Geomicrobiology of Metal and Mineral Transformations in the Environment - Geoffrey Michael Gadd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Student Handbook
A Handbook for Geology Students 1 Contents Why study Geology? ............................................................................................. 3 Job Prospects and Salaries .................................................................................. 7 Why Appalachian Geology? ................................................................................ 10 Geology Faculty and Staff ................................................................................... 13 Financial Support in the Department ................................................................... 23 Geology Department Awards and Honors .......................................................... 26 Opportunities and Requirements ........................................................................ 28 Degree Programs in Geology ............................................................................. 35 Geology Courses ................................................................................................ 44 Field Camp ......................................................................................................... 51 2 Why study Geology? Geology is the multi-disciplinary science that studies the earth and its history. We live on a dynamic planet that is constantly changing. Our ability to survive as a civilization and as a species is intricately linked to the geologic processes that shape our earth, form its natural resources and allow it to recover from the abuse that our society heaps upon it. Geology is important because -
Ice Nucleators, Bacterial Cells and Pseudomonas
1 Ice nucleators, bacterial cells and Pseudomonas syringae in 2 precipitation at Jungfraujoch 3 Emiliano Stopelli1, Franz Conen1, Caroline Guilbaud2, Jakob Zopfi3, Christine Alewell1, 4 Cindy E. Morris2 5 1Environmental Geosciences, University of Basel, 4056 Basel, Switzerland 6 2INRA PACA, UR 0407 Plant Pathology Research Unit, 84143 Montfavet, France 7 3Acquatic and Stable Isotope Biogeochemistry, University of Basel, 4056 Basel, Switzerland 8 Correspondence to: Emiliano Stopelli ([email protected]) and Franz Conen ([email protected]) 9 10 Abstract Ice nucleation is a means by which the deposition of an airborne microorganism can be accelerated 11 under favourable meteorological conditions. Analysis of 56 snow samples collected at the high altitude 12 observatory Jungfraujoch (3580 m a.s.l.) revealed an order of magnitude larger dynamic range of ice nucleating 13 particles active at -8 °C (INPs-8) compared to the total number of bacterial cells (of which 60 % was on average 14 alive). This indicates a shorter atmospheric residence time for INPs-8. Furthermore, concentrations of INPs-8 15 decreased much faster, with an increasing fraction of water precipitated from the air mass prior to sampling, than -1 16 the number of total bacterial cells. Nevertheless, at high wind speeds (> 50 km h ) the ratio of INPs-8 to total 17 bacterial cells largely remained in a range between 10-2 to 10-3, independent of prior precipitation, likely because 18 of recent injections of particles in regions upwind. Based on our field observations, we conclude that ice 19 nucleators travel shorter legs of distance with the atmospheric water cycle than the majority of bacterial cells. -
Geological Sciences 1
Geological Sciences 1 GEOLOGICAL SCIENCES Certificates • Geophysics - Graduate Certificate (catalog.colorado.edu/graduate/ With one of the most successful graduate programs in the nation, colleges-schools/arts-sciences/programs-study/geological-sciences/ the Department of Geological Sciences has enjoyed a reputation of geophysics-graduate-certificate/) excellence for more than 100 years. Our doctoral program is ranked • Hydrologic Sciences - Graduate Certificate (catalog.colorado.edu/ among the top 10 percent of U.S. geology programs by the National graduate/colleges-schools/arts-sciences/programs-study/geological- Research Council, and CU Boulder is ranked as one of the top two sciences/hydrologic-sciences-graduate-certificate/) universities in the world for geosciences by U.S. News and World Report. Graduate students have an opportunity to work with over 35 tenured Faculty and tenure-track faculty who support a wide range of interdisciplinary While many faculty teach both undergraduate and graduate students, research programs in such areas as: cosmochemistry and planetary some instruct students at the undergraduate level only. For more geology; Earth science education; economic and energy resources; information, contact the faculty member's home department. geobiology and astrobiology; geochemistry; geochronology and Abbott, Lon D. (https://experts.colorado.edu/display/fisid_145044/) thermochronology; geodynamics, geophysics, and remote sensing; Senior Instructor; PhD, University of California, Santa Cruz geomorphology and cryosphere; global change; hydrology; natural hazards; paleoclimate and paleoceanography; paleontology and Anderson, Robert S. (https://experts.colorado.edu/display/fisid_130117/) paleobiology; petrology and mineralogy; sedimentology and stratigraphy; Distinguished Professor; PhD, University of Washington and structure and tectonics. Arthurs, Leilani A. (https://experts.colorado.edu/display/fisid_145087/) The graduate degrees offered include Master of Science (MS) and Doctor Assistant Professor; PhD, University of Notre Dame of Philosophy (PhD). -
Hydrologic Highways Between Microbial Communities of the Plant Microbiome? John Tolan Van Stan, Cindy E
Precipitation partitioning - Hydrologic highways between microbial communities of the plant microbiome? John Tolan van Stan, Cindy E. Morris, K Aung, Y Kuzyakov, D Magyar, E A Rebollar, M Remus-Emsermann, Stéphane Uroz, Philippe Vandenkoornhuyse To cite this version: John Tolan van Stan, Cindy E. Morris, K Aung, Y Kuzyakov, D Magyar, et al.. Precipitation partitioning - Hydrologic highways between microbial communities of the plant microbiome?. van Stan John Toland; Gutmann Ethan; Friesen Jan. Precipitation partitioning by vegetation, Springer Nature, pp.229-251, 2020, 978-3-030-29701-5. 10.1007/978-3-030-29702-2_14. hal-02389738 HAL Id: hal-02389738 https://hal.archives-ouvertes.fr/hal-02389738 Submitted on 26 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chapter 14. Precipitation partitioning— Hydrologic highways between microbial communities of the plant microbiome? John T. Van Stan II1*, Cindy E. Morris2, Kyaw Aung3, Yakov Kuzyakov4, Donát Magyar5, Eria A. Rebollar6, Mitja Remus-Emsermann7, Stéphane Uroz8, Philippe Vandenkoornhuyse9 -
Geomicrobiological Processes in Extreme Environments: a Review
202 Articles by Hailiang Dong1, 2 and Bingsong Yu1,3 Geomicrobiological processes in extreme environments: A review 1 Geomicrobiology Laboratory, China University of Geosciences, Beijing, 100083, China. 2 Department of Geology, Miami University, Oxford, OH, 45056, USA. Email: [email protected] 3 School of Earth Sciences, China University of Geosciences, Beijing, 100083, China. The last decade has seen an extraordinary growth of and Mancinelli, 2001). These unique conditions have selected Geomicrobiology. Microorganisms have been studied in unique microorganisms and novel metabolic functions. Readers are directed to recent review papers (Kieft and Phelps, 1997; Pedersen, numerous extreme environments on Earth, ranging from 1997; Krumholz, 2000; Pedersen, 2000; Rothschild and crystalline rocks from the deep subsurface, ancient Mancinelli, 2001; Amend and Teske, 2005; Fredrickson and Balk- sedimentary rocks and hypersaline lakes, to dry deserts will, 2006). A recent study suggests the importance of pressure in the origination of life and biomolecules (Sharma et al., 2002). In and deep-ocean hydrothermal vent systems. In light of this short review and in light of some most recent developments, this recent progress, we review several currently active we focus on two specific aspects: novel metabolic functions and research frontiers: deep continental subsurface micro- energy sources. biology, microbial ecology in saline lakes, microbial Some metabolic functions of continental subsurface formation of dolomite, geomicrobiology in dry deserts, microorganisms fossil DNA and its use in recovery of paleoenviron- Because of the unique geochemical, hydrological, and geological mental conditions, and geomicrobiology of oceans. conditions of the deep subsurface, microorganisms from these envi- Throughout this article we emphasize geomicrobiological ronments are different from surface organisms in their metabolic processes in these extreme environments. -
Survival and Ice Nucleation Activity of Pseudomonas Syringae Strains Exposed To
bioRxiv preprint doi: https://doi.org/10.1101/408906; this version posted September 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Survival and ice nucleation activity of Pseudomonas syringae strains exposed to 2 simulated high-altitude atmospheric conditions 3 Gabriel Guarany de Araujoa, Fabio Rodriguesb, Fabio Luiz Teixeira Gonçalvesc, Douglas 4 Galanted,* 5 a Interunities Graduate Program in Biotechnology, University of São Paulo, Brazil 6 b Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 7 Brazil 8 c Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and 9 Atmospheric Sciences, University of São Paulo, Brazil 10 d Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and 11 Materials, Brazil 12 * Corresponding author. Brazilian Synchrotron Light Laboratory, Av. Giuseppe Máximo 13 Scolfaro, 10000, CEP 13083‐100, Campinas, São Paulo, Brazil, Tel.: +551935175081; Fax: 14 +551935121004. E-mail address: [email protected] 15 Running title: Survival of ice nucleating bacteria on the atmosphere 16 ABSTRACT 17 The epiphytic bacterium Pseudomonas syringae produces the most efficient and 18 well-studied biological ice nuclei (IN) known. Bioaerosols containing these cells have been 19 proposed to influence cloud glaciation, an important process in the initiation of 20 precipitation. The presence of this species has been reported on rain, snow, and cloud water 1 bioRxiv preprint doi: https://doi.org/10.1101/408906; this version posted September 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
MICR 423: Geomicrobiology Fall 2018 3 Credit Hours
MICR 423: Geomicrobiology Fall 2018 3 Credit Hours Course description. This course will focus on the role that microorganisms play in fundamental geological processes. Topics will include an outline of the present understanding of microbial involvement of weathering of rocks, formation and transformation of soils and sediments, genesis and degradation of minerals. Elemental cycles will also be covered with emphasis on the interrelationships between the various geochemical cycles and the microbial trophic groups involved. Prerequisite: MICR 301 and Chemistry 210 and 21l. Recommended: GEOL 220, 221 or 222. Lecture. Life Science II, Room 430, 9:35 – 10:50 Tues and Thurs Course Goals. At the end of this course you will be able to: • Intelligently converse with microbiologists, geologists, environmental scientists and engineers about the role microorganisms play in the cycling of elements • Be familiar with a variety of techniques to identify and characterize microorganisms in any environment • Relate microbial physiology, genetics, cell structure, and metabolism to the effect, role, or signature that microbes imprint on their surroundings Instructor Office Office Hours Dr. Scott Hamilton-Brehm Life Science III, Rm 1009 M 10-12 pm or by 453-3818 appointment [email protected] Strongly suggested textbooks: • BROCK BIOLOGY OF MICROORGANISMS, 15th edition, 2017, Michael T. Madigan, Kelly S. Bender, Daniel H. Buckley, Matthew W. Sattley, and David A. Stahl (Benjamin Cummings/Pearson). • Hall BG. Phylogenetic trees made easy: a how-to manual. 2008. Final Course Grading scale Grade Points Percentage A 900 - 1000 90-100% B 800 - 899 80-89% C 700 - 799 70-79% D 600 - 699 60-69% F 0 - 599 0-59% Lecture Grades. -
Need for Seismic Hydrology Research with a Geomicrobiological Focus
sustainability Communication Need for Seismic Hydrology Research with a Geomicrobiological Focus Heejung Kim Department of Geology, Kangwon National University, Chuncheon 24341, Korea; [email protected] Abstract: Earthquakes cause deformation in previously stable groundwater environments, resulting in changes to the hydrogeological characteristics. The changes to hydrological processes follow- ing large-scale earthquakes have been investigated through many physicochemical studies, but understanding of the associated geomicrobiological responses remains limited. To complement the understanding of earthquakes gathered using hydrogeochemical approaches, studies on the effects of the Earth’s deep crustal fluids on microbial community structures can be applied. These studies could help establish the degree of resilience and sustainability of the underground ecosystem following an earthquake. Furthermore, investigations on changes in the microbial community structure of the Earth’s deep crustal fluids before and after an earthquake can be used to predict an earthquake. The results derived from studies that merge hydrogeochemical and geomicrobiological changes in the deep crustal fluids due to the effect of stress on rock characteristics within a fault zone can be used to correlate these factors with earthquake occurrences. In addition, an earthquake risk evaluation method may be developed based on the observable characteristics of fault-zone aquifers. Keywords: earthquake; seismic hydrology; groundwater; hydrogeochemistry; geomicrobiology Citation: Kim, H. Need for Seismic Many studies on the reaction of the Earth’s deep crustal fluids before and after earth- Hydrology Research with a quakes have been conducted worldwide, including in countries with a high frequency Geomicrobiological Focus. of earthquakes. Seismic hydrology is the study of earthquake prediction by analyzing Sustainability 2021, 13, 8704. -
Isolation and Characterization of a Thermophilic Sulfate-Reducing Bacterium, Desuvotomaculum Themosapovorans Sp
- INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1995, p. 218-221 Vol. 45, No. 2 0020-7713/95/$04.00+0 Copyright O 1995, International Union of Microbiological Societies Isolation and Characterization of a Thermophilic Sulfate-Reducing Bacterium, Desuvotomaculum themosapovorans sp. nov. MARIE-LAURE FARDEAU,1,''' BERNARD OLLIVIER: BHARAT K. C. PATEL?3 PREM DWIVEDI? MICHEL RAGOT? AND JEAN-LOUIS GARCIA' Laboratoire de Chimie Bactérienne, Centre National de la Recherche ScieiitiJque, 13277 Marseille cedex 9, and Laboratoire de Microbiologie ORSTOM, Université de Provence, 13331 Marseille cedex 3, France, and Faculty of Science and Technology, Crifith University, Biisbane, Queensland 4111, Australia3 Strain MLFT (T = type strain), a new thermophilic, spore-forming sulfate-reducing bacterium, was char- acterized and was found to be phenotypically, genotypically, and phylogenetically related to the genus Desul- fotornaculurn. This organism was isolated from a butyrate enrichment culture that had been inoculated with a mixed compost containing rice hulls and peanut shells. The optimum temperature for growth was 50°C. The G+C content of the DNA was 51.2 mol%. Strain MLFT incompletely oxidized pyruvate, butyrate, and butanol to acetate and presumably CO,. It used long-chain fatty acids and propanediols. We observed phenotypic and phylogenetic differences between strain MLFT and other thermophilic Desulfotornaculum species that also oxidize long-chain fatty acids. On the basis of our results, we propose that strain MLFT is a member of a new species, Desulfotornaculum tliermosapovorarzs. In environments where conditions for the survival of the The organisms wcre cultivated under strictly anoxic conditions at 55°C. The basal strictly anaerobic sulfate-reducing bacteria are not provided medium contained (per liter of distilled water) 1.0 g of NH,Cl, 0.15 g of continuously, the sporulating species of the genus Desulfo- CaCI,. -
Area of Study
DEPARTMENT OF EARTHDEPARTMENT SCIENCES OF THE GRADUATE SCHOOL | MONTANA STATE UNIVERSITY AreaEarth ofSciences Study DEGREES OFFERED • M.S. in Earth Sciences FirstThe Departmentgraph of Earth Sciences at Montana State University has a faculty of 13 earth • Ph.D. in Earth Sciences scientists, geologists and geographers. The Master of Science and Doctor of Philosophy in Earth • Ph.D. in Ecology and TextSciences programs have around 45 active graduate students and stress independent thesis Environmental Science research with some supporting course work. Faculty expertise and research in the department spans a large majority of the subfields of Earth Sciences. Our geography faculty includes specialties from settlement geography to bioclimatology, from international urban geography to GIS to snow science. The interests of our geology faculty range from petrogenesis to paleobiology to structural geology, and from dinosaur taphonomy and stratigraphy to geomorphology. Our geobiology faculty have research interests in vertebrate paleontology, paleoecology, biogeography, paleoclimatology and geomicrobiology. Program strengths are in basin analysis and energy resources, dinosaur paleontology, geography of the northern Rocky Mountains, architecture and composition of the lithosphere, snow science and cryospheric processes, and climate change. ADMISSION Applicants should a GPA of 3.0 or higher, GRE scores better than the 50th percentile and a strong academic background in Earth Sciences (geography, geology or geobiology). Foreign students must have a TOEFL score better than 550 for the paper test and 231 for the computer test. The department does not accept general applicants to our graduate program. An applicant should identify a major advisor from the list of faculty, contact that individual, and Department Address: determine whether there is space available in that advisor’s program. -
Desulfotomaculum Arcticum Sp. Nov., a Novel Spore-Forming, Moderately
International Journal of Systematic and Evolutionary Microbiology (2006), 56, 687–690 DOI 10.1099/ijs.0.64058-0 Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate- reducing bacterium isolated from a permanently cold fjord sediment of Svalbard Verona Vandieken,1 Christian Knoblauch2 and Bo Barker Jørgensen1 Correspondence 1Max-Planck-Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany Verona Vandieken 2University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg, Germany [email protected] Strain 15T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate, succinate, fumarate, proline, alanine and glycine were used as electron donors in the presence of sulfate. Growth occurred with pyruvate as sole substrate. Optimal growth was observed at T pH 7?1–7?5 and concentrations of 1–1?5 % NaCl and 0?4 % MgCl2. Strain 15 grew between 26 and 46?5 6C and optimal growth occurred at 44 6C. Therefore, strain 15T apparently cannot grow at in situ temperatures of Arctic sediments from where it was isolated, and it was proposed that it was present in the sediment in the form of spores. The DNA G+C content was 48?9 mol%. Strain 15T was most closely related to Desulfotomaculum thermosapovorans MLFT (93?5% 16S rRNA gene sequence similarity). Strain 15T represents a novel species, for which the name Desulfotomaculum arcticum sp. nov. is proposed. The type strain is strain 15T (=DSM 17038T=JCM 12923T). -
Bioprecipitation Studies, 1921-1927. Springfield, IL
STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION DIVISION OF THE STATE WATER SURVEY A. M. BUSWELL, Chief BULLETIN NO. 25 BIOPRECIPITATION STUDIES 1921-1927 BY A. M. BUSWELL, R. A. SHIVE, & S. L. NEAVE [Printed by authority of the State of Illinois] URBANA, ILLINOIS ORGANIZATION STATE OF ILLINOIS LEN SMALL, Governor DEPARTMENT OF REGISTRATION AND EDUCATION A. M. SHELTON, Director Board of Natural Resources and Conservation Advisers A. M. SHELTON, Chairman WILLIAM A. NOYES, Chemistry HENRY C. COWLES, Forestry. Secretary. WILLIAM TRELEASE, Biology. JOHN W. ALVORD, Engineering. C. M. THOMPSON, Representing . EDSON S. BASTIN, Geology. the President of the University of Illinois. State Water Survey Division Committee A. M. SHELTON WILLIAM A. NOYES C. M. THOMPSON JOHN W. ALVORD STATE WATER SURVEY DIVISION A. M. BUSWELL, Chief JEFFERSONS PRINTING AND STATIONERY COMPANY SPRINGFIELO. ILLINOIS 105 1500 19ZB 2 CONTENTS Page Letter of transmittal.................................................................................4 Introduction and summary, by A. M. BUSWELL 5 Part I—Aeration, by A. M. BUSWELL and S. L. NEAVE 22 Bubble aeration 24 Mechanical aeration 27 Application to the activated—sludge process 31 Summary 33 Appendix to Part I—B. O. D. experiment with small nidus tanks 35 Part II—The role of bioprecipitation in sewage treatment, by R. A. SHIVE with A. M. BUSWELL 37 Proof of bioprecipitation 39 Construction of experimental sewage treatment plant 47 Operation and control of plant.................................................55 Data on operation of nidus tank.... .. 57 Sludge filtering experiments 80 Trickling filter experiments 80 Summary of results of nidus tank operation 81 Part III—Recent experiments with nidus tank, by A.