Ebook Download the Life Cycle of an Ant Ebook, Epub

Total Page:16

File Type:pdf, Size:1020Kb

Ebook Download the Life Cycle of an Ant Ebook, Epub THE LIFE CYCLE OF AN ANT PDF, EPUB, EBOOK Hadley Dyer,Bobbie Kalman | 32 pages | 28 Feb 2006 | Crabtree Publishing Co,Canada | 9780778707004 | English | New York, Canada The Life Cycle of an Ant PDF Book Worker Ants Worker ants have no wings and typically survive several months with some exceptions of workers who can live up to seven years. Some ant species, such as those that use natural cavities, can be opportunistic and make use of the controlled micro-climate provided inside human dwellings and other artificial structures to house their colonies and nest structures. Back to previous page. They also are mentioned in religious texts. Like ants, termites are eusocial , with sterile workers, but they differ greatly in the genetics of reproduction. A wide range of reproductive strategies have been noted in ant species. In Central and South America, Eciton burchellii is the swarming ant most commonly attended by " ant- following " birds such as antbirds and woodcreepers. In South Africa , ants are used to help harvest the seeds of rooibos Aspalathus linearis , a plant used to make a herbal tea. Since the weather is warmer out it is a great time for children to observe ants firsthand. Austrocynipidae Cynipidae gall wasps Figitidae Ibaliidae Liopteridae. Their success in so many environments has been attributed to their social organisation and their ability to modify habitats, tap resources, and defend themselves. Journal of Experimental Biology. The American Naturalist. The marked male is interpreted as an invader by worker ants and is killed. However, they need only a couple hours for their exoskeletons to harden and for them to get stronger and change their appearance by getting darker. Did you know that ants, like all insects, are full-grown when they become adults? Journal of Zoology. You will love these resources:. Since they lack gills , they go to trapped pockets of air in the submerged nests to breathe. For example, the presence of ants would be undesirable in sterile places such as hospitals or kitchens. Some simply fight their way into the nest. Main article: Outline of ants. Colonies with multiple queens may also reproduce by a process called colony budding. Formica polyctena , among other ant species, constructs nests that maintain a relatively constant interior temperature that aids in the development of larvae. The leader is acutely sensitive to the progress of the follower and slows down when the follower lags and speeds up when the follower gets too close. Retrieved 3 April Initially, every queen has wings to fly away in pursuit of male to mate. The similarity of their social structure to that of ants is attributed to convergent evolution. Some species are capable of leaping. In some parts of the world mainly Africa and South America , large ants, especially army ants , are used as surgical sutures. Archived from the original on 30 June A new ergate spends the first few days of its adult life caring for the queen and young. The Life Cycle of an Ant Writer See also: Myrmecology , Biomimetics , and Ant colony optimization algorithms. The life of an ant starts from an egg ; if the egg is fertilised, the progeny will be female diploid , if not, it will be male haploid. Ants: Their Structure, Development and Behavior. In Motte-Florac, E. The caterpillars have a gland which secretes honeydew when the ants massage them. They have an edible elaiosome-like structure and are taken into the ant nest where the young hatch. BMC Evolutionary Biology. Some later commercial versions use transparent gel instead of soil, allowing greater visibility at the cost of stressing the ants with unnatural light. Ants are one of the most abundant insects on our planet and the reasons are their eusocial, complex societal behaviors and their ability to survive in many and various ecosystems. Future queen ants are fed more than the rest who will become the workers of the colony or male ants. You may also like. Anaxyelidae cedar wood wasps Siricidae horntails. I offer free printables to bless my readers AND to provide for my family. Mutillidae velvet ants Myrmosidae Pompilidae spider wasps Sapygidae sapygid, or club-horned wasps. This area of biomimetics has led to studies of ant locomotion, search engines that make use of "foraging trails", fault-tolerant storage, and networking algorithms. The species include Paraponera clavata tocandira and Dinoponera spp. For instance, when an established path to a food source is blocked by an obstacle, the foragers leave the path to explore new routes. Cephidae stem sawflies. The Australian bulldog ants are among the biggest and most basal of ants. Worker ants use their sense of smell to lead other ants to sources of food, to recognise friends or enemies, and to establish territorial boundaries. Chemical methods include the use of insecticidal bait which is gathered by ants as food and brought back to the nest where the poison is inadvertently spread to other colony members through trophallaxis. She is the mother of all ant workers who tend to her and expand the colony to the soldiers who defend the nest. Pharaoh ants, some fire ants, ghost ants and Argentine ants, some of the most difficult ant species to control, spread by budding. View Citation You may need to edit author's name to meet the style formats, which are in most cases "Last name, First name. The ant life cycle begins with an egg. The Ants. The mandibles also permit slow and fine movements for other tasks. It has been estimated by E. Call us now! View all posts. The queen is the most important ant in the colony. London: Cassell. Full Name. Bibcode : SciAm. The ants maintain the nest temperature by choosing the location, nest materials, controlling ventilation and maintaining the heat from solar radiation, worker activity and metabolism, and in some moist nests, microbial activity in the nest materials. The leader is acutely sensitive to the progress of the follower and slows down when the follower lags and speeds up when the follower gets too close. Help kids have fun while learning about the Life Cycle of an Ant with this free printable life cycle worksheet for Kindergartners. Some ant species are considered as pests, primarily those that occur in human habitations, where their presence is often problematic. Annals of the Entomological Society of America. Phylogenetic position of the Formicidae [11]. Ants also tend mealybugs to harvest their honeydew. Pupae: plural of 'pupa'. Heat makes flying easier and freshly fallen rain makes the ground softer for mated queens to dig nests. The Life Cycle of an Ant Reviews Metamorphosis: dramatic change in body form The worksheets will help your child understand the life cycle of an ant. Ant populations are managed by a combination of approaches that make use of chemical, biological, and physical methods. They have an edible elaiosome-like structure and are taken into the ant nest where the young hatch. The pupa has the appendages free and not fused to the body as in a butterfly pupa. Braconidae braconids Ichneumonidae ichneumon wasps Trachypetidae. Hymenoptera Volume 3. During this time, she uses her stored fat reserves and wing muscles for nourishment. Retrieved 12 June There are different types of ants in the colony, and everyone has a different job to do. Orussidae parasitic wood wasps. Workers cannot mate; however, because of the haplodiploid sex-determination system in ants, workers of a number of species can lay unfertilised eggs that become fully fertile, haploid males. Australian Journal of Zoology. Worker Ants Worker ants have no wings and typically survive several months with some exceptions of workers who can live up to seven years. Queens are females that were fed more as larvae. Advances in ant systematics Hymenoptera: Formicidae : homage to E. Renowned myrmecologist E. Scientific American. The pupae of some species spin a cocoon for protection, while others remain uncovered, or naked. Contrary to popular belief, some ant nests have multiple queens, while others may exist without queens. The Quarterly Review of Biology. Ants perform many ecological roles that are beneficial to humans, including the suppression of pest populations and aeration of the soil. The Florida Entomologist. Anaxyelidae cedar wood wasps Siricidae horntails. Most ant species are omnivorous generalists , but a few are specialist feeders. Genetic influences and the control of gene expression by the developmental environment are complex and the determination of caste continues to be a subject of research. Both the legs and wings of the ant are attached to the mesosoma "thorax". Les insectes dans la tradition orale in French. A conflict between the sexes of a species is seen in some species of ants with these reproducers apparently competing to produce offspring that are as closely related to them as possible. Ants react to their infection by climbing up plants and sinking their mandibles into plant tissue. How Do We See? When the food source is exhausted, no new trails are marked by returning ants and the scent slowly dissipates. Ants use pheromones for more than just making trails. Once the queen settles to lay her eggs and form a new colony, she will tear off her wings. A wide range of reproductive strategies have been noted in ant species. Once the larva reaches a certain growth stage, it forms a silk-like cocoon around itself and pupates. The Life Cycle of an Ant Read Online During this time, the pupa changes into an adult. Some species also form floating rafts that help them survive floods. Learn how your comment data is processed. Like most other animal societies, reproduction is one of the core reasons why ants are so prevalent.
Recommended publications
  • Functional Morphology and Evolution of the Sting Sheaths in Aculeata (Hymenoptera) 325-338 77 (2): 325– 338 2019
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2019 Band/Volume: 77 Autor(en)/Author(s): Kumpanenko Alexander, Gladun Dmytro, Vilhelmsen Lars Artikel/Article: Functional morphology and evolution of the sting sheaths in Aculeata (Hymenoptera) 325-338 77 (2): 325– 338 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. Functional morphology and evolution of the sting sheaths in Aculeata (Hymenoptera) , 1 1 2 Alexander Kumpanenko* , Dmytro Gladun & Lars Vilhelmsen 1 Institute for Evolutionary Ecology NAS Ukraine, 03143, Kyiv, 37 Lebedeva str., Ukraine; Alexander Kumpanenko* [[email protected]]; Dmytro Gladun [[email protected]] — 2 Natural History Museum of Denmark, SCIENCE, University of Copenhagen, Universitet- sparken 15, DK-2100, Denmark; Lars Vilhelmsen [[email protected]] — * Corresponding author Accepted on June 28, 2019. Published online at www.senckenberg.de/arthropod-systematics on September 17, 2019. Published in print on September 27, 2019. Editors in charge: Christian Schmidt & Klaus-Dieter Klass. Abstract. The sting of the Aculeata or stinging wasps is a modifed ovipositor; its function (killing or paralyzing prey, defense against predators) and the associated anatomical changes are apomorphic for Aculeata. The change in the purpose of the ovipositor/sting from being primarily an egg laying device to being primarily a weapon has resulted in modifcation of its handling that is supported by specifc morphological adaptations. Here, we focus on the sheaths of the sting (3rd valvulae = gonoplacs) in Aculeata, which do not penetrate and envenom the prey but are responsible for cleaning the ovipositor proper and protecting it from damage, identifcation of the substrate for stinging, and, in some taxa, contain glands that produce alarm pheromones.
    [Show full text]
  • (Hymenoptera) from the Middle Jurassic of Inner Mongolia, China
    European Journal of Taxonomy 733: 146–159 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.733.1229 www.europeanjournaloftaxonomy.eu 2021 · Zheng Y. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:043C9407-7E8A-4E8F-9441-6FC43E5A596E New fossil records of Xyelidae (Hymenoptera) from the Middle Jurassic of Inner Mongolia, China Yan ZHENG 1,*, Haiyan HU 2, Dong CHEN 3, Jun CHEN 4, Haichun ZHANG 5 & Alexandr P. RASNITSYN 6,* 1,4 Institute of Geology and Paleontology, Linyi University, Shuangling Rd., Linyi 276000, China. 1,4,5 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, East Beijing Road, Nanjing 210008, China. 2 School of Agronomy and Environment, Weifang University of Science and Techonoly, Jinguang Road, Shouguang, 262700, China. 3 School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China. 6 Palaeontological Institute, Russian Academy of Sciences, Moscow, 117647, Russia. 6 Natural History Museum, London SW7 5BD, UK. * Corresponding authors: [email protected], [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] 5 Email: [email protected] 1 urn:lsid:zoobank.org:author:28EB8D72-5909-4435-B0F2-0A48A5174CF9 2 urn:lsid:zoobank.org:author:91B2FB61-31A9-449B-A949-7AE9EFD69F56 3 urn:lsid:zoobank.org:author:51D01636-EB69-4100-B5F6-329235EB5C52 4 urn:lsid:zoobank.org:author:8BAB244F-8248-45C6-B31E-6B9F48962055 5 urn:lsid:zoobank.org:author:18A0B9F9-537A-46EF-B745-3942F6A5AB58 6 urn:lsid:zoobank.org:author:E7277CAB-3892-49D4-8A5D-647B4A342C13 Abstract.
    [Show full text]
  • Managing Alternative Pollinators a Handbook for Beekeepers, Growers, and Conservationists
    Managing Alternative Pollinators A Handbook for Beekeepers, Growers, and Conservationists ERIC MADER • MARLA SPIVAK • ELAINE EVANS Fair Use of this PDF file of Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, NRAES-186 By Eric Mader, Marla Spivak, and Elaine Evans Co-published by SARE and NRAES, February 2010 You can print copies of the PDF pages for personal use. If a complete copy is needed, we encourage you to purchase a copy as described below. Pages can be printed and copied for educational use. The book, authors, SARE, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, by Eric Mader, Marla Spivak, and Elaine Evans, and co- published by SARE and NRAES.---- No use of the PDF should diminish the marketability of the printed version. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES secure web site, www.nraes.org, or by calling (607) 255-7654. The book can also be purchased from SARE, visit www.sare.org. The list price is $23.50 plus shipping and handling. Quantity discounts are available. SARE and NRAES discount schedules differ. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org SARE 1122 Patapsco Building University of Maryland College Park, MD 20742-6715 (301) 405-8020 (301) 405-7711 – Fax www.sare.org More information on SARE and NRAES is included at the end of this PDF.
    [Show full text]
  • Insects & Spiders of Kanha Tiger Reserve
    Some Insects & Spiders of Kanha Tiger Reserve Some by Aniruddha Dhamorikar Insects & Spiders of Kanha Tiger Reserve Aniruddha Dhamorikar 1 2 Study of some Insect orders (Insecta) and Spiders (Arachnida: Araneae) of Kanha Tiger Reserve by The Corbett Foundation Project investigator Aniruddha Dhamorikar Expert advisors Kedar Gore Dr Amol Patwardhan Dr Ashish Tiple Declaration This report is submitted in the fulfillment of the project initiated by The Corbett Foundation under the permission received from the PCCF (Wildlife), Madhya Pradesh, Bhopal, communication code क्रम 車क/ तकनीकी-I / 386 dated January 20, 2014. Kanha Office Admin office Village Baherakhar, P.O. Nikkum 81-88, Atlanta, 8th Floor, 209, Dist Balaghat, Nariman Point, Mumbai, Madhya Pradesh 481116 Maharashtra 400021 Tel.: +91 7636290300 Tel.: +91 22 614666400 [email protected] www.corbettfoundation.org 3 Some Insects and Spiders of Kanha Tiger Reserve by Aniruddha Dhamorikar © The Corbett Foundation. 2015. All rights reserved. No part of this book may be used, reproduced, or transmitted in any form (electronic and in print) for commercial purposes. This book is meant for educational purposes only, and can be reproduced or transmitted electronically or in print with due credit to the author and the publisher. All images are © Aniruddha Dhamorikar unless otherwise mentioned. Image credits (used under Creative Commons): Amol Patwardhan: Mottled emigrant (plate 1.l) Dinesh Valke: Whirligig beetle (plate 10.h) Jeffrey W. Lotz: Kerria lacca (plate 14.o) Piotr Naskrecki, Bud bug (plate 17.e) Beatriz Moisset: Sweat bee (plate 26.h) Lindsay Condon: Mole cricket (plate 28.l) Ashish Tiple: Common hooktail (plate 29.d) Ashish Tiple: Common clubtail (plate 29.e) Aleksandr: Lacewing larva (plate 34.c) Jeff Holman: Flea (plate 35.j) Kosta Mumcuoglu: Louse (plate 35.m) Erturac: Flea (plate 35.n) Cover: Amyciaea forticeps preying on Oecophylla smargdina, with a kleptoparasitic Phorid fly sharing in the meal.
    [Show full text]
  • A Remarkable New Species of Polochridium Gussakovskij, 1932 (Hymenoptera: Sapygidae) from China
    Zootaxa 4227 (1): 119–126 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4227.1.7 http://zoobank.org/urn:lsid:zoobank.org:pub:7DBD20D3-31D5-4046-B86E-2A5FD973E920 A remarkable new species of Polochridium Gussakovskij, 1932 (Hymenoptera: Sapygidae) from China QI YUE1, YI-CHENG LI1 & ZAI-FU XU1,2 1Department of Entomology, South China Agricultural University, Guangzhou 510640, China 2Corresponding author. E-mail: [email protected] Abstract A new species, Polochridium spinosum Yue, Li & Xu, sp. nov. (China: Hunan, Shaanxi, Henan), is described and illus- trated. A key to the four Chinese species of Sapygidae is given. Key words: Sapyginae, new species, Palaearctic Region, Oriental Region Introduction Sapygidae is a small family of Vespoidea and includes 70 extant species in 12 genera (Aguiar et al. 2013; Achterberg 2014; Fernández & Sarmiento 2015), which are parasites of the bees Megachilidae, Apidae, Colletidae, rarely on wasps Eumeninae of Vespidae (Torchio 1979; Xu 1994; Kurzenko, 2012). Currently three species of the subfamily Sapyginae are known from China: Sapyga coma Yasumatsu & Sugihara, 1938, S. similis (Fabricius 1793), and Polochridium eoum Gussakovskij, 1932 (Kurzenko & Gusenleitner 1994; Xu 1994). Recently we collected in Hunan, Shaanxi and Henan fourteen females and one male of Polochridium, which described below as new species. Materials and methods Descriptions of the species have been made under a Leica MZ125 stereomicroscope, with lighting achieved through a 27W fluorescent lamp. Photographic images were produced with a digital camera Cool SNAP attached to the Zeiss Stemi 2000-cs stereomicroscope, and plates were finished with ACDSee 10.0 and Photoshop CS 8.0.1, mostly to adjust the size and background.
    [Show full text]
  • Seasonal and Spatial Patterns of Mortality and Sex Ratio in the Alfalfa
    Seasonal and spatial patterns of mortality and sex ratio in the alfalfa leafcutting bee, Megachile rotundata (F.) by Ruth Pettinga ONeil A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Ruth Pettinga ONeil (2004) Abstract: Nests from five seed alfalfa sites of the alfalfa leafcutting bee Megachile rotundata (F.) were monitored over the duration of the nesting season in 2000 and 2001, from early July through late August. Cells containing progeny of known age and known position within the nest were subsequently analyzed for five commonly encountered categories of pre-diapause mortality in this species. Chalkbrood and pollen ball had the strongest seasonal relationships of mortality factors studied. Chalkbrood incidence was highest in early-produced cells. Pollen ball was higher in late-season cells. Chalkbrood, parasitism by the chalcid Pteromalus venustus, and death of older larvae and prepupae , due to unknown source(s) exhibited the strongest cell-position relationships. Both chalkbrood and parasitoid incidence were highest in the inner portions of nests. The “unknown” category of mortality was highest in outer portions of nests. Sex ratio was determined for a subset of progeny reared to adulthood. The ratio of females to males is highest in cells in inner nest positions. Sex ratio is female-biased very early in the nesting season, when all cells being provisioned are the inner cells of nests, due to the strong positional effect on sex ratio. SEASONAL AND SPATIAL PATTERNS OF MORTALITY AND SEX RATIO IN THE ALFALFA LEAFCUTTING BEE, Megachile rotundata (F.) by .
    [Show full text]
  • Morphology of the Mandibular Gland of the Ant Paraponera Clavata (Hymenoptera: Paraponerinae)
    Received: 9 October 2018 Revised: 17 January 2019 Accepted: 2 February 2019 DOI: 10.1002/jemt.23242 RESEARCH ARTICLE Morphology of the mandibular gland of the ant Paraponera clavata (Hymenoptera: Paraponerinae) Thito Thomston Andrade1 | Wagner Gonzaga Gonçalves2 | José Eduardo Serrão2 | Luiza Carla Barbosa Martins1 1Programa de Pós-Graduação em Biodiversidade, Ambiente e Saúde, Abstract Departamento de Biologia e Química, The ant Paraponera clavata (Fabricius, 1775) is the only extant species of Paraponerinae and is Universidade Estadual do Maranhão, Caxias, widely distributed in Brazilian forests. Aspects of its biology are documented extensively in the Maranhão, Brazil literature; however, knowledge of P. clavata internal morphology, specifically of exocrine glands, 2Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, is restricted to the venom apparatus. The objective of this study was to describe the mandibular Minas Gerais, Brazil gland morphology of P. clavata workers. The mandibular gland is composed of a reservoir con- nected to a cluster of Type III secretory cells with cytoplasm rich in mitochondria and lipid drop- Correspondence lets, similar to that of other ants. Notably, the glandular secretion is rich in protein and has a Luiza Carla Barbosa Martins, Programa de Pós- Graduação em Biodiversidade, Ambiente e solid aspect. This is the first morphological description of the mandibular gland of P. clavata. Saúde, Departamento de Biologia e Química, Universidade Estadual do Maranhão, Caxias, Research Highlights Maranhão, Brazil. This study presents the morphological description of the mandibular gland of Paraponera clavata Email: [email protected] (Hymenoptera: Paraponerinae). Singular characteristics of the gland are described: the glandular Review Editor: George Perry secretion is rich in protein and has a solid aspect.
    [Show full text]
  • A Guide to the Ants of Sabangau
    A Guide to the Ants of Sabangau The Orangutan Tropical Peatland Project November 2014 A Guide to the Ants of Sabangau All original text, layout and illustrations are by Stijn Schreven (e-mail: [email protected]), supple- mented by quotations (with permission) from taxonomic revisions or monographs by Donat Agosti, Barry Bolton, Wolfgang Dorow, Katsuyuki Eguchi, Shingo Hosoishi, John LaPolla, Bernhard Seifert and Philip Ward. The guide was edited by Mark Harrison and Nicholas Marchant. All microscopic photography is from Antbase.net and AntWeb.org, with additional images from Andrew Walmsley Photography, Erik Frank, Stijn Schreven and Thea Powell. The project was devised by Mark Harrison and Eric Perlett, developed by Eric Perlett, and coordinated in the field by Nicholas Marchant. Sample identification, taxonomic research and fieldwork was by Stijn Schreven, Eric Perlett, Benjamin Jarrett, Fransiskus Agus Harsanto, Ari Purwanto and Abdul Azis. Front cover photo: Workers of Polyrhachis (Myrma) sp., photographer: Erik Frank/ OuTrop. Back cover photo: Sabangau forest, photographer: Stijn Schreven/ OuTrop. © 2014, The Orangutan Tropical Peatland Project. All rights reserved. Email [email protected] Website www.outrop.com Citation: Schreven SJJ, Perlett E, Jarrett BJM, Harsanto FA, Purwanto A, Azis A, Marchant NC, Harrison ME (2014). A Guide to the Ants of Sabangau. The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. The views expressed in this report are those of the authors and do not necessarily represent those of OuTrop’s partners or sponsors. The Orangutan Tropical Peatland Project is registered in the UK as a non-profit organisation (Company No. 06761511) and is supported by the Orangutan Tropical Peatland Trust (UK Registered Charity No.
    [Show full text]
  • A Phylogenetic Analysis of the Megadiverse Chalcidoidea (Hymenoptera)
    UC Riverside UC Riverside Previously Published Works Title A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera) Permalink https://escholarship.org/uc/item/3h73n0f9 Journal Cladistics, 29(5) ISSN 07483007 Authors Heraty, John M Burks, Roger A Cruaud, Astrid et al. Publication Date 2013-10-01 DOI 10.1111/cla.12006 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Cladistics Cladistics 29 (2013) 466–542 10.1111/cla.12006 A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera) John M. Heratya,*, Roger A. Burksa,b, Astrid Cruauda,c, Gary A. P. Gibsond, Johan Liljeblada,e, James Munroa,f, Jean-Yves Rasplusc, Gerard Delvareg, Peter Jansˇtah, Alex Gumovskyi, John Huberj, James B. Woolleyk, Lars Krogmannl, Steve Heydonm, Andrew Polaszekn, Stefan Schmidto, D. Chris Darlingp,q, Michael W. Gatesr, Jason Motterna, Elizabeth Murraya, Ana Dal Molink, Serguei Triapitsyna, Hannes Baurs, John D. Pintoa,t, Simon van Noortu,v, Jeremiah Georgea and Matthew Yoderw aDepartment of Entomology, University of California, Riverside, CA, 92521, USA; bDepartment of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, 43210, USA; cINRA, UMR 1062 CBGP CS30016, F-34988, Montferrier-sur-Lez, France; dAgriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada; eSwedish Species Information Centre, Swedish University of Agricultural Sciences, PO Box 7007, SE-750 07, Uppsala, Sweden; fInstitute for Genome Sciences, School of Medicine, University
    [Show full text]
  • BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
    BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12.
    [Show full text]
  • Evolution of the Suctorial Proboscis in Pollen Wasps (Masarinae, Vespidae)
    Arthropod Structure & Development 31 (2002) 103–120 www.elsevier.com/locate/asd Evolution of the suctorial proboscis in pollen wasps (Masarinae, Vespidae) Harald W. Krenna,*, Volker Maussb, John Planta aInstitut fu¨r Zoologie, Universita¨t Wien, Althanstraße 14, A-1090, Vienna, Austria bStaatliches Museum fu¨r Naturkunde, Abt. Entomologie, Rosenstein 1, D-70191 Stuttgart, Germany Received 7 May 2002; accepted 17 July 2002 Abstract The morphology and functional anatomy of the mouthparts of pollen wasps (Masarinae, Hymenoptera) are examined by dissection, light microscopy and scanning electron microscopy, supplemented by field observations of flower visiting behavior. This paper focuses on the evolution of the long suctorial proboscis in pollen wasps, which is formed by the glossa, in context with nectar feeding from narrow and deep corolla of flowers. Morphological innovations are described for flower visiting insects, in particular for Masarinae, that are crucial for the production of a long proboscis such as the formation of a closed, air-tight food tube, specializations in the apical intake region, modification of the basal articulation of the glossa, and novel means of retraction, extension and storage of the elongated parts. A cladistic analysis provides a framework to reconstruct the general pathways of proboscis evolution in pollen wasps. The elongation of the proboscis in context with nectar and pollen feeding is discussed for aculeate Hymenoptera. q 2002 Elsevier Science Ltd. All rights reserved. Keywords: Mouthparts; Flower visiting; Functional anatomy; Morphological innovation; Evolution; Cladistics; Hymenoptera 1. Introduction Some have very long proboscides; however, in contrast to bees, the proboscis is formed only by the glossa and, in Evolution of elongate suctorial mouthparts have some species, it is looped back into the prementum when in occurred separately in several lineages of Hymenoptera in repose (Bradley, 1922; Schremmer, 1961; Richards, 1962; association with uptake of floral nectar.
    [Show full text]
  • Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) Zhiwei Liu Eastern Illinois University, [email protected]
    Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 2007 Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) Zhiwei Liu Eastern Illinois University, [email protected] Michael S. Engel University of Kansas, Lawrence David A. Grimaldi American Museum of Natural History Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Biology Commons Recommended Citation Liu, Zhiwei; Engel, Michael S.; and Grimaldi, David A., "Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea)" (2007). Faculty Research & Creative Activity. 197. http://thekeep.eiu.edu/bio_fac/197 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3583, 48 pp., 27 figures, 4 tables September 6, 2007 Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) ZHIWEI LIU,1 MICHAEL S. ENGEL,2 AND DAVID A. GRIMALDI3 CONTENTS Abstract . ........................................................... 1 Introduction . ....................................................... 2 Systematic Paleontology . ............................................... 3 Superfamily Cynipoidea Latreille . ....................................... 3
    [Show full text]