Ants Podcast.Pages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphology of the Mandibular Gland of the Ant Paraponera Clavata (Hymenoptera: Paraponerinae)
Received: 9 October 2018 Revised: 17 January 2019 Accepted: 2 February 2019 DOI: 10.1002/jemt.23242 RESEARCH ARTICLE Morphology of the mandibular gland of the ant Paraponera clavata (Hymenoptera: Paraponerinae) Thito Thomston Andrade1 | Wagner Gonzaga Gonçalves2 | José Eduardo Serrão2 | Luiza Carla Barbosa Martins1 1Programa de Pós-Graduação em Biodiversidade, Ambiente e Saúde, Abstract Departamento de Biologia e Química, The ant Paraponera clavata (Fabricius, 1775) is the only extant species of Paraponerinae and is Universidade Estadual do Maranhão, Caxias, widely distributed in Brazilian forests. Aspects of its biology are documented extensively in the Maranhão, Brazil literature; however, knowledge of P. clavata internal morphology, specifically of exocrine glands, 2Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, is restricted to the venom apparatus. The objective of this study was to describe the mandibular Minas Gerais, Brazil gland morphology of P. clavata workers. The mandibular gland is composed of a reservoir con- nected to a cluster of Type III secretory cells with cytoplasm rich in mitochondria and lipid drop- Correspondence lets, similar to that of other ants. Notably, the glandular secretion is rich in protein and has a Luiza Carla Barbosa Martins, Programa de Pós- Graduação em Biodiversidade, Ambiente e solid aspect. This is the first morphological description of the mandibular gland of P. clavata. Saúde, Departamento de Biologia e Química, Universidade Estadual do Maranhão, Caxias, Research Highlights Maranhão, Brazil. This study presents the morphological description of the mandibular gland of Paraponera clavata Email: [email protected] (Hymenoptera: Paraponerinae). Singular characteristics of the gland are described: the glandular Review Editor: George Perry secretion is rich in protein and has a solid aspect. -
Borowiec Et Al-2020 Ants – Phylogeny and Classification
A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species. -
For Today's Geo Quiz, We're Heading Towards the Top of the British
E.O. Wilson Solenopsis invicta (Imported Red Fire Ant) and Paraponera clavata (Bullet Ant) Ari: From the Encyclopedia of Life, this is: One Species at a Time. I’m Ari Daniel Shapiro. The Encyclopedia of Life is an online, evolving library of all life on the planet. And it was dreamed up by Edward O. Wilson. Wilson: I am a retired – in quotation marks – professor at Harvard University. And I’m very active in both research around the world, particularly on ants. Ari: E.O. Wilson is 81 now. I sat with him in his spacious library at the Museum of Comparative Zoology at Harvard. I came to see him not about the Encyclopedia of Life, but to have a conversation about his favorite organisms – ants. He began by telling me about the ants all around us. Wilson: We are surrounded by mementos that I’ve accumulated over the years – gifts given to me, blown-up photographs, sculptures of ants, prizes for working on ants. It’s a little museum of memorabilia – all myrmecological in nature. Myrmecology is the scientific study of ants. Ants are ideally suited for the study of advanced social behavior as it evolved in insects. They have among them the most elaborate social systems found in the whole world – next to human beings. They are so very strange. For example, they communicate almost entirely by pheromones, exchanging chemical substances one to the other in a way that’s quite invisible to us. Ari: Can you tell me about a species you’ve studied in the field where you’ve kind of seen this chemical communication in action? Wilson: One of the ant species that I studied a great deal was the one that I discovered when I was a 13 year-old boy in Mobile, Alabama. -
Poneromorfas Do Brasil Miolo.Indd
5 - Estado da arte sobre a Filogenia, Taxonomia e Biologia de Paraponerinae Itanna O. Fernandes Jorge L. P. de Souza Fabricio B. Baccaro SciELO Books / SciELO Livros / SciELO Libros FERNANDES, IO., SOUZA, JLP., and BACCARO, FB. Estado da arte sobre a Filogenia, Taxonomia e Biologia de Paraponerinae. In: DELABIE, JHC., et al., orgs. As formigas poneromorfas do Brasil [online]. Ilhéus, BA: Editus, 2015, pp. 43-53. ISBN 978-85-7455-441-9. Available from SciELO Books <http://books.scielo.org>. All the contents of this work, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 International license. Todo o conteúdo deste trabalho, exceto quando houver ressalva, é publicado sob a licença Creative Commons Atribição 4.0. Todo el contenido de esta obra, excepto donde se indique lo contrario, está bajo licencia de la licencia Creative Commons Reconocimento 4.0. 5 Estado da arte sobre a Filogenia, Taxonomia e Biologia de Paraponerinae Itanna O. Fernandes, Jorge L. P. de Souza, Fabricio B. Baccaro Resumo A subfamília Paraponerinae possui uma forrageando em nectários extrafl orais e carregando série de mudanças em sua classifi cação taxonômi- pequenos invertebrados ou partes deles para o ni- ca no decorrer da história. A utilização de dados nho. Estudos indicaram que o forrageamento em P. morfológicos e moleculares em fi logenias mais re- clavata é principalmente noturno, mas pode variar centes, demonstrou que a posição de Paraponeri- entre as colônias. Sua distribuição é ampla, com nae dentro do grupo de poneromorfas ainda está registros da Nicarágua, na América Central, até o indefi nida, visto que as relações fi logenéticas com Centro-Sul do Brasil. -
Speciation of Ants in the Tropics of South America
Ludwig Maximilians Universität Master‘s Program in Evolution, Ecology and Systematics Speciation of Ants in the Tropics of South America Master’s Thesis September 2012 Adrián Troya Supervisors Prof. Dr. Gerhard Haszprunar (Zoologische Staatssammlung München - ZSM) ForDr. Stephan Review Hutter (Ludwig Maximilians Universität Only - LMU) PDF processed with CutePDF evaluation edition www.CutePDF.com 2 …to my dad For Review Only 3 Contents Abstract ............................................................................................................... 4 1. Introduction ..................................................................................................... 5 1.1 Background................................................................................................................................ 6 2. Materials and Methods ................................................................................... 8 2.1 About the Species and the Specimens ...................................................................................... 8 2.2 Molecular Lab Methods .......................................................................................................... 10 2.3 Molecular Analyses and Phylogenetic Inference .................................................................... 13 2.4 Morphological Phylogenetic Inference ................................................................................... 16 2.4.1 Cladistic Analyses ............................................................................................................ -
Fossil Ants (Hymenoptera: Formicidae): Ancient Diversity and the Rise of Modern Lineages
Myrmecological News 24 1-30 Vienna, March 2017 Fossil ants (Hymenoptera: Formicidae): ancient diversity and the rise of modern lineages Phillip BARDEN Abstract The ant fossil record is summarized with special reference to the earliest ants, first occurrences of modern lineages, and the utility of paleontological data in reconstructing evolutionary history. During the Cretaceous, from approximately 100 to 78 million years ago, only two species are definitively assignable to extant subfamilies – all putative crown group ants from this period are discussed. Among the earliest ants known are unexpectedly diverse and highly social stem- group lineages, however these stem ants do not persist into the Cenozoic. Following the Cretaceous-Paleogene boun- dary, all well preserved ants are assignable to crown Formicidae; the appearance of crown ants in the fossil record is summarized at the subfamilial and generic level. Generally, the taxonomic composition of Cenozoic ant fossil communi- ties mirrors Recent ecosystems with the "big four" subfamilies Dolichoderinae, Formicinae, Myrmicinae, and Ponerinae comprising most faunal abundance. As reviewed by other authors, ants increase in abundance dramatically from the Eocene through the Miocene. Proximate drivers relating to the "rise of the ants" are discussed, as the majority of this increase is due to a handful of highly dominant species. In addition, instances of congruence and conflict with molecular- based divergence estimates are noted, and distinct "ghost" lineages are interpreted. The ant fossil record is a valuable resource comparable to other groups with extensive fossil species: There are approximately as many described fossil ant species as there are fossil dinosaurs. The incorporation of paleontological data into neontological inquiries can only seek to improve the accuracy and scale of generated hypotheses. -
Contact Toxicities of Anuran Skin Alkaloids Against the Fire Ant (Solenopsis Invicta)
Naturwissenschaften (2013) 100:185–192 DOI 10.1007/s00114-013-1010-0 ORIGINAL PAPER Contact toxicities of anuran skin alkaloids against the fire ant (Solenopsis invicta) Paul J. Weldon & Yasmin J. Cardoza & Robert K. Vander Meer & W. Clint Hoffmann & John W. Daly & Thomas F. Spande Received: 19 July 2012 /Revised: 4 January 2013 /Accepted: 7 January 2013 /Published online: 23 January 2013 # Springer-Verlag Berlin Heidelberg (outside the USA) 2013 Abstract Nearly 500 alkaloids, representing over 20 struc- estimated the cutaneous concentrations of several com- tural classes, have been identified from the skin of neotrop- pounds based on their reported recoveries from skin extracts ical poison frogs (Dendrobatidae). These cutaneous of free-ranging frogs and our measurements of the skin compounds, which are derived from arthropod prey of the surface areas of museum specimens. Pumiliotoxin 251D frogs, generally are believed to deter predators. We tested exhibited contact toxicity below its estimated cutaneous the red imported fire ant (Solenopsis invicta) for toxicosis concentration in the Ecuadorian frog, Epipedobates antho- following contact with 20 alkaloids (12 structural classes) nyi, an observation consistent with the hypothesized role identified from dendrobatids or other anurans. Individual of this compound in anuran chemical defense. Our results ants forced to contact the dried residues of 13 compounds and those of a previous study of mosquitoes indicate that exhibited convulsions and/or reduced ambulation. We some anuran skin compounds function defensively as contact toxins against arthropods, permeating their exoskeleton. Communicated by: Sven Thatje . John W. Daly deceased 5 March, 2008 Keywords Alkaloid Allomone Ant Defense Frog Toxicity P. -
Hormigas De Colombia F
HORMIGAS DE COLOMBIA F. Fernández, R.J. Guerrero & T. Delsinne Editores Instituto de Ciencias Naturales Facultad de Ciencias Sede Bogotá HORMIGAS DE COLOMBIA F. Fernández, R.J. Guerrero & T. Delsinne Editores © Universidad Nacional de Colombia - Sede Bogotá © Facultad de Ciencias © Fernando Fernández (Ed. académico) © Roberto Guerrero (Ed. académico) © Thibaut Delsinne (Ed. académico) © Autores varios Primera edición, abril 2019 ISBN 978-958-783-765-0 (papel) ISBN 978-958-783-766-7 (digital) Facutad de Ciencias Edición Coordinación de Publicaciones Facultad de Ciencias [email protected] Diseño y diagramación Valentina Nieto Salvo cuando se especifica lo contrario, las figuras y tablas del presente volumen son propiedad de los autores Bogotá, D. C., Colombia, 2019 Prohibida la reproducción total o parcial por cualquier medio sin la autorización escrita del titular de los derechos patrimoniales Impreso y hecho en Bogotá, D. C., Colombia Catalogación en la publicación Universidad Nacional de Colombia Hormigas de Colombia / F. Fernández, R.J. Guerrero & T. Delsinne, editores. -- Primera edición. -- Bogotá : Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias Naturales, 2019. 1200 páginas en dos columnas : ilustraciones (principalmente a color), diagramas, fotografías, láminas Incluye referencias bibliográficas al final de cada capítulo ISBN 978-958-783-765-0 (rústica). -- ISBN 978-958-783-766-7 (e-book) 1. Formicidae 2. Hymenoptera 3. Taxonomía 4. Mirmecología 5. Región neotropical 6. Biodiversidad 7. Colombia I. Fernández Castiblanco, Fernando, 1961-, editor II. Guerrero Flórez, Roberto José, 1981-, editor III. Delsinne, Thibaut, 1978-, editor CDD-23 595.796 / 2019 Capítulo 7. Diversidad y morfología de las glándulas exocrinas en las hormigas 165 J. -
Ants in the Ant-Man Movie, with Biological Notes
Ants in the Ant-Man movie, with biological notes Elidiomar R. Da-Silva* & Thiago R. M. de Campos Universidade Federal do Estado do Rio de Janeiro. Rio de Janeiro, RJ, Brazil. *Email: [email protected] Belonging to the family Formicidae (order passion for ants, which are well characterized in Hymenoptera), ants are cosmopolitan insects, his paintings. Ants are likewise prominent in inhabiting all kinds of terrestrial environments, cartoons, such as Atom Ant (Hanna-Barbera except the arctic, with nearly 10,000 known Productions, 1965–1968) and The Ant and The species. Ants are also social animals, interacting Aardvark (United Artists, 1969–1971), and inside their nests within each caste and each films, like A Bug’s Life (Pixar Animation Studios, role. These worldwide animals are abundant 1998) and Antz (DreamWorks Pictures, 1998). and dominant in each habitat and niche More importantly for us, ants are featured even (Hölldobler & Wilson, 1990), being responsible in superhero comics and films. for a huge nectar consumption (amongst other In the present article1, we list all the ant substances acquired from plants), decomposing species shown in the Ant-Man movie (Marvel organic matter (hence helping with the Studios, 2015) and present notes on their ecological recycling of nutrients), as well as biology and distribution. In order to do so, the gathering and transporting seeds (thus helping Blu-ray version of the movie was meticulously plant dispersion) (Levey & Byrne, 1993). watched, observing features such as Artificial systems, such as urban centers, can be morphology and behavior, which were then colonized and exploited by a variety of ant compared to scientific records. -
Seed Dispersal Mutualisms Are Essential for the Survival of Diverse Plant Species and Communities Worldwide
ABSTRACT YOUNGSTEADT, ELSA KRISTEN. Neotropical Ant-Gardens: Behavioral and Chemical Ecology of an Obligate Ant-Plant Mutualism. (Under the direction of Coby Schal.) Seed dispersal mutualisms are essential for the survival of diverse plant species and communities worldwide. An outstanding but poorly understood ant-seed mutualism occurs in the Amazonian rainforest, where arboreal ants collect seeds of several taxonomically diverse plant species and cultivate them in nutrient-rich nests, forming abundant hanging gardens known as ant-gardens (AGs). AG ants and plants are dominant members of lowland Amazonian ecosystems, and their interaction is obligate and apparently species-specific. Though established AGs are limited to specific participants, it is unknown at what stage specificity arises. Seed fate pathways in AG epiphytes are undocumented, and the recognition cues that mediate the mutualism are unknown. Here the species specificity of the AG ant-seed interaction is assessed, and chemical cues are characterized that elicit seed- finding and seed-carrying in AG ants. To examine the specificity of the ant-seed interaction, general food baits and seeds of the AG plant Peperomia macrostachya were offered on alternate days at 108 bait stations. Seventy ant species were detected at food baits and could have interacted with AG seeds, but only three species collected P. macrostachya seeds, and 84% of observed seed removal by ants was attributed to C. femoratus. In a separate experiment, arthropod exclusion significantly reduced AG seed removal rates, but vertebrate exclusion did not. Thus species specific seed dispersal, rather than post-dispersal processes, appears to be the primary determinant of the distribution of AG plants. -
A Revision of the Giant Amazonian Ants of the Genus Dinoponera (Hymenoptera, Formicidae)
JHR 31:A 119–164 revision (2013) of the giant Amazonian ants of the genus Dinoponera (Hymenoptera, Formicidae) 119 doi: 10.3897/JHR.31.4335 RESEARCH ARTICLE www.pensoft.net/journals/jhr A revision of the giant Amazonian ants of the genus Dinoponera (Hymenoptera, Formicidae) Paul A. Lenhart1,†, Shawn T. Dash2,‡, William P. Mackay2,§ 1 Department of Entomology, Texas A&M University, 2475 TAMU, College Station, Texas USA 2 Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968 † urn:lsid:zoobank.org:author:6CA6E3C7-14AA-4D6B-82BF-5577F431A51A ‡ urn:lsid:zoobank.org:author:9416A527-CCE2-433E-A55F-9D51B5DCEE8A § urn:lsid:zoobank.org:author:70401E27-0F2E-46B5-BC2B-016837AF3035 Corresponding author: Paul A. Lenhart ([email protected]) Academic editor: Wojciech Pulawski | Received 16 November 2012 | Accepted 7 January2013 | Published 20 March 2013 urn:lsid:zoobank.org:pub:10404A9C-126A-44C8-BD48-5DB72CD3E3FF Citation: Lenhart PA, Dash ST, Mackay WP (2013) A revision of the giant Amazonian ants of the genus Dinoponera (Hymenoptera, Formicidae). Journal of Hymenoptera Research 31: 119–164. doi: 10.3897/JHR.31.4335 Abstract Dinoponera Roger 1861 has been revised several times. However, species limits remain questionable due to limited collection and undescribed males. We re-evaluate the species boundaries based on workers and known males. We describe the new species Dinoponera hispida from Tucuruí, Pará, Brazil and Dinoponera snellingi from Campo Grande, Mato Grosso do Sul, Brazil and describe the male of Dinoponera longipes Emery 1901. Additionally, we report numerous range extensions with updated distribution maps and provide keys in English, Spanish and Portuguese for workers and known males of Dinoponera. -
Description of a New Genus of Primitive Ants from Canadian Amber
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 8-11-2017 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Borysenko, Leonid H., "Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae)" (2017). Insecta Mundi. 1067. http://digitalcommons.unl.edu/insectamundi/1067 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0570 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes AAFC, K.W. Neatby Building 960 Carling Ave., Ottawa, K1A 0C6, Canada Date of Issue: August 11, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Leonid H. Borysenko Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Insecta Mundi 0570: 1–57 ZooBank Registered: urn:lsid:zoobank.org:pub:C6CCDDD5-9D09-4E8B-B056-A8095AA1367D Published in 2017 by Center for Systematic Entomology, Inc.