Application Guidelines for Aluminum Electrolytic Capacitors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fundamentals of Microelectronics Chapter 3 Diode Circuits
9/17/2010 Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors CH7 CMOS Amplifiers CH8 Operational Amplifier As A Black Box 1 Chapter 3 Diode Circuits 3.1 Ideal Diode 3.2 PN Junction as a Diode 3.3 Applications of Diodes 2 1 9/17/2010 Diode Circuits After we have studied in detail the physics of a diode, it is time to study its behavior as a circuit element and its many applications. CH3 Diode Circuits 3 Diode’s Application: Cell Phone Charger An important application of diode is chargers. Diode acts as the black box (after transformer) that passes only the positive half of the stepped-down sinusoid. CH3 Diode Circuits 4 2 9/17/2010 Diode’s Action in The Black Box (Ideal Diode) The diode behaves as a short circuit during the positive half cycle (voltage across it tends to exceed zero), and an open circuit during the negative half cycle (voltage across it is less than zero). CH3 Diode Circuits 5 Ideal Diode In an ideal diode, if the voltage across it tends to exceed zero, current flows. It is analogous to a water pipe that allows water to flow in only one direction. CH3 Diode Circuits 6 3 9/17/2010 Diodes in Series Diodes cannot be connected in series randomly. For the circuits above, only a) can conduct current from A to C. CH3 Diode Circuits 7 IV Characteristics of an Ideal Diode V V R = 0⇒ I = = ∞ R = ∞⇒ I = = 0 R R If the voltage across anode and cathode is greater than zero, the resistance of an ideal diode is zero and current becomes infinite. -
Imperial College London Department of Physics Graphene Field Effect
Imperial College London Department of Physics Graphene Field Effect Transistors arXiv:2010.10382v2 [cond-mat.mes-hall] 20 Jul 2021 By Mohamed Warda and Khodr Badih 20 July 2021 Abstract The past decade has seen rapid growth in the research area of graphene and its application to novel electronics. With Moore's law beginning to plateau, the need for post-silicon technology in industry is becoming more apparent. Moreover, exist- ing technologies are insufficient for implementing terahertz detectors and receivers, which are required for a number of applications including medical imaging and secu- rity scanning. Graphene is considered to be a key potential candidate for replacing silicon in existing CMOS technology as well as realizing field effect transistors for terahertz detection, due to its remarkable electronic properties, with observed elec- tronic mobilities reaching up to 2 × 105 cm2 V−1 s−1 in suspended graphene sam- ples. This report reviews the physics and electronic properties of graphene in the context of graphene transistor implementations. Common techniques used to syn- thesize graphene, such as mechanical exfoliation, chemical vapor deposition, and epitaxial growth are reviewed and compared. One of the challenges associated with realizing graphene transistors is that graphene is semimetallic, with a zero bandgap, which is troublesome in the context of digital electronics applications. Thus, the report also reviews different ways of opening a bandgap in graphene by using bi- layer graphene and graphene nanoribbons. The basic operation of a conventional field effect transistor is explained and key figures of merit used in the literature are extracted. Finally, a review of some examples of state-of-the-art graphene field effect transistors is presented, with particular focus on monolayer graphene, bilayer graphene, and graphene nanoribbons. -
Run Capacitor Info-98582
Run Cap Quiz-98582_Layout 1 4/16/15 10:26 AM Page 1 ® Run Capacitor Info WHAT IS A CAPACITOR? Very simply, a capacitor is a device that stores and discharges electrons. While you may hear capacitors referred to by a variety of names (condenser, run, start, oil, etc.) all capacitors are comprised of two or more metallic plates separated by an insulating material called a dielectric. PLATE 1 PLATE 2 A very simple capacitor can be made with two plates separated by a dielectric, in this PLATE 1 PLATE 2 case air, and connected to a source of DC current, a battery. Electrons will flow away from plate 1 and collect on plate 2, leaving it with an abundance of electrons, or a “charge”. Since current from a battery only flows one way, the capacitor plate will stay BATTERY + – charged this way unless something causes current flow. If we were to short across the plates with a screwdriver, the resulting spark would indicate the electrons “jumping” from plate 2 to plate 1 in an attempt to equalize. As soon as the screwdriver is removed, plate 2 will again collect a PLATE 1 PLATE 2 charge. + BATTERY – Now let’s connect our simple capacitor to a source of AC current and in series with the windings of an electric motor. Since AC current alternates, first one PLATE 1 PLATE 2 MOTOR plate, then the other would be charged and discharged in turn. First plate 1 is charged, then as the current reverses, a rush of electrons flow from plate 1 to plate 2 through the motor windings. -
The Effects of High Frequency Current Ripple on Electric Vehicle Battery Performance
Original citation: Uddin, Kotub , Moore, Andrew D. , Barai, Anup and Marco, James. (2016) The effects of high frequency current ripple on electric vehicle battery performance. Applied Energy, 178 . pp. 142-154. Permanent WRAP URL: http://wrap.warwick.ac.uk/80006 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/ A note on versions: The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Applied Energy 178 (2016) 142–154 Contents lists available at ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy The effects of high frequency current ripple on electric vehicle battery performance ⇑ Kotub Uddin , Andrew D. Moore, Anup Barai, James Marco WMG, International Digital Laboratory, The University of Warwick, Coventry CV4 7AL, UK highlights Experimental study into the impact of current ripple on li-ion battery degradation. 15 cells exercised with 1200 cycles coupled AC–DC signals, at 5 frequencies. Results highlight a greater spread of degradation for cells exposed to AC excitation. Implications for BMS control, thermal management and system integration. article info abstract Article history: The power electronic subsystems within electric vehicle (EV) powertrains are required to manage both Received 8 April 2016 the energy flows within the vehicle and the delivery of torque by the electrical machine. -
Switched-Capacitor Circuits
Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto ([email protected]) ([email protected]) University of Toronto 1 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Opamps • Ideal opamps usually assumed. • Important non-idealities — dc gain: sets the accuracy of charge transfer, hence, transfer-function accuracy. — unity-gain freq, phase margin & slew-rate: sets the max clocking frequency. A general rule is that unity-gain freq should be 5 times (or more) higher than the clock-freq. — dc offset: Can create dc offset at output. Circuit techniques to combat this which also reduce 1/f noise. University of Toronto 2 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Double-Poly Capacitors metal C1 metal poly1 Cp1 thin oxide bottom plate C1 poly2 Cp2 thick oxide C p1 Cp2 (substrate - ac ground) cross-section view equivalent circuit • Substantial parasitics with large bottom plate capacitance (20 percent of C1) • Also, metal-metal capacitors are used but have even larger parasitic capacitances. University of Toronto 3 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Switches I I Symbol n-channel v1 v2 v1 v2 I transmission I I gate v1 v p-channel v 2 1 v2 I • Mosfet switches are good switches. — off-resistance near G: range — on-resistance in 100: to 5k: range (depends on transistor sizing) • However, have non-linear parasitic capacitances. University of Toronto 4 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Non-Overlapping Clocks I1 T Von I I1 Voff n – 2 n – 1 n n + 1 tTe delay 1 I fs { --- delay V 2 T on I Voff 2 n – 32e n – 12e n + 12e tTe • Non-overlapping clocks — both clocks are never on at same time • Needed to ensure charge is not inadvertently lost. -
Switched Capacitor Concepts & Circuits
Switched Capacitor Concepts & Circuits Outline • Why Switched Capacitor circuits? – Historical Perspective – Basic Building Blocks • Switched Capacitors as Resistors • Switched Capacitor Integrators – Discrete time & charge transfer concepts – Parasitic insensitive circuits • Signal Flow Graphs • Switched Capacitor Filters – Comparison to Active RC filters – Advantages of Fully Differential filters • Switched Capacitor Gain Circuits • Reducing the Effects of Charge Injection • Tradeoff between Speed and Charge Injection Why Switched Capacitor Circuits? • Historical Perspective – As MOS processes came to the forefront in the late 1970s and early 1980s, the advantages of integrating analog blocks such as active filters on the same chip with digital logic became a driving force for inovation. – Integrating active filters using resistors and capacitors to acturately set time constants has always been difficult, because of large process variations (> +/- 30%) and the fact that resistors and capacitors don’t naturally match each other. – So, analog engineers turned to the building blocks native to MOS processes to build their circuits, switches & capacitors. Since time constants can be set by the ratio of capacitors, very accurate filter responses became possible using switched capacitor techniques Æ Mixed-Signal Design was born! Switched Capacitor Building Blocks • Capacitors: poly-poly, MiM, metal sandwich & finger caps • Switches: NMOS, PMOS, T-gate • Op Amps: at first all NMOS designs, now CMOS Non-Overlapping Clocks • Non-overlapping clocks are used to insure that one set of switches turns off before the next set turns on, so that charge only flows where intended. (“break before make”) • Note the notation used to indicate time based on clock periods: ... (n-1)T, (n-½)T, nT, (n+½)T, (n+1)T .. -
Syfer Capacitor Basics
Syfer Technology Limited, Old Stoke Road, Arminghall, Norwich, Norfolk, NR14 8SQ, United Kingdom Tel: +44 (0) 1603 723300 Tel. (Sales): 01603 723310 Fax: +44 (0) 1603 723301 Email: [email protected] Web: www.knowlescapacitors.com Syfer Capacitor Basics What is a Capacitor ..................................................................................2 Electrode .............................................................................................2 Dielectric .............................................................................................2 Construction ........................................................................................2 MLCC Uses ..............................................................................................3 Limitations and Factors for Consideration ....................................................3 Dielectric Types .......................................................................................4 X7R.....................................................................................................4 X5R.....................................................................................................5 X8R.....................................................................................................5 2C1 (BZ) and 2X1 (BX) .........................................................................5 C0G ....................................................................................................5 High Q .................................................................................................5 -
Vacuum Tube Theory, a Basics Tutorial – Page 1
Vacuum Tube Theory, a Basics Tutorial – Page 1 Vacuum Tubes or Thermionic Valves come in many forms including the Diode, Triode, Tetrode, Pentode, Heptode and many more. These tubes have been manufactured by the millions in years gone by and even today the basic technology finds applications in today's electronics scene. It was the vacuum tube that first opened the way to what we know as electronics today, enabling first rectifiers and then active devices to be made and used. Although Vacuum Tube technology may appear to be dated in the highly semiconductor orientated electronics industry, many Vacuum Tubes are still used today in applications ranging from vintage wireless sets to high power radio transmitters. Until recently the most widely used thermionic device was the Cathode Ray Tube that was still manufactured by the million for use in television sets, computer monitors, oscilloscopes and a variety of other electronic equipment. Concept of thermionic emission Thermionic basics The simplest form of vacuum tube is the Diode. It is ideal to use this as the first building block for explanations of the technology. It consists of two electrodes - a Cathode and an Anode held within an evacuated glass bulb, connections being made to them through the glass envelope. If a Cathode is heated, it is found that electrons from the Cathode become increasingly active and as the temperature increases they can actually leave the Cathode and enter the surrounding space. When an electron leaves the Cathode it leaves behind a positive charge, equal but opposite to that of the electron. In fact there are many millions of electrons leaving the Cathode. -
Switching-Ripple-Based Current Sharing for Paralleled Power Converters
Switching-ripple-based current sharing for paralleled power converters The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Perreault, D.J., K. Sato, R.L. Selders, and J.G. Kassakian. “Switching-Ripple-Based Current Sharing for Paralleled Power Converters.” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 46, no. 10 (1999): 1264–1274. © 1999 IEEE As Published http://dx.doi.org/10.1109/81.795839 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Final published version Citable link http://hdl.handle.net/1721.1/86985 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. 1264 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 10, OCTOBER 1999 Switching-Ripple-Based Current Sharing for Paralleled Power Converters David J. Perreault, Member, IEEE, Kenji Sato, Member, IEEE, Robert L. Selders, Jr., and John G. Kassakian, Fellow, IEEE Abstract— This paper presents the implementation and ex- perimental evaluation of a new current-sharing technique for paralleled power converters. This technique uses information naturally encoded in the switching ripple to achieve current sharing and requires no intercell connections for communicating this information. Practical implementation of the approach is addressed and an experimental evaluation, based on a three-cell prototype system, is also presented. It is shown that accurate and stable load sharing is obtained over a wide load range. Finally, an alternate implementation of this current-sharing technique is described and evaluated. -
Momentary Podl Connector and Cable Shorts
Momentary PoDL Connector and Cable Shorts Andy Gardner – Linear Technology Corporation 2 Presentation Objectives • To put forward a momentary connector or cable short fault scenario for Ethernet PoDL. • To quantify the requirements for surviving the energy dissipation and cable voltage transients subsequent to the momentary short. 3 PoDL Circuit with Momentary Short • IPSE= IPD= IL1= IL2= IL3= IL4 at steady-state. • D1-D4 and D5-D8 represent the master and slave PHY body diodes, respectively. • PoDL fuse or circuit breaker will open during a sustained over- current (OC) fault but may not open during a momentary OC fault. 4 PoDL Inductor Current Imbalance during a Cable or Connector Short • During a connector or cable short, the PoDL inductor currents will become unbalanced. • The current in inductors L1 and L2 will increase, while the current in inductors L3 and L4 will reverse. • Maximum inductor energy is limited by the PoDL inductors’ saturation current, i.e. ISAT > IPD(max). • Stored inductor energy resulting from the current imbalance will be dissipated by termination and parasitic resistances as well as the PHYs’ body diodes. • DC blocking capacitors C1-C4 need to be rated for peak transient voltages subsequent to the momentary short. 5 Max Energy Storage in PoDL Coupling Inductors during a Momentary Short • PoDL inductors L1-L4 are constrained by tdroop: −50 × 푡푑푟표표푝 퐿 > 푃표퐷퐿 ln 1 − 0.45 1 퐸 ≈ 4 × × 퐿 × 퐼 2 퐿(푡표푡푎푙) 2 푃표퐷퐿 푆퐴푇 • Example: if tdroop=500ns, LPoDL=42H which yields: ISAT Total EL 1A 84J 3A 756J 10A 8.4mJ 6 Peak Transient Voltage after a Short • The maximum voltage across the PHY DC blocking capacitors C1-C4 following a momentary short assuming damping ratio 휁 is: 퐿푃표퐷퐿 50Ω 푉푚푎푥 ≈ 퐼푠푎푡 × = 퐼푠푎푡 × 퐶휑푏푙표푐푘 2 × 휁 4 × 푡푑푟표표푝 where 퐶 ≥ −휁2 × 휑푏푙표푐푘 50Ω × ln (1 − 0.45) • The maximum voltage differential between the conductors in the twisted pair is then: Vmax(diff) = 2 Vmax ISAT 50/휁 • Example: A critically damped PoDL network (휁=1) with inductor ISAT = 1A yields Vmax(diff) 50V while an inductor ISAT = 10A will yield Vmax(diff) 500V. -
Kirchhoff's Laws in Dynamic Circuits
Kirchhoff’s Laws in Dynamic Circuits Dynamic circuits are circuits that contain capacitors and inductors. Later we will learn to analyze some dynamic circuits by writing and solving differential equations. In these notes, we consider some simpler examples that can be solved using only Kirchhoff’s laws and the element equations of the capacitor and the inductor. Example 1: Consider this circuit Additionally, we are given the following representations of the voltage source voltage and one of the resistor voltages: ⎧⎧10 V fortt<< 0 2 V for 0 vvs ==⎨⎨and 1 −5t ⎩⎩20 V forte>+ 0 8 4 V fort> 0 We wish to express the capacitor current, i 2 , as a function of time, t. Plan: First, apply Kirchhoff’s voltage law (KVL) to the loop consisting of the source, resistor R1 and the capacitor to determine the capacitor voltage, v 2 , as a function of time, t. Next, use the element equation of the capacitor to determine the capacitor current as a function of time, t. Solution: Apply Kirchhoff’s voltage law (KVL) to the loop consisting of the source, resistor R1 and the capacitor to write ⎧ 8 V fort < 0 vvv12+−=ss0 ⇒ v2 =−= vv 1⎨ −5t ⎩16− 8et V for> 0 Use the element equation of the capacitor to write ⎧ 0 A fort < 0 dv22 dv ⎪ ⎧ 0 A fort < 0 iC2 ==0.025 =⎨⎨d −5t =−5t dt dt ⎪0.025() 16−> 8et for 0 ⎩1et A for> 0 ⎩ dt 1 Example 2: Consider this circuit where the resistor currents are given by ⎧⎧0.8 A fortt<< 0 0 A for 0 ii13==⎨⎨−−22ttand ⎩⎩0.8et−> 0.8 A for 0 −0.8 e A fort> 0 Express the inductor voltage, v 2 , as a function of time, t. -
What Is a Neutral Earthing Resistor?
Fact Sheet What is a Neutral Earthing Resistor? The earthing system plays a very important role in an electrical network. For network operators and end users, avoiding damage to equipment, providing a safe operating environment for personnel and continuity of supply are major drivers behind implementing reliable fault mitigation schemes. What is a Neutral Earthing Resistor? A widely utilised approach to managing fault currents is the installation of neutral earthing resistors (NERs). NERs, sometimes called Neutral Grounding Resistors, are used in an AC distribution networks to limit transient overvoltages that flow through the neutral point of a transformer or generator to a safe value during a fault event. Generally connected between ground and neutral of transformers, NERs reduce the fault currents to a maximum pre-determined value that avoids a network shutdown and damage to equipment, yet allows sufficient flow of fault current to activate protection devices to locate and clear the fault. NERs must absorb and dissipate a huge amount of energy for the duration of the fault event without exceeding temperature limitations as defined in IEEE32 standards. Therefore the design and selection of an NER is highly important to ensure equipment and personnel safety as well as continuity of supply. Power Transformer Motor Supply NER Fault Current Neutral Earthin Resistor Nov 2015 Page 1 Fact Sheet The importance of neutral grounding Fault current and transient over-voltage events can be costly in terms of network availability, equipment costs and compromised safety. Interruption of electricity supply, considerable damage to equipment at the fault point, premature ageing of equipment at other points on the system and a heightened safety risk to personnel are all possible consequences of fault situations.