2012 FMNH REU Intern Profiles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Species of Graphidaceae from the Neotropics and Southeast Asia
Phytotaxa 189 (1): 289–311 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.189.1.21 New species of Graphidaceae from the Neotropics and Southeast Asia HARRIE J. M. SIPMAN Freie Universität, Botanischer Garten & Botanisches Museum, Königin-Luise-Strasse 6-8, D-14195 Berlin, Germany; email: [email protected] Abstract Descriptions and illustrations are provided for 20 new species in the family Graphidaceae (lichenized fungi) originating from El Salvador, the Guianas, Venezuela, Colombia, and Malaysia: Acanthothecis adjuncta Welz & Sipman, differing from all other Acanthothecis species by the rounded ascocarps with covered discs; Astrochapsa albella Sipman, differing from A. meridensis in the white apothecium rim, the corticolous growth habit, the more or less clear hymenium, and the protocetraric acid chemistry; A. columnaris Sipman, differing from other Astrochapsa species by the columnar marginal slips; Chapsa francisci Sipman, differing from other Chapsa species by the numerous marginal lacinae; C. nubila Sipman, differing from other Chapsa species by the combination of a guttulate hymenium and 4- to 8-spored asci; Diorygma extensum Sipman, differing from D. minisporum in producing norstictic acid instead of stictic acid; Fissurina chapsoides Sipman, a Fissurina species with large, muriform ascospores and short ascocarps opening mostly by branched slits; F. gigas Sipman, differing from F. rufula in the larger ascomata and muriform ascospores; F. v or a x Sipman, differing from other Fissurina species by the aggregated ascocarps in combination with papillose paraphysis tips; Graphis murali-elegans Sipman, differing from G. -
Morphology of the Mandibular Gland of the Ant Paraponera Clavata (Hymenoptera: Paraponerinae)
Received: 9 October 2018 Revised: 17 January 2019 Accepted: 2 February 2019 DOI: 10.1002/jemt.23242 RESEARCH ARTICLE Morphology of the mandibular gland of the ant Paraponera clavata (Hymenoptera: Paraponerinae) Thito Thomston Andrade1 | Wagner Gonzaga Gonçalves2 | José Eduardo Serrão2 | Luiza Carla Barbosa Martins1 1Programa de Pós-Graduação em Biodiversidade, Ambiente e Saúde, Abstract Departamento de Biologia e Química, The ant Paraponera clavata (Fabricius, 1775) is the only extant species of Paraponerinae and is Universidade Estadual do Maranhão, Caxias, widely distributed in Brazilian forests. Aspects of its biology are documented extensively in the Maranhão, Brazil literature; however, knowledge of P. clavata internal morphology, specifically of exocrine glands, 2Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, is restricted to the venom apparatus. The objective of this study was to describe the mandibular Minas Gerais, Brazil gland morphology of P. clavata workers. The mandibular gland is composed of a reservoir con- nected to a cluster of Type III secretory cells with cytoplasm rich in mitochondria and lipid drop- Correspondence lets, similar to that of other ants. Notably, the glandular secretion is rich in protein and has a Luiza Carla Barbosa Martins, Programa de Pós- Graduação em Biodiversidade, Ambiente e solid aspect. This is the first morphological description of the mandibular gland of P. clavata. Saúde, Departamento de Biologia e Química, Universidade Estadual do Maranhão, Caxias, Research Highlights Maranhão, Brazil. This study presents the morphological description of the mandibular gland of Paraponera clavata Email: [email protected] (Hymenoptera: Paraponerinae). Singular characteristics of the gland are described: the glandular Review Editor: George Perry secretion is rich in protein and has a solid aspect. -
1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey C
Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S. -
H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology -
One Hundred and Seventy-Five New Species of Graphidaceae: Closing the Gap Or a Drop in the Bucket?
Phytotaxa 189 (1): 007–038 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.189.1.4 One hundred and seventy-five new species of Graphidaceae: closing the gap or a drop in the bucket? ROBERT LÜCKING1, MARK K. JOHNSTON1, ANDRÉ APTROOT2, EKAPHAN KRAICHAK1, JAMES C. LENDEMER3, KANSRI BOONPRAGOB4, MARCELA E. S. CÁCERES5, DAMIEN ERTZ6, LIDIA ITATI FERRARO7, ZE-FENG JIA8, KLAUS KALB9,10, ARMIN MANGOLD11, LEKA MANOCH12, JOEL A. MERCADO-DÍAZ13, BIBIANA MONCADA14, PACHARA MONGKOLSUK4, KHWANRUAN BUTSATORN PAPONG 15, SITTIPORN PARNMEN16, ROUCHI N. PELÁEZ14, VASUN POENGSUNGNOEN17, EIMY RIVAS PLATA1, WANARUK SAIPUNKAEW18, HARRIE J. M. SIPMAN19, JUTARAT SUTJARITTURAKAN10,18, DRIES VAN DEN BROECK6, MATT VON KONRAT1, GOTHAMIE WEERAKOON20 & H. THORSTEN 1 LUMBSCH 1Science & Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605-2496, U.S.A.; email: [email protected], [email protected], [email protected], [email protected] 2ABL Herbarium, G.v.d.Veenstraat 107, NL-3762 XK Soest, The Netherlands; email: [email protected] 3Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126, U.S.A.; email: [email protected] 4Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Ramkhamhaeng 24 road, Bangkok, 10240 Thailand; email: [email protected] 5Departamento de Biociências, Universidade Federal de Sergipe, CEP: 49500-000, -
Borowiec Et Al-2020 Ants – Phylogeny and Classification
A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species. -
Atlas of the Freshwater Mussels (Unionidae)
1 Atlas of the Freshwater Mussels (Unionidae) (Class Bivalvia: Order Unionoida) Recorded at the Old Woman Creek National Estuarine Research Reserve & State Nature Preserve, Ohio and surrounding watersheds by Robert A. Krebs Department of Biological, Geological and Environmental Sciences Cleveland State University Cleveland, Ohio, USA 44115 September 2015 (Revised from 2009) 2 Atlas of the Freshwater Mussels (Unionidae) (Class Bivalvia: Order Unionoida) Recorded at the Old Woman Creek National Estuarine Research Reserve & State Nature Preserve, Ohio, and surrounding watersheds Acknowledgements I thank Dr. David Klarer for providing the stimulus for this project and Kristin Arend for a thorough review of the present revision. The Old Woman Creek National Estuarine Research Reserve provided housing and some equipment for local surveys while research support was provided by a Research Experiences for Undergraduates award from NSF (DBI 0243878) to B. Michael Walton, by an NOAA fellowship (NA07NOS4200018), and by an EFFRD award from Cleveland State University. Numerous students were instrumental in different aspects of the surveys: Mark Lyons, Trevor Prescott, Erin Steiner, Cal Borden, Louie Rundo, and John Hook. Specimens were collected under Ohio Scientific Collecting Permits 194 (2006), 141 (2007), and 11-101 (2008). The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by section 315 of the Coastal Zone Management Act, as amended. Additional information on these preserves and programs is available from the Estuarine Reserves Division, Office for Coastal Management, National Oceanic and Atmospheric Administration, U. S. Department of Commerce, 1305 East West Highway, Silver Spring, MD 20910. -
2009 FMNH REU Symposium Program
Undergraduate Research Symposium 2009 Program and Abstracts Saturday, August 15 BioSynC Conference Room 2009 REU Project Page 2 REU Projects 2009 Project: The Early Evolution of Sea Turtles Name: William Adams (Junior, Biology, Loyola University) Field Museum faculty mentors: Dr. Ken Angielczyk (Geology), and Dr. James Parham (BioSynC) Project: Bryozoan Biodiversity on the Web Name: Bryan Quach (Freshman, Bioinformatics, Loyola University) Field Museum faculty mentor: Dr. Scott Lidgard (Geology) Project: Species recognition in tropical lichen-forming fungi Name: Gabrielle Lopez (Freshman, Biology, Roosevelt University) Field Museum faculty mentor: Dr. Thorsten Lumbsch (Botany) Project: Do some nocturnal primates and bats see in color? Name: Austin Hicks (Junior, Molecular Biology, Loyola University) Field Museum faculty mentor: Dr. Robert Martin and Edna Davion (Anthropology) Project: Ants of the rainforests of South America. Why are some species only found in some places? Name: Elizabeth Loehrer (Senior, Molecular Biology, Loyola University) Field Museum faculty mentor: Dr. Corrie Moreau (Zoology) Project: Vampires on vampires?: Coevolution of bats and bat flies Name: Anna Sjodin (Sophomore, Biology and Ecology, Loyola University) Field Museum faculty mentor: Drs. Patterson and Dick (Zoology) Project: Giant Pill-Millipedes and Fire-Millipedes from Madagascar, taking stock of a hidden diversity Name: Ioulia Bespalova (Sophomore, Biology, Mount Holyoke College) Field Museum faculty mentor: Drs. Sierwald (Zoology) and Wesener (Zoology) Project: One species, or more? Is Stenomalium helmsi really a widespread austral species? Name: Kristin Kalita (Sophomore, Biology, Loyola University) Field Museum faculty mentor: Dr. Margaret Thayer (Zoology) The undergraduate research internships are supported by NSF through an REU site grant to the Field Museum, DBI 08-49958: PIs: Petra Sierwald (Zoology) and Peter Makovicky (Geology). -
A Multigene Phylogenetic Synthesis for the Class Lecanoromycetes (Ascomycota): 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families
A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., ... & Stenroos, S. (2014). A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 79, 132-168. doi:10.1016/j.ympev.2014.04.003 10.1016/j.ympev.2014.04.003 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, -
Constructional Morphology of the Shell/Ligament System in Opisthogyrate Rostrate Bivalves J
Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 106, 221–227, 2017 Constructional morphology of the shell/ligament system in opisthogyrate rostrate bivalves J. Echevarrı´a, S. E. Damborenea and M. O. Mancen˜ido CONICET – Museo de La Plata, Paseo del Bosque s/n, (1900) La Plata, Buenos Aires province, Argentina. Email: [email protected] ABSTRACT: The bivalve ligament provides the thrust for shell opening, acting as the resistance in a lever system against which adductor muscle effort is applied. Usually, its outer lamellar layer is subjected to tensile stress, while the inner fibrous layer is compressed, with the pivotal axis located between them. However, opisthogyrate rostrate bivalves display a concave dorsal margin, and both the umbo and the postero-dorsal angle of the shell project dorsally to the ligament, which then fails to act as pivotal axis. Three opisthogyrate rostrate genera of unrelated lineages show somewhat dif- ferent solutions to this morpho-functional challenge. In Cuspidaria (Anomalodesmata), the ligament is internal, subjected only to compression and ventral to the pivotal axis, a thickened periostracum develops, forcing the dorsal margins of the valves to act as pivotal axis, and the posterior parts of the shell’s dorsal margins gape dorsally. In Nuculana (Palaeotaxodonta), the inner layer of the ligament is internal, the outer layer is external but reduced, and some species develop a dorsal ridge parallel to the commissural plane, on a level with the rostrum and acting as pivotal axis. In Pterotrigonia (Palaeoheterodonta) and other rostrate trigoniides, the ligament is external opisthodetic, but is allometrically reduced. -
For Today's Geo Quiz, We're Heading Towards the Top of the British
E.O. Wilson Solenopsis invicta (Imported Red Fire Ant) and Paraponera clavata (Bullet Ant) Ari: From the Encyclopedia of Life, this is: One Species at a Time. I’m Ari Daniel Shapiro. The Encyclopedia of Life is an online, evolving library of all life on the planet. And it was dreamed up by Edward O. Wilson. Wilson: I am a retired – in quotation marks – professor at Harvard University. And I’m very active in both research around the world, particularly on ants. Ari: E.O. Wilson is 81 now. I sat with him in his spacious library at the Museum of Comparative Zoology at Harvard. I came to see him not about the Encyclopedia of Life, but to have a conversation about his favorite organisms – ants. He began by telling me about the ants all around us. Wilson: We are surrounded by mementos that I’ve accumulated over the years – gifts given to me, blown-up photographs, sculptures of ants, prizes for working on ants. It’s a little museum of memorabilia – all myrmecological in nature. Myrmecology is the scientific study of ants. Ants are ideally suited for the study of advanced social behavior as it evolved in insects. They have among them the most elaborate social systems found in the whole world – next to human beings. They are so very strange. For example, they communicate almost entirely by pheromones, exchanging chemical substances one to the other in a way that’s quite invisible to us. Ari: Can you tell me about a species you’ve studied in the field where you’ve kind of seen this chemical communication in action? Wilson: One of the ant species that I studied a great deal was the one that I discovered when I was a 13 year-old boy in Mobile, Alabama. -
Two New Fossil Species of Omaliinae from Baltic Amber
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2016 Band/Volume: 74 Autor(en)/Author(s): Zanetti Adriano, Perreau Michel, Solodovnikov Alexey Yurevitsh Artikel/Article: Two new fossil species of Omaliinae from Baltic amber (Coleoptera: Staphylinidae) and their significance for understanding the Eocene-Oligocene climate 53-64 74 (1): 53 – 64 14.6.2016 © Senckenberg Gesellschaft für Naturforschung, 2016. Two new fossil species of Omaliinae from Baltic amber (Coleoptera: Staphylinidae) and their significance for understanding the Eocene-Oligocene climate Adriano Zanetti 1, Michel Perreau *, 2 & Alexey Solodovnikov 3 1 Museo Civico di Storia Naturale, Lungadige Porta Vittoria 9, I-37129 Verona, Italy; Adriano Zanetti [[email protected]] — 2 Université Paris Diderot, Sorbonne Paris Cité, IUT Paris Diderot, case 7139, 5, rue Thomas Mann, F-75205 Paris cedex 13 France; Michel Perreau * [michel. [email protected]] — 3 Department of Entomology, Zoological Museum, Natural History Museum of Denmark, Universitetsparken 15, Copenhagen 2100, Denmark; Alexey Solodovnikov [[email protected]] — * Correspond ing author Accepted 23.ii.2016. Published online at www.senckenberg.de/arthropod-systematics on 03.vi.2016. Editor in charge: Christian Schmidt. Abstract Two fossil species, Paraphloeostiba electrica sp.n. and Phyllodrepa antiqua sp.n. (Staphylinidae, Omaliinae), are described from Baltic amber. Their external and relevant internal structures are illustrated using propagation phase contrast synchrotron microtomography. The palaeobiogeogaphy of the two genera, the thermophilous Paraphloeostiba, the temperate Phyllodrepa, as well as palaeoenvironment of the amber forest are discussed in light of the new findings. Key words Omaliini, Eusphalerini, synchrotron microtomography, temperate, thermophilous.