908) Fauna Germanica. Die Käfer des Deutschen Reiches Wallin, Nylander & Kvamme, (2009) Zootaxa 2010:31–45 (2009) Image Credits Unless otherwise indicated the illustrations in this key are reproduced from the Iconographia Coleopterorum Poloniae, with permission kindly granted by Lech Borowiec. Checklist On the next page is a checklist of the 68 species of established Cerambycidae from the Checklist of Beetles of the British Isles, 2012 edition, edited by A. G. Duff. (available from www.coleopterist.org.uk/checklist.htm). Creative Commons From Duffy (1952), Handbooks for the Identification of British Insects Volume 5 Part 12. Updated and adapted by Mike Hackston © 2014. Subfamily PRIONINAE Latreille, 1802 Subfamily CERAMBYCINAE Latreille, 1802 Genus PRIONUS Geoffroy, 1762 Genus TRINOPHYLUM Bates, 1878 coriarius (Linnaeus, 1758) cribratum Bates, 1878 Genus CERAMBYX Linnaeus, 1758 cerdo Linnaeus, 1758 Subfamily LEPTURINAE Latreille, 1802 scopolii Fuessly, 1775 Genus RHAGIUM Fabricius, 1775 Genus GRACILIA Audinet-Serville, 1834 inquisitor (Linnaeus, 1758) minuta (Fabricius, 1781) bifasciatum Fabricius, 1775 Genus OBRIUM Dejean, 1821 mordax (De Geer, 1775) brunneum (Fabricius, 1793) Genus STENOCORUS Geoffroy, 1762 cantharinum (Linnaeus, 1767) meridianus (Linnaeus, 1758) Genus NATHRIUS Brèthes, 1916 Genus DINOPTERA Mulsant, 1863 brevipennis (Mulsant, 1839) collaris (Linnaeus, -
A Baseline Invertebrate Survey of the Knepp Estate - 2015
A baseline invertebrate survey of the Knepp Estate - 2015 Graeme Lyons May 2016 1 Contents Page Summary...................................................................................... 3 Introduction.................................................................................. 5 Methodologies............................................................................... 15 Results....................................................................................... 17 Conclusions................................................................................... 44 Management recommendations........................................................... 51 References & bibliography................................................................. 53 Acknowledgements.......................................................................... 55 Appendices.................................................................................... 55 Front cover: One of the southern fields showing dominance by Common Fleabane. 2 0 – Summary The Knepp Wildlands Project is a large rewilding project where natural processes predominate. Large grazing herbivores drive the ecology of the site and can have a profound impact on invertebrates, both positive and negative. This survey was commissioned in order to assess the site’s invertebrate assemblage in a standardised and repeatable way both internally between fields and sections and temporally between years. Eight fields were selected across the estate with two in the north, two in the central block -
Hoverflies: the Garden Mimics
Article Hoverflies: the garden mimics. Edmunds, Malcolm Available at http://clok.uclan.ac.uk/1620/ Edmunds, Malcolm (2008) Hoverflies: the garden mimics. Biologist, 55 (4). pp. 202-207. ISSN 0006-3347 It is advisable to refer to the publisher’s version if you intend to cite from the work. For more information about UCLan’s research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>. For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/ All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the policies page. CLoK Central Lancashire online Knowledge www.clok.uclan.ac.uk Hoverflies: the garden mimics Mimicry offers protection from predators by convincing them that their target is not a juicy morsel after all. it happens in our backgardens too and the hoverfly is an expert at it. Malcolm overflies are probably the best the mimic for the model and do not attack Edmunds known members of tbe insect or- it (Edmunds, 1974). Mimicry is far more Hder Diptera after houseflies, blue widespread in the tropics than in temperate bottles and mosquitoes, but unlike these lands, but we have some of the most superb insects they are almost universally liked examples of mimicry in Britain, among the by the general public. They are popular hoverflies. -
Demography and Molecular Ecology of the Solitary Halictid Lasioglossum Zonulum: with Observations on Lasioglossum Leucozonium
Demography and molecular ecology of the solitary halictid Lasioglossum zonulum: With observations on Lasioglossum leucozonium Alex N. M. Proulx, M.Sc. Biological Sciences (Ecology and Evolution) Submitted in partial fulfillment of the requirements for the degree of Master of Science Faculty of Mathematics and Science, Brock University St. Catharines, Ontario © 2020 Thesis Abstract Halictid bees are excellent models for questions of both evolutionary biology and molecular ecology. While the majority of Halictid species are solitary and many are native to North America, neither solitary nor native bees have been extensively studied in terms of their population genetics. This thesis studies the social behaviour, demographic patterns and molecular ecology of the solitary Holarctic sweat bee Lasioglossum zonulum, with comparisons to its well-studied sister species Lasioglossum leucozonium. I show that L. zonulum is bivoltine in the Niagara region of southern Ontario but is univoltine in a more northern region of southern Alberta. Measurements of size, wear and ovarian development of collected females revealed that Brood 1 offspring are not altruistic workers and L. zonulum is solitary. A large proportion of foundresses were also found foraging with well-developed ovaries along with their daughters, meaning L. zonulum is solitary and partially-bivoltine in the Niagara region. L. zonulum being solitary and univoltine in Calgary suggests that it is a demographically polymorphic and not socially polymorphic. Thus, L. zonulum represents a transitional evolutionary state between solitary and eusocial behaviour in bees. I demonstrate that Lasioglossum zonulum was introduced to North America at least once from Europe in the last 500 years, with multiple introductions probable.