Geomicrobiology

Total Page:16

File Type:pdf, Size:1020Kb

Geomicrobiology Newsletter of the Mineralogical Society of America Vol. 13, No.2, May 1997 • ICe GEOMICROBIOLOGY: INTERACTIONS BETWEEN MICROBES AND MINERALS The mineralogical and geochemical characteristics Topics to be covered in the short course include the of the crust, hydrosphere, and atmosphere have evolved links between evolution of the Earth and in parallel with evolution of microorganisms. microorganisms, new insights into microbial diversity in Microorganisms cause mineral precipitation and natural environments and the nature of early life forms, dissolution and control the distribution of elements in the structure, chemistry, and reactivity of mineral diverse environments at and below the surface of the surfaces, the metabolic roles of metals and mechanisms Earth. Conversely, mineralogical and geochemical used to modulate metal concentrations, microbial factors exert important controls on microbial evolution attachment to mineral surfaces and biofilm formation, and the structure of microbial communities. microbial precipitation and the characteristics of The Mineralogical Society of America is offering a biologically precipitated minerals, microbially-mediated Short Course on Geomicrobiology on October 18-19, mineral dissolution, and the impacts of microbial 1997 in Alta, Utah. This course precedes the processes on geochemical cycles in soils and sediments. Mineralogical Society of America - Geological Society Convenors of the Short Course are Jillian F. America Annual Meeting in Salt Lake City, Utah. Banfield (Department of Geology and Geophysics, The short course will teach geologists about the ways in University of Wisconsin-Madison) and Kenneth which microbial activity impacts what have traditionally Nealson (University of Wisconsin Great Lakes Institute, been considered inorganic processes and microbiologists University of Wisconsin - Milwaukee). Additional and other life scientists about the mineralogical and information and registration materials are included in geochemical aspects of biogeochemical systems. this issue of The Lattice. 19th FM-TGMS-MSA Mineralogical Symposium The 19th Mineralogical Symposium sponsored written abstracts will be due by Sept. IS, 1997. Abstracts jointly by the Friends of Mineralogy, the Tucson Gem will be published in the January-February issue of the and Mineral Show and the Mineralogical Society of Mineralogical Record. America will be held in conjunction with the 44th Also in this issue Tucson Gem and Mineral Show on Saturday, February From the President " 2 14, 1998. The topic of the Symposi um wi II be Fluorite, Members in the News 3 and other Alpine Minerals - the theme of the show. Member Volunteers needed for Fall AGU 3 Papers on descriptive mineralogy, paragenesis, classic ICDD Mineral Database 3 and new locations, etc. are invited. If interested in In Memoriam 3 presenting a paper, write or call the Symposium co- Industrial Mineralogy Group 4 Chairs: Robert B. Cook, Dept. of Geology, 210 Petrie Geomicrobiology Short Course Details 5 Hall, Auburn Univ., Auburn, AL 36849; (334) 844- Geomicrobiology Short Course Application 7 4'1~2; e-mail: [email protected] or Beau Meeting Calendar 1997-1998 8 don, Jendon Minerals, P.O. Box 6214, Rome, GA New' Members 12 30162-6214; (706) 235-9121; e-mail: Membership Application " 14 [email protected]. Upon acceptance of the topics, Publications Forms 15 From the President he wrote for a greatly expanded Probably the most important MSA presence on the World Wide activity of the MSA is production of Letters from the president are Web has been funded. In fact, it American Mineralogist. As we ? generally pretty impersonal, but I was funded at an even higher level now in the process of identifying ne .. would like to initiate at least a small than that requested in the original editors for our journal, this is a good crack in tradition with this one. On budget. Educational outreach via time to thank Rich Reeder and Ted April 27, I turned 50 (ack!), and I the internet is one of the most Labotka for the outstanding editorial also married Linda, a volcanologist important functions of MSA and is job they have done for the past four and geochemist. As a result, you essential to our long-term health as years. This daunting task is surely have a happy MSA president, but a society. Both John Brady, who also one of the most thankless one one who has recently been somewhat has long run the current MSA Web can imagine. No author likes to have preoccupied with matters other than site, and Gordon deserve our deep a paper rejected or subjected to major MSA. Thanks for celebrating the thanks for launching us into a new revisions. It's easier, I think, to blame former, and I apologize for any era of scientific outreach. We are the editors for such hazards of the dislocations resulting from the latter. now in the process of hiring a road than to realize that some papers Although I had planned to devote coordinator of internet services, and deserve to be rejected or thoroughly all of my presidential letters to bits of arrangements are being made to reconstructed. Of course, when a electron microscopy and science collaborate with the GSA and paper is accepted, we tend to feel that history, I wish to take a detour here. Geochemical Society in this new it's because of the superior quality of As president, I have been surprised educational endeavor. our work and writing. Yes, journal and humbled by the deep Barb Dutrow, our Secretary, has editors are big targets but get little commitments and sacrifices that done a splendid and meticulous job thanks. I encourage all of you to some of our members contribute to in keeping the MSA running on a send both Rich and Ted a word of us all. I wish, therefore, to thank in day-to-day basis. One dirty little appreciation for difficult jobs well this letter just a few of those who secret is that there is relatively little done. keep the MSA not only a crucial that must be done by the president Over the years, our newsletter, 1. forum for scientific exchange, but of MSA; it is the secretary who Lattice, has increasingly become an also a close-knit family devoted to must make phone calls, send e-mail essential source of information for the mineralogical, petrological, and messages, and write letters literally MSA members. The Lattice is geochemical sciences. by the hundreds, in order to keep produced virtually single-handedly Alex Speer has saved me from our society intact and operational. by Darrell Henry. (Darrell: you are many dragons. As our scientific As I write this, Jill Banfield and not allowed to edit out this administrator and, for that matter, Ken Nealson are in the throes of paragraph!) It is no easy task trying administrator of just about editing the Reviews in Mineralogy to squeeze presidential letters out of everything else, he is a target of volume on geomicrobiology, as overcommitteds like myself four choice for complaints when anything well as making final plans for the times a year, and one glance at this runs amiss, whether it be an errant upcoming MSA Short Course on issue will tell you what a professional book order or a problem in this topic. And, of course, Paul job Darrell is doing. scheduling a room for an upcoming Ribbe will again be putting the I could close by saying that the Short Course. Alex is not only an volume together, as he has been MSA performs many useful accomplished scientist, but he is also doing since the dawn of this educational and scientific functions, a superb director of our operations. I successful series. When I put the but that would be a lie. It is not the hope every member of our society amphibole short course together in Society but individual members who will make a point of stopping by the 1981, life was much simpler. actually do the work, and I hope all MSA booth at Fall GSA to thank him Today, the Reviews are even more of you will join me in thanking those for many contributions in running professionally done than they were who do the heavy lifting for us all. this Society. fifteen years ago, and for financial Still listening? I've buried this reasons planning for short courses David R. Veblen jewel in the gangue of my letter. has become far more difficult. 7) ~ V.J.bL__ Gordon Brown, our Past President, Thank you Jill, Ken, and Paul. recently heard that the NSF proposal President The Lattice/2 May, 1997 Members in the News y- ~IA. Riggs, Mississippi State Univ., has been named International .vlan of the Year 1996/1997 by the International Biographical Centre of Cambridge, England. Member Volunteers needed/or FallAGU The Lattice is published quarterly (February, May, August, November) by the Mineralogical Society of MSA will again attend the Fall AGU Meeting in San Francisco on America. It is distributed to MSA members as a service. Articles and letters from readers are welcome. December 8-12, 1997. One Business Office staff member will be The Mineralogical Society of America is composed of there to set up and oversee the MSA booth in the Exhibit Hall. individuals interested in mineralogy, crystallography, However, he could use help. The booth is to showcase the Society, its and petrology. Founded in 1919, the Society promotes, through education and research, the understanding and programs (Awards, Lecture Program, Short Courses, Research Grants. application of mineralogy by industry, universities, etc.), publications, and encourage people to become members. If you government and the public. are attending the AGU meeting and are interested in helping with the Membership benefits include: American Mineralogist, published bi-monthly; 25% discount on MSA booth, please contact J. Alex Speer, MSA Business Office, 1015 volumes in the Reviews in Mineralogy series; The Eighteenth St., NW, Suite 601, Washington, DC 20036-5274, USA, Lattice; Membership Directory; special subscription phone 202-775-4344, E-mail: [email protected].
Recommended publications
  • Mg2sio4) in a H2O-H2 Gas DANIEL TABERSKY1, NORMAN LUECHINGER2, SAMUEL S
    Goldschmidt2013 Conference Abstracts 2297 Compacted Nanoparticles for Evaporation behavior of forsterite Quantification in LA-ICPMS (Mg2SiO4) in a H2O-H2 gas DANIEL TABERSKY1, NORMAN LUECHINGER2, SAMUEL S. TACHIBANA1* AND A. TAKIGAWA2 2 2 1 , HALIM , MICHAEL ROSSIER AND DETLEF GÜNTHER * 1 Department of Natural History Sciences, Hokkaido 1ETH Zurich, Department of Chemistry and Applied University, N10 W8, Sapporo 060-0810, Japan. Biosciences, Laboratory of Inorganic Chemistry (*correspondence: [email protected]) (*correspondence: [email protected]) 2Carnegie Institution of Washington, Department of Terrestrial 2Nanograde, Staefa, Switzerland Magnetism, 5241 Broad Branch Road NW, Washington DC, 20015 USA. Gray et al. did first studies of LA-ICPMS in 1985 [1]. Ever since, extensive research has been performed to Forsterite (Mg2SiO4) is one of the most abundant overcome the problem of so-called “non-stoichiometric crystalline silicates in extraterrestrial materials and in sampling” and/or analysis, the origins of which are commonly circumstellar environments, and its evaporation behavior has referred to as elemental fractionation (EF). EF mainly consists been intensively studied in vacuum and in the presence of of laser-, transport- and ICP-induced effects, and often results low-pressure hydrogen gas [e.g., 1-4]. It has been known that in inaccurate analyses as pointed out in, e.g. references [2,3]. the evaporation rate of forsterite is controlled by a A major problem that has to be addressed is the lack of thermodynamic driving force (i.e., equilibrium vapor reference materials. Though the glass series of NIST SRM 61x pressure), and the evaporation rate increases linearly with 1/2 have been the most commonly reference material used in LA- pH2 in the presence of hydrogen gas due to the increase of ICPMS, heterogeneities have been reported for some sample the equilibrium vapor pressure.
    [Show full text]
  • The Regional Distribution of Zeolites in the Basalts of the Faroe Islands and the Significance of Zeolites As Palaeo- Temperature Indicators
    The regional distribution of zeolites in the basalts of the Faroe Islands and the significance of zeolites as palaeo- temperature indicators Ole Jørgensen The first maps of the regional distribution of zeolites in the Palaeogene basalt plateau of the Faroe Islands are presented. The zeolite zones (thomsonite-chabazite, analcite, mesolite, stilbite-heulandite, laumontite) continue below sea level and reach a depth of 2200 m in the Lopra-1/1A well. Below this level, a high temperature zone occurs characterised by prehnite and pumpellyite. The stilbite-heulan- dite zone is the dominant mineral zone on the northern island, Vágar, the analcite and mesolite zones are the dominant ones on the southern islands of Sandoy and Suðuroy and the thomsonite-chabazite zone is dominant on the two northeastern islands of Viðoy and Borðoy. It is estimated that zeolitisa- tion of the basalts took place at temperatures between about 40°C and 230°C. Palaeogeothermal gradients are estimated to have been 66 ± 9°C/km in the lower basalt formation of the Lopra area of Suðuroy, the southernmost island, 63 ± 8°C/km in the middle basalt formation on the northernmost island of Vágar and 56 ± 7°C/km in the upper basalt formation on the central island of Sandoy. A linear extrapolation of the gradient from the Lopra area places the palaeosurface of the basalt plateau near to the top of the lower basalt formation. On Vágar, the palaeosurface was somewhere between 1700 m and 2020 m above the lower formation while the palaeosurface on Sandoy was between 1550 m and 1924 m above the base of the upper formation.
    [Show full text]
  • Student Handbook
    A Handbook for Geology Students 1 Contents Why study Geology? ............................................................................................. 3 Job Prospects and Salaries .................................................................................. 7 Why Appalachian Geology? ................................................................................ 10 Geology Faculty and Staff ................................................................................... 13 Financial Support in the Department ................................................................... 23 Geology Department Awards and Honors .......................................................... 26 Opportunities and Requirements ........................................................................ 28 Degree Programs in Geology ............................................................................. 35 Geology Courses ................................................................................................ 44 Field Camp ......................................................................................................... 51 2 Why study Geology? Geology is the multi-disciplinary science that studies the earth and its history. We live on a dynamic planet that is constantly changing. Our ability to survive as a civilization and as a species is intricately linked to the geologic processes that shape our earth, form its natural resources and allow it to recover from the abuse that our society heaps upon it. Geology is important because
    [Show full text]
  • Geological Sciences 1
    Geological Sciences 1 GEOLOGICAL SCIENCES Certificates • Geophysics - Graduate Certificate (catalog.colorado.edu/graduate/ With one of the most successful graduate programs in the nation, colleges-schools/arts-sciences/programs-study/geological-sciences/ the Department of Geological Sciences has enjoyed a reputation of geophysics-graduate-certificate/) excellence for more than 100 years. Our doctoral program is ranked • Hydrologic Sciences - Graduate Certificate (catalog.colorado.edu/ among the top 10 percent of U.S. geology programs by the National graduate/colleges-schools/arts-sciences/programs-study/geological- Research Council, and CU Boulder is ranked as one of the top two sciences/hydrologic-sciences-graduate-certificate/) universities in the world for geosciences by U.S. News and World Report. Graduate students have an opportunity to work with over 35 tenured Faculty and tenure-track faculty who support a wide range of interdisciplinary While many faculty teach both undergraduate and graduate students, research programs in such areas as: cosmochemistry and planetary some instruct students at the undergraduate level only. For more geology; Earth science education; economic and energy resources; information, contact the faculty member's home department. geobiology and astrobiology; geochemistry; geochronology and Abbott, Lon D. (https://experts.colorado.edu/display/fisid_145044/) thermochronology; geodynamics, geophysics, and remote sensing; Senior Instructor; PhD, University of California, Santa Cruz geomorphology and cryosphere; global change; hydrology; natural hazards; paleoclimate and paleoceanography; paleontology and Anderson, Robert S. (https://experts.colorado.edu/display/fisid_130117/) paleobiology; petrology and mineralogy; sedimentology and stratigraphy; Distinguished Professor; PhD, University of Washington and structure and tectonics. Arthurs, Leilani A. (https://experts.colorado.edu/display/fisid_145087/) The graduate degrees offered include Master of Science (MS) and Doctor Assistant Professor; PhD, University of Notre Dame of Philosophy (PhD).
    [Show full text]
  • Geomicrobiological Processes in Extreme Environments: a Review
    202 Articles by Hailiang Dong1, 2 and Bingsong Yu1,3 Geomicrobiological processes in extreme environments: A review 1 Geomicrobiology Laboratory, China University of Geosciences, Beijing, 100083, China. 2 Department of Geology, Miami University, Oxford, OH, 45056, USA. Email: [email protected] 3 School of Earth Sciences, China University of Geosciences, Beijing, 100083, China. The last decade has seen an extraordinary growth of and Mancinelli, 2001). These unique conditions have selected Geomicrobiology. Microorganisms have been studied in unique microorganisms and novel metabolic functions. Readers are directed to recent review papers (Kieft and Phelps, 1997; Pedersen, numerous extreme environments on Earth, ranging from 1997; Krumholz, 2000; Pedersen, 2000; Rothschild and crystalline rocks from the deep subsurface, ancient Mancinelli, 2001; Amend and Teske, 2005; Fredrickson and Balk- sedimentary rocks and hypersaline lakes, to dry deserts will, 2006). A recent study suggests the importance of pressure in the origination of life and biomolecules (Sharma et al., 2002). In and deep-ocean hydrothermal vent systems. In light of this short review and in light of some most recent developments, this recent progress, we review several currently active we focus on two specific aspects: novel metabolic functions and research frontiers: deep continental subsurface micro- energy sources. biology, microbial ecology in saline lakes, microbial Some metabolic functions of continental subsurface formation of dolomite, geomicrobiology in dry deserts, microorganisms fossil DNA and its use in recovery of paleoenviron- Because of the unique geochemical, hydrological, and geological mental conditions, and geomicrobiology of oceans. conditions of the deep subsurface, microorganisms from these envi- Throughout this article we emphasize geomicrobiological ronments are different from surface organisms in their metabolic processes in these extreme environments.
    [Show full text]
  • Zeolite Application in Crop Production: Importance to Soil Nutrient, Soil Water, Soil Health, and Environmental Pollution Management Isaac K
    az1851 September 2020 Zeolite Application in Crop Production: Importance to Soil Nutrient, Soil Water, Soil Health, and Environmental Pollution Management Isaac K. Mpanga, Hattie Braun and James Walworth Introduction Benefits of zeolites as a soil conditioner According to the United States Geological Service (USGS), and growth media zeolites (Fig. 1) are hydrated aluminosilicates of alkaline Zeolite soil conditioners or amendments may provide and alkaline-earth metals with very porous structure. many benefits such as improved water infiltration and Zeolites are used as pet litter, in animal feed, in wastewater reduced surface water run-off and nutrient leaching (Fig. 2). treatment, and as soil amendments. Identified about 200 Benefits from zeolite application could translate to increased years ago, there are over 40 different types that include yield, more efficient use of nutrient inputs, and reduction in analcime, chabazite, clinoptilolite, erionite, ferrierite, environmental pollution of nitrogen (N) and phosphorus heulandite, laumontite, mordenite, and phillipsite. Those (P) in bodies of water, as well as reduction in greenhouse commonly used in crop production as soil conditioners are gas emissions (Fig. 2). The high cation exchange capacity clinoptilolite, erionite, and mordenite. Zeolites are mostly (CEC) and porosity of zeolites allows them to absorb and present in soils and sediments, with clinoptilolite as the trap greenhouse gases such as methane (CH4) and carbon most abundant type. In 2019, the United States had nine dioxide (CO2). zeolite mines producing an estimated 98,000 tons of natural zeolites, a 14% increase from 2018. Chabazite is mined in Effects of zeolites on soil physical properties and Arizona (Hyde, 1982; Flanagan, 2020) and clinoptilolite soil water holding capacity in New Mexico (Hyde, 1982).
    [Show full text]
  • MICR 423: Geomicrobiology Fall 2018 3 Credit Hours
    MICR 423: Geomicrobiology Fall 2018 3 Credit Hours Course description. This course will focus on the role that microorganisms play in fundamental geological processes. Topics will include an outline of the present understanding of microbial involvement of weathering of rocks, formation and transformation of soils and sediments, genesis and degradation of minerals. Elemental cycles will also be covered with emphasis on the interrelationships between the various geochemical cycles and the microbial trophic groups involved. Prerequisite: MICR 301 and Chemistry 210 and 21l. Recommended: GEOL 220, 221 or 222. Lecture. Life Science II, Room 430, 9:35 – 10:50 Tues and Thurs Course Goals. At the end of this course you will be able to: • Intelligently converse with microbiologists, geologists, environmental scientists and engineers about the role microorganisms play in the cycling of elements • Be familiar with a variety of techniques to identify and characterize microorganisms in any environment • Relate microbial physiology, genetics, cell structure, and metabolism to the effect, role, or signature that microbes imprint on their surroundings Instructor Office Office Hours Dr. Scott Hamilton-Brehm Life Science III, Rm 1009 M 10-12 pm or by 453-3818 appointment [email protected] Strongly suggested textbooks: • BROCK BIOLOGY OF MICROORGANISMS, 15th edition, 2017, Michael T. Madigan, Kelly S. Bender, Daniel H. Buckley, Matthew W. Sattley, and David A. Stahl (Benjamin Cummings/Pearson). • Hall BG. Phylogenetic trees made easy: a how-to manual. 2008. Final Course Grading scale Grade Points Percentage A 900 - 1000 90-100% B 800 - 899 80-89% C 700 - 799 70-79% D 600 - 699 60-69% F 0 - 599 0-59% Lecture Grades.
    [Show full text]
  • Need for Seismic Hydrology Research with a Geomicrobiological Focus
    sustainability Communication Need for Seismic Hydrology Research with a Geomicrobiological Focus Heejung Kim Department of Geology, Kangwon National University, Chuncheon 24341, Korea; [email protected] Abstract: Earthquakes cause deformation in previously stable groundwater environments, resulting in changes to the hydrogeological characteristics. The changes to hydrological processes follow- ing large-scale earthquakes have been investigated through many physicochemical studies, but understanding of the associated geomicrobiological responses remains limited. To complement the understanding of earthquakes gathered using hydrogeochemical approaches, studies on the effects of the Earth’s deep crustal fluids on microbial community structures can be applied. These studies could help establish the degree of resilience and sustainability of the underground ecosystem following an earthquake. Furthermore, investigations on changes in the microbial community structure of the Earth’s deep crustal fluids before and after an earthquake can be used to predict an earthquake. The results derived from studies that merge hydrogeochemical and geomicrobiological changes in the deep crustal fluids due to the effect of stress on rock characteristics within a fault zone can be used to correlate these factors with earthquake occurrences. In addition, an earthquake risk evaluation method may be developed based on the observable characteristics of fault-zone aquifers. Keywords: earthquake; seismic hydrology; groundwater; hydrogeochemistry; geomicrobiology Citation: Kim, H. Need for Seismic Many studies on the reaction of the Earth’s deep crustal fluids before and after earth- Hydrology Research with a quakes have been conducted worldwide, including in countries with a high frequency Geomicrobiological Focus. of earthquakes. Seismic hydrology is the study of earthquake prediction by analyzing Sustainability 2021, 13, 8704.
    [Show full text]
  • Area of Study
    DEPARTMENT OF EARTHDEPARTMENT SCIENCES OF THE GRADUATE SCHOOL | MONTANA STATE UNIVERSITY AreaEarth ofSciences Study DEGREES OFFERED • M.S. in Earth Sciences FirstThe Departmentgraph of Earth Sciences at Montana State University has a faculty of 13 earth • Ph.D. in Earth Sciences scientists, geologists and geographers. The Master of Science and Doctor of Philosophy in Earth • Ph.D. in Ecology and TextSciences programs have around 45 active graduate students and stress independent thesis Environmental Science research with some supporting course work. Faculty expertise and research in the department spans a large majority of the subfields of Earth Sciences. Our geography faculty includes specialties from settlement geography to bioclimatology, from international urban geography to GIS to snow science. The interests of our geology faculty range from petrogenesis to paleobiology to structural geology, and from dinosaur taphonomy and stratigraphy to geomorphology. Our geobiology faculty have research interests in vertebrate paleontology, paleoecology, biogeography, paleoclimatology and geomicrobiology. Program strengths are in basin analysis and energy resources, dinosaur paleontology, geography of the northern Rocky Mountains, architecture and composition of the lithosphere, snow science and cryospheric processes, and climate change. ADMISSION Applicants should a GPA of 3.0 or higher, GRE scores better than the 50th percentile and a strong academic background in Earth Sciences (geography, geology or geobiology). Foreign students must have a TOEFL score better than 550 for the paper test and 231 for the computer test. The department does not accept general applicants to our graduate program. An applicant should identify a major advisor from the list of faculty, contact that individual, and Department Address: determine whether there is space available in that advisor’s program.
    [Show full text]
  • Geomicrobiology: Interactions Between Microbes and Minerals, Comes at a Very Opportune Time
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hemeroteca Cientifica Catalana INTERNATL MICROBIOL (1998) 1:241–242 241 © Springer-Verlag Ibérica 1998 BOOK REVIEWS a few chapters are devoid of typographical mistakes which Geomicrobiology: Interactions between in some case have resulted in factual errors. Nealson and Microbes and Minerals Stahl state that freshwater environments typically contain JILLIAN F. BANFIELD, KENNETH H. NEALSON (eds) 100 to 250 mM of sulfate while marine systems contain 1997. Mineralogical Society of America, Washington, DC. micromolar amounts (just the opposite is true). Bazylinski (Series: Reviews in Mineralogy, vol. 35) and Moskowitz have inadvertently created a new subgroup 448 pp. Paperback, $32. of Proteobacteria. The volume I received also included an ISBN 0-93995045-6 insert correcting a figure in chapter 11, earlier versions did not. Suffice it to say reediting would greatly enhance the The recent controversy over nanofossils in a Martian utility of this text. Despite its shortcomings, it is a good meteorite and reports of bacteria growing in basalt have once primer for the novice and an important volume for the again brought the study of geomicrobiology into the seasoned veteran. headlines. Thus, Geomicrobiology: Interactions Between Microbes and Minerals, comes at a very opportune time. The book, a byproduct of a short course of the same title hosted John F. Stolz by the Mineralogical Society of America last fall, provides Duquesne University, Pittsburgh, Pennsylvania an in depth look at a fascinating subject. Containing 13 chapters it begins with a review for non-specialists on microorganisms and biogeochemical cycles and concludes with the evolution of the carbon cycle.
    [Show full text]
  • Synthesis and Characterization of Zeolites from Sodium Aluminosilicate Solution
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository@USM SYNTHESIS AND CHARACTERIZATION OF ZEOLITES FROM SODIUM ALUMINOSILICATE SOLUTION by SITI AIDA BINTI IBRAHIM Thesis submitted in fulfillment of the requirements for the degree of Master of Science August 2007 ACKNOWLEDGEMENTS Thank you to Allah for His Blessing and giving me an ability and strength to complete this thesis. Firstly, I would like to express my deepest gratitude to my supervisor Dr. Norlia Baharun for her expert guidance, constant attention, valuable suggestions, enthusiastic support and personal concern during the research and through the course of my study. Her fruitful ideas throughout the research project has helped me accomplished this work successfully. Special thanks to the Dean of School of Material and Mineral Resources Engineering, Associate Professor Dr. Khairun Azizi Azizli for her permission to let me use all the brilliant facilities and equipment in completing my project. Under her leadership, she has created a healthy learning environment in the school. I would also like to extend my sincere appreciation for all the lecturers in the school especially to Associate Professor Dr. Azizan Aziz for his support and guidance throughout my study. I would like to thank the technical staffs of School of Materials and Mineral Resources Engineering, especially to Mdm. Fong Lee Lee, Mr. Shaarani, Miss Mahani and Mr. Hasnor for their various contributions in one way or another. To my dear friends, Nurul’Ain, Norwanis, Roshazita , Faizul, Shahrizam, Suhaina, Dr. Hasmaliza, Dr. Zuhailawati and all close members of postgraduate room of School of Materials and Mineral Resources Engineering, thank you for making my life in USM so colorful and enjoyable.
    [Show full text]
  • Valid Unnamed Minerals, Update 2012-01
    VALID UNNAMED MINERALS, UPDATE 2012-01 IMA Subcommittee on Unnamed Minerals: Jim Ferraiolo*, Jeffrey de Fourestier**, Dorian Smith*** (Chairman) *[email protected] **[email protected] ***[email protected] Users making reference to this compilation should refer to the primary source (Dorian G.W. Smith & Ernest H. Nickel (2007): A System of Codification for Unnamed Minerals: Report of the SubCommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. Canadian Mineralogist v. 45, p.983-1055), and to this website . Additions and changes to the original publication are shown in blue print; deletions are "greyed out and struck through". IMA Code Primary Reference Secondary Comments Reference UM1886-01-OC:HNNa *Bull. Soc. Minéral. 9 , 51 Dana (7th) 2 , 1104 Probably an oxalate but if not is otherwise similar to lecontite UM1892-01-F:CaY *Am. J. Sci. 44 , 386 Dana (7th) 2 , 37 Low analytical total because F not reported; unlike any other known fluoride 3+ UM1910-01-PO:CaFeMg US Geol. Surv. Bull. 419, 1 Am. Mineral. 34 , 513 (Ca,Fe,Mg)Fe 2(PO4)2(OH)2•2H2O; some similarities to mitridatite UM1913-01-AsO:CaCuV *Am. J. Sci. 35 , 441 Dana (7th) 2 , 818 Possibly As-bearing calciovolborthite UM1922-01-O:CuHUV *Izv. Ross. Akad. Nauk [6], 16 , 505 Dana (7th) 2 , 1048 Some similarities to sengierite 3+ UM1926-01-O:HNbTaTiU *Bol. Inst. Brasil Sc., 2 , 56 Dana (7th) 1 , 807 (Y,Er,U,Th,Fe )3(Ti,Nb,Ta)10O26; some similarities to samarskite-(Y) UM1927-01-O:CaTaTiW *Gornyi Zhurn.
    [Show full text]